

Objectives

- 1. Identify ECG changes associated with myocardial ischemia, injury, and infarction.
- 2. Associate lead views with the correlating area of the heart.
- 3. Identify abnormal ECG findings associated with various pathologies.
- 4. Discuss the management and therapies for identified pathologies.
- Review clinical practice guidelines for the acute myocardial infarction patient; including antiplatelet, beta blocker, and statin therapies.

Right Coronary Artery	Circumflex	Left Coronary Artery
(RCA)	(Cx)	(LCA,LAD)
SA node – 55% people AV node, bundle of His – 90% people Right atrium Inferior left ventricle Lower 1/3 of septum Major portion anterior right ventricle and posterior right ventricle Posterior left ventricle papillary muscles Posterior division left bundle branch	SA node – 45% people AV node – 10% people Lateral and posterior left ventricle Posterior left bundle branch Left atrium	Anterior 2/3rds of septum, bundle branches Left ventricle – anterior, apex, posterior) Minor portion of right ventricle

Wall	Leads	Coronary Artery	Reciprocal changes
Anterior	V1, V2, V3, V4	LAD branch of LCA	II, III, aVF
Inferior	II, III, aVF	RCA	I, aVL
Lateral	I, aVL, V5, V6	Circumflex branch of LCA	V1, V3
Posterior	V1, V2 (ST depression, tall R waves)	RCA, Circumflex	
Apical	V3, V4, V5, V6	LAD, RCA	
Anteriolateral	I, aVL, V1, V2, V3, V4, V5, V6	LAD, Circumflex	II, III, aVF
Septal	V1, V2	LAD	

Steps to Interpreting the ECG

Basic rhythm steps

Rhythm Rate P Waves PR Interval QRS QT Interval Additional 12 Lead steps Wall of the heart 3 I's of a MI Axis Deviation Bundle Branch Blocks What's not normal

Ugly vs. Dangerous

12

An electrocardiography pearl

ECG is nothing more than a voltmeter and a stopwatch.

Timing - horizontal • Rate, PR interval, QRS interval, QT interval

Voltage - vertical

- Scars decrease the voltage.
- Thick muscle increases the voltage.
- 13

Infor	ma	ation at	the	to	эр	of the 12 Lead
Last name, F	irst name		ID: ####	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ŧ	Date and Time
Date of Birth		Vent rate BPM	66			Sinus rhythm with marked sinus arrhythmia
Gender	Race	PR interval	200	,	ms	ST elevation consider inferior injury or acute infarct
		QRS duration	102		ms	****ACUTE MI / STEMI *****
Location		QT/QTc	394/413		ms	Consider right ventricular involvement in acute inferior infarct
		P-R-T axes	61	52	97	Abnormal ECG
		I HIGH BAGS		52	υ.	When compared with ECG of 17-MAY-2006
						ST elevation now present in Inferior leads
						ST now depressed in Anterolateral leads
						T wave inversion now evident in Anterolateral leads

- ST flattening, depression, develop U waves
- Normal T wave after prolonged QT interval

QTc by Bazett's Formula

Step 1
Find the square root of the R-R interval
Measure the R-R interval (# of squares x 0.04) then press the sign on a calculator.

Step 2

Measure the QT interval Change the QT interval from seconds to milliseconds (QT .44 secs = 440 ms)

Step 3 • Divide the QT interval in ms by the square root of the R-R interval to calculate the QTc.

Example: Step 1

R-R is 19 squares x 0.04 = 0.76 Press the square root button The square root of 0.76 is 0.87

QT interval is .48 sec or 480 ms

Step 2

- Step 3
 - 480 ÷ 0.87 = QTc of 552 (551.7) ms

	12 Lead Format					
	I	AVR	V1	V4		
	Ш	AVL	V2	V5		
	Ш	AVF	V3	V6		
18						

Causes of ST Elevation

Acute MI Injury pattern Left BBB Angina with coronary artery spasm Early repolarization Left Ventricular hypertrophy Hyperkalemia Tako Tsubo cardiomyopathy Intracranial bleeds or other pathologies like tumors Acute corpulmonale Myocarditis Pericarditis Cholecystitis Myocardial tumors Acute pancreatitis Hypothermia

Axis				
Axis	Lead I	Lead II	Lead III	Comments
Normal	Λ	Λ	Λ	aVF positive
0-90				
Physiologic				aVF negative
Left Axis		<u>~</u> ^_		
040		→v −		
Pathological	٨			Anterior
Left Axis				Hemiblock
-40 to -90				
Right Axis		~		aVF positive
90-180				Posterior
		-~~		Hemiblock
Extreme Right				aVF negative
Axis				Ventricular in
No Man's Land			V 26	origin

Signs and Symptoms of Acute **Coronary Syndrome** Classic or usual Chest discomfort described as pain, pressure, ache, squeezing, burning or fullness. Discomfort or pain in one or both arms Shortness of breath with or before chest discomfort Diaphoresis - sweating Anxiety Prodromal symptoms or pre-heart attack symptoms can occur one to six weeks before include: Atypical or not usual Back, abdominal, neck or jaw pain ptoms can occur one to six weeks uero. -Chest pain -Pain in one shoulder blade or upper back -Indigestion -Unusual fatigue -Anxiety -Sleep disturbances -Shortness of breath, especially if no previous awareness of heart disease Weakness or fatigue Indigestion . Nausea or vomiting Dizziness or lightheadedness 31

Acute Coronary Syndrome

- ST Elevated Myocardial Infarction- STEMI
 - ST segment is elevated above the isoelectric baseline
 - Classic presentation with elevated cardiac biomarkers
 - New LBBB not diagnostic, 2013 update
- Non ST Elevated Myocardial Infarction NSTEMI
 ST and T-wave changes with elevated cardiac
 - biomarkers
 - Depressed ST, inverted T wave
 - Classical or atypical presentation
- Angina, Unstable angina

Types of MI

Type 1

- Spontaneous MI related to ischemia due to a primary coronary event such as plaque erosion and/or rupture, fissuring, or dissection.
- Non ST Elevation MI or ST Elevation MI

Type 2

- MI secondary to ischemia due to either increased oxygen demand or decreased supply.
 - Respiratory distress, renal failure, sepsis, shock
 - sepsis, shock Not ischemia from thrombosis of
 - Not ischemia from thrombos coronary artery.
 - **Document elevated troponin

Туре 3

- Sudden unexpected cardiac death, including cardiac arrest, often with symptoms suggestive of MI.
- Accompanied by presumably new ST elevation or new LBBB.
 Evidence of fresh thrombus in the coronary artery by angiography.

Type 4

 MI associated with coronary angioplasty or stent thrombosis.

Туре 5

MI associated with coronary artery bypass grafting (CABG) occlusion.

Pathological Types

Transmural AMI

- Infarct extends through the whole thickness of the heart muscle, usually resulting in complete occlusion of the area's blood supply.
 - Associated with atherosclerosis involving a major coronary artery.
 - Subclassified into anterior, posterior, inferior, lateral, or septal.
 - ST elevation, and Q-waves

Subendocardial AMI

•

- Involves a small area in the subendocardial wall of the left ventricle, ventricular septum, or papillary muscles.
- Susceptible to ischemia.ST depression, T-wave changes

AMI Clinical Practice Guidelines (CPGs)

During hospitalization

- 12 Lead ECG within 10 minutes
- Reperfusion strategies
- Aspirin within 24 hours before* or after arrival
- Smoking (tobacco) cessation advice/counseling
- At Discharge
 - Aspirin
 - Beta-Blocker
 - Statin
 - ACE-I or ARB therapy for EF (ejection fraction) ≤40% -HFrEF, reduced left ventricular systolic dysfunction

STEMI Reperfusion Strategy

Door-to-needle within 30 minutes

- Thrombolytic (fibrinolysis) therapy
 - TNKase (tenecteplase)
 - Activase (t-PA, alteplase)
 - Retavase (r-PA, reteplase)
 - Streptokinase (Streptase)

Door-to-Balloon (D2B) within 90 minutes

- Percutaneous Coronary Intervention (PCI)
 - PTCA Percutaneous transluminal coronary angioplasty
 - Atherectomy
 - Coronary artery stents

Antiplatelet Options					
Name	Classification	Dosing – Std Concentration	Comments		
Aspirin	Anti-platelet, attaches to TXA ₂ site	162-325 mg loading, then 81 (75-100) mg PO per day			
Plavix (clopidogrel)	Anti-platelet, attaches to ADP P2Y ₁₂ site	300-600 mg PO loading, then 75 mg daily	Do not take with PPI, especially Prilosec		
Effient (prasugrel)	Anti-platelet, attaches to ADP $\ensuremath{\text{P2Y}_{12}}$ site	60 mg PO loading, then 10 mg daily	Caution in patients > 75 years old, < 60 kg. Box warning not to give if history of stroke or TIA.		
Brilinta (ticagrelor)	Anti-platelet, attaches to ADP P2Y ₁₂ site	180 mg PO loading, then 90 mg twice a day	ASA to be limited to 75-100 mg/day		
Integrilin (eptifibatide)	Anti-platelet, attaches to GP IIb IIIa	2 mcg/kg/min infusion 12 to 24 hours after PCI -Decrease to 1 mcg/kg/min for renal impairment	Reversible in 2.5-4 hours. Don't get patients OOB until 2-2.5 hours after infusion is shut off.		
ReoPro (abciximab)	Anti-platelet, attaches to GP 11a IIb	0.25 mg/kg bolus, then 10 mcg/min infusion x 18-24 hours or stop 1 hour after PCI	No renal dosing. 4 hour effect with half-life of 30 minutes		
42					

Beta Blockers

- Reduce catecholamine levels
- Decrease myocardial ischemia and limit infarct size
- Reduce myocardial workload and oxygen demand
- Reduce heart rate and blood pressure
- Reduce supraventricular and malignant ventricular arrhythmias

Metoprolol – Lopressor, Toprol XL Carvedilol – Coreg Bisoprolol - Zebeta Atenolol – Tenormin Sotalol – Betapace Betaxolol – Kerlone Propranolol – Inderol Esmolol – Brevibloc (IV) Labetalol – Normodyne (IV)

Common Beta Blockers

Drug	Initial Daily Dose	Maximum Dose
carvedilol (Coreg)	3.125 mg BID	50 mg BID
Carvedilol extended release (Coreg CR)	10 mg daily	80 mg daily
metoprolol succinate extended release (Toprol XL, generic)	12.5-25 mg daily	200 mg daily
bisoprolol (Zebeta)	1.25 mg daily	10 mg daily
Atenolol (Tenormin)	50 mg daily	100 mg (200) daily
Metoprolol tartrate (Lopressor)	50 mg BID	450 mg divided in 2-3 doses

No Beta Blockers with Cocaine

If cocaine induced MI, no beta blocker

- BB may exacerbate the vasospasm induced by cocaine due to "unopposed" alpha effect
- · Inhibits vasodilation

- Cholesterol is synthesized
 - a series of chemical
- cholesterol synthesis is to interrupt the conversion of HMG CoA to mevalonate.

HMG-CoA Reductase Inhibitors or Statins

2013 guideline update •

- Lifestyle modification Diet, exercise, lose weight
- Assess ASCVD risk
- Four Benefit Groups .

•

- Individuals with clinical ASCVD Individuals with primary elevations
- of LDL-C ≥190 mg/dL Individuals age 40-75 with diabetes and LDL-C of 70-189 mg/dL without clinical ASCVD
- Individuals without clinical ASCVD or diabetes who are age 40-75 with LDL-C of 70-189 mg/dL and estimated 10 year ASCVD risk of ≥7.5%
- http://content.onlinejacc.org/article.aspx?articleid =1879710
- Guidelines level to high or moderate intensity dosing. Adverse effects - muscle aching,

Atorvastatin - Lipitor

Simvastatin - Zocor

Lovastatin – Mevacor

Rosuvastatin - Crestor

Pravastatin – Pravachol

increase in liver enzymes

PCSK9 Inhibitors

By blocking PCSK9's ability to work, more receptors are available to get rid of LDL cholesterol from the blood and, as a result, lower LDL cholesterol levels

Alirucumab (Praluent)

75 mg or 150 mg SQ every 2 weeks

Evolocumab (Repatha)

- 140 mg every 2 weeks or 420 mg once monthly
- 420 mg dose Single use body infusor over 9 minutes or 3 injections within 30 minutes

These are additions to statin therapy. The benefit is to keep statin doses low.

<section-header><complex-block>

ACE-I & ARBs

ACE-I

Lisinopril – Prinivil, Zestril Captopril – Capoten Ramipril - Altace Enalapril – Vasotec Fosinopril – Monopril

Adverse effect – cough, angioedema, hyperkalemia Watch renal function.

ARB

Losartan – Cozaar Valsartan - Diovan Candesartan - Atacand

Tend not to have as many adverse effects. Cough not often seen.

ACE-I and ARBs						
ACE Inh	ibitors		ARBs			
Drug	Initial Daily Dose	Maximum Dose	Drug	Initial Daily Dose	Maximum Dose	
Captopril	6.25 mg TID	50 mg TID	Losartan	25-50 mg daily	50-150 mg daily	
Enalapril	2.5 mg BID	10-20 BID	Valsartan	20-40 mg	160 mg	
Fosinopril	5-10 mg	40 mg	0 1 1	BID	BID	
	daily	daily	Candesartan	4-8 mg dailv	32 mg daily	
Lisinopril	2.5-5 mg daily	20-40 mg daily		uuny	duity	
Ramipril	1.25-2.5 daily	10 mg daily				

September 2017 AHA / ACA New Performance Measures for MI

- 1. Immediate angiography for resuscitated out-ofhospital cardiac arrest in STEMI patients
- 2. Noninvasive stress testing before discharge in conservatively treated patients
- 3. Early cardiac troponin measurement, within 6 hours of arrival
 - Baseline, 2 hours, 6 hours
- 4. Participation in a regional or national acute-MI registry
 - TJC Certifications need GWTG (Get With The Guidelines) registry

September 2017 AHA / ACA New Quality Measures for MI

- 1. Risk-score stratification for NSTEMI patients
- 2. Early invasive strategy, within 24 hours, in high-risk NSTEMI patients
- 3. Therapeutic hypothermia for comatose STEMI patients with out-of-hospital cardiac arrest
- 4. Aldosterone antagonist at discharge
- 5. Inappropriate in-hospital use of NSAIDS
- 6. Inappropriate prescription of prasugrel at discharge in patients with a history of prior stroke or TIA
- 7. Inappropriate prescription of high-dose aspirin with ticagrelor at discharge

RBBB

Look at V1 lead

- QRS is <u>></u> 0.12 seconds
 o An incomplete BBB measures
 - < 0.12 sec.

Right BBB is blocked.

- Electrical impulse is going Left > Right
- Right ventricle conducts later than left ventricle

Physiological

Athletes
 Increased muscle mass

Pathological CAD

- More common with anterior MI
- Pulmonary HTN
- Inflammatory disease
- Lesions of the septum
- New RBBB after bypass surgery is a + periop MI

LBBB

- Look at V1 lead
- QRS is ≥ 0.12 seconds
 o An incomplete BBB measures <
- 0.12 sec.
- Left BBB is blocked
- Electrical impulse is going Right > LeftLeft ventricle conducts later than right
- ventricle
- Left bundle of HIS has 3 fascicles (fascicular block)
 - Anterior (superior)
 - Posterior (inferior)
 - Midseptum

- Pathological CAD
 - More common with inferior MI
 - Hypertension
 Dilated cordiomycan
 - Dilated cardiomyopathyCalcified aortic valve,
 - stenosis
 - Aortic root dilation and
 - aortic regurgitationDegenerative heart disease

Adversion Adversion Valvular Heart Disease Mitral stenosis Mitral regurgitation A ortic stenosis Heart Failure Ventricular Septal Defect Cardiac myoma Broad or notched P-waves Prolonged P wave U 1 broad trough I, II, & V4-V6 notched

Hypertrophic Cardiomyopathy

Previously known as

- Hypertrophic obstructive cardiomyopathy HCOM
- Idiopathic hypertrophic subaortic stenosis IHSS

Number one cause of sudden cardiac death in young athletes (1-2%).

Inheritance is primarily autosomal dominant.

ECG changes

- Left ventricular hypertrophy pattern
- Tall R waves
- Large precordial voltages
- Left atrial enlargement

12 Lead ECG as a Screening Test

- United States does not require
- Italy and Israel do
- Issues
- Placement of leads
- · 30% false positives
- Ethical issues
- Consent for screening
- Who receives results
- · Who makes the determination of risk with participation in activities

Read more, including recommended 14 element screening at

http://circ.ahajournals.org/content/130/15/1303

Treatment and Management

Medical

- No highly strenuous activity
- Control blood pressure
 o Beta blockers
 - Calcium channel blockers
- Amiodarone
- Norpace (disopyramide)
- Cautious with diuretics
- Avoid inotropes, nitrates, sympathomimetic amines

- Surgical
- Surgical septal myectomyAlcohol septal ablation
- Heart transplant

Tall R waves in V1-2

Not normal

- Posterior MI
- Right bundle branch block
- · Right ventricular hypertrophy
- · Hypertrophic cardiomyopathy

Wolff-Parkinson White

Sinus impulses bypass the AV node via an accessory pathway (AP) conduction.

- Uncommon ~2 per 1,000 in the general population
- Can be right-sided, left-sided, anterior, or posterior – and sometimes more than a single AP.
- A very fast atrial fibrillation (250-300) think WPW.

WPW

Three key signs:

- Delta wave which may be positive or negative
- QRS widening
- Short PR interval

Treatment and Management

Acutely

Long Term

Adenosine

Catheter ablation

Consult cardiology

Flecainide (Tambocor) Sotalol (Betapace)

Pulmonary Embolus

Look at the sum of all in context with the clinical history.

- ECG is not diagnostic.
- Can strongly suggest before the V/Q or CT scan.

 $Old - S_l \mbox{-} Q_{\mbox{\scriptsize III}} \mbox{-} T_{\mbox{\scriptsize III}}$ "classic" finding is neither sensitive nor specific.

Suspect PE?

New onset dyspnea, pleuretic

- Typically tachycardic • Most common, seen in 44% of
- cases
- RBBB
- Complete or incomplete
 Right Ventricular
- strain pattern
- T wave inversion in V1, V2, V3, also V4
- T Wave inversion II, III, aVF
- Right axis deviation
 Extreme right axis may occur between 0 and -90, giving appearance of left axis (pseudo left
- axis)
 Dominant R wave in V1

 Manifestation of acute right ventricular dilation
- RA enlargement
- Peaked P waves in lead II
- Wide S in Lead I, subtle S in V6
- > ST elevation in aVR

Causes of PVCs

Bradycardia

- PVCs trying to help out
- Hypoxia
 - Evil of all evil
- Electrolyte imbalance
 - Potassium,
 - magnesium, calcium

Medications

- Infusions we've started
- Medications not restarted

Stimulants

Legal or illegal

References

Amsterdam, E. A., Wenger, N. K., Brindis, R. G., Casey, D. E. Ganiats, T. G., Holmes, D. R, ...Zieman, S. J. (2014). 2014 AHA/ACC guideline for the management of patients with non-st-elevation acute coronary syndromes. Retrieved from http://content.onlinejacc .org/article.aspx?articleid=1910086

Levine, G. N., Bates, E. R., Bittl, J. A., Brindis, R. G., Fihn, S. D., Fleisher, L. A., ...Smith, S. C. (2016). 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease. Retrieved from http://circ.ahajournals.org/content/134/10/e123

Marion, B. J., Friedman, R. A., Kligfield, P., Levine, B. D., Viskin, S., Chaitman, B. R., ... Thompson, P. D. (2014). Assessment of the 12-lead ecg as a screening test for detection of cardiovascular disease in healthy general populations of young people (12-25 years of age). Retrieved from http://circ.ahajournals.org/content/130/15/1303

References

O'Gara, P. T., Kushner, F. G., Ascheim, D. D., Casey, D. E., Chung, M. K., de Lemos, J. A., ... Zhao, D.X. (2013). 2013 ACCF/AHA guideline for the management of st-elevation myocardial infarction. *Circulation*, 127. Retrieved from <u>http://circ.ahajournals.org/content/early/2012/12/17/CIR.0b013e3182742cf6.full.pdf+html</u>

Shenasa, M., Josephson, M. E., & Mark Estes, N. A. (2015). ECG handbook of contemporary challenges. Minneapolis, MN: Cardiotest Publishing

Thaler, M. S. (2015). The only ecg book you'll ever need (8th ed.). Philadelphia, PA: Wolters Kluwer Health.

12 Lead ECG-**Basics and Beyond**

Dawn.Gosnell@ascension.org

Thank you for your attention

• Get out there and read those 12 Lead ECGs

Clinical Professional Development CPD Consultant

Ascension

