

CUDA ACCELERATED LARGE SCALE VEHICULAR AREA NETWORK SIMULATOR

A Thesis by

Chok Meng Yip

Bachelor of Engineering, Wichita State University, 2011

Submitted to the Department of Electrical Engineering and Computer Science

and the faculty of the Graduate School of

Wichita State University

in partial fulfillment of

the requirements for the degree of

Master of Science

August 2014

ii

© Copyright 2014 by Chok Meng Yip

All Rights Reserved

iii

CUDA ACCELERATED LARGE SCALE VEHICULAR AREA NETWORK SIMULATOR

The following faculty members have examined the final copy of this thesis for form and content,

and recommend that it be accepted in partial fulfillment of the requirement for the degree of

Master of Science, with a major in Computer Networking.

Abu Asaduzzaman, Committee Chair

Ramazan Asmatulu, Committee Member

Yi Song, Committee Member

iv

DEDICATION

To the Almighty, my loving wife, parents, in-laws, brother, and cousins for their ultimate

encouragement throughout my education and for incomparable advice throughout my life

v

ACKNOWLEDGMENTS

 I am very thankful to my thesis advisor Dr. Abu Asaduzzaman for his continuous

encouragement and support throughout my research work. His timely supervision of my work

and guidance allowed this research work to be completed on time. He always had time and

patience to guide me in accomplishing this work in spite of his busy schedule and offered me

assistance from time to time. It has been an honor to work for him as a graduate research

assistant.

 I express my gratitude towards Dr. Ramazan Asmatulu and Dr. Yi Song for their valuable

encouragement and I would also like to thank them for taking time from their busy schedule and

to be the part of my committee member.

 I take pleasure in recognizing, the efforts of all those who encouraged and assisted me

both directly and indirectly with my experimental research. I specially want to thank lab

colleagues Mark Allen and Kishore Chidella for precious input and continuous motivation and

support. Finally, I acknowledge the WSU CAPPLab research group and facilities for providing

me with all the necessary resources to prepare my research work.

vi

ABSTRACT

Both size and computational activities of Vehicular Area Network (VANET) are

growing. Simulation of VANETs not only requires the simulation of network standards, but also

the mobility of nodes. Such dynamic system involves computation of node distance, routing

protocols, application layers, data send, data receive, etc. The simulation model of VANET

requires both hardware and software supports to deal with massive computational problems.

Currently available network simulators, like network simulator 3 (NS-3), are not adequate for

simulating large-scale VANET systems. In this work, we propose a dual-stream Compute

Unified Device Architecture (CUDA)-assisted VANET simulation model for multicore Central

Processing Unit (CPU) / manycore Graphics Processing Unit (GPU) platform to increase

computational throughput. The proposed CUDA assisted VANET simulator uses NS-3 as the

core engine and improves throughput by exploiting massively parallel processing on the GPU.

Experimental results show that the computation throughput can be increased up to 75x by

splitting workload between CPU and GPU

vii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION...1

 1.1 Wireless Networking Technologies...

 1.1.1 Physical Layer..

 1.1.2 Medium Access Control...

 1.1.3 IEEE 802.11p...

 1.2 Mobility Modelling……………..

 1.2.1 Vehicular Area Network...

 1.2.2 Driving Behavior...

 1.3 Applications..

2. LITERATURE SURVEY..

 2.1 Problem Statement

 2.2 Thesis Contributions...

3. Wireless Networking Technologies...

 3.1 Network Simulator

 3.2 NS-3 Simulator

 3.2.1 NS-3 Architecture

 3.3 NS-3 VANET Simulation

 3.4 Large Scale NS-3 Simulation

3. PROPOSED CPU-MEMORY REGROUPING TECHNIQUE………..……

 3.1 Traditional CPU to GPU Memory Mapping………………………………

 3.2 Proposed CPU to GPU Memory Mapping………………………………

4. PROPOSED NS-3 VANET SOLUTION……………………………………………..

 4.1 CUDA………………………………………………………….

 4.2 Current NS-3 VANET Implementation……………………………………….

 4.3 Proposed NS-3 VANET Implementation…………………………………

5. RESULTS AND DISCUSSION……………………………………………..

 5.1 Assumption…………………………

 5.2 Experimental Setup…………………..

 5.3 Validation of CUDA Implementation…………………………………..

viii

TABLE OF CONTENTS (continued)

Chapter Page

6. CONCLUSION AND FUTURE EXTENSIONS……………….…………….

 6.1 Conclusion……………………………………………………………

 6.2 Future Extensions……………………………………………………..

REFERENCES………………………………………………………………….

ix

LIST OF TABLES

Table Page

1. FCC Allocation of VANET Networks...

2. Hardware Setup..

3. Node Position………………….

x

LIST OF FIGURES

Figures Page

1. Hidden Node Problem…………………………………………………..

2. RTS-CTS Illustration……………………………………..

3. Simple NS-3 simulation code…………………………….

4. Simulation Results…………………………..

5. Detailed Output…………………………………………..

6. NS-3 Architecture……………………………………….

7. Example Callback Code………………………………………..

8. Source Code Excerpt……………………………………

9. Visualized Vehicular Trace File………………………………………………

10. CUDA Logical Organization……………………………………..

11. Fermi GPU Floor Plan…………………………………..

12. Fermi Streaming Multiprocessor…………………………………..

13. CUDA Code……………………………………..

14. Data Structure of VANET Simulator…………………

15. VANET NS-3 Subroutine Calls………………

16. Distance Computation…………………………………

17. Distance Matrix……………….

18. Position and Movement Matrix…………………………

19. Proposed NS-3 workflow…………………………

20. CUDA code for Distance Matrix Computation…………….

xi

LIST OF FIGURES (continued)

Figures Page

21. VANET Highway Illustrated…………….

22. Matrices representing results……………..

23. Execution Time vs Problem Size…………………..

24. Calculated Speed Up………………………

25. Comparison against Iterations……………………

26. Comparison Against Number of Nodes………………

xii

LIST OF ABBREVIATIONS

VANET Vehicular Area Network

MAC Medium Access Control

OSI Open Systems Interconnection

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

DSSS Direct Sequence Spread Spectrum

OFDM Orthogonal Frequency Division Multiplexing

RTS Ready To Send

CTS Continue To Send

WAVE Wireless Access for Vehicular Environment

DSRC Dynamic Short Range Communication

SCH Service Channel

CCH Control Channel

BER Bit Error Rate

V2V Vehicular to Vehicular Network

V2I Vehicular to Infrastructure

V2X Vehicular to Other Units

SUMO Simulation of Urban Mobility

IDM Intelligent Driving Model

MOBIL Minimal Overall Braking decelerations Induced by Lane Changes

CUDA Compute Unified Device Architecture

xiii

IDE Integrated Development Environment

GUI Graphical User Interface

GPU Graphics Processing Unit

GPGPU General Purpose GPU

SM Streaming Multiprocessors

1

CHAPTER 1

INTRODUCTION

 In this chapter, we discuss the simulated behaviors of the NS-3 network simulator,

specifically on wireless networking simulation and vehicular movement simulation. These are

fundamental models necessary to simulate realistic behavior.

1.1 Wireless Networking Technology

 In the present era, wireless networking technologies have become a common networking

interface for modern consumer devices. The contemporary usage of computer networks presents

many challenges for network engineers to provide scalable and reliable networks. The evolution

of wireless networks in the last decade has changed the scale of devices. Network designers had

to adapt network topologies and modify existing protocols in order to adapt to wireless networks

[1].

Consumer wireless networks on modern devices are governed by IEEE 802.11 standard,

also known as WiFi. This standard is to ensure devices interoperate across all manufacturers and

implementations. As consumer devices become more network functional, consumers expect

devices to be more ubiquitous and reliable without centralized controls. Wireless Ad-Hoc

network is a standard that governs network connections without central access point. The

network layer which governs route formations is responsible for the robustness of Mobile Ad-

hoc Networks. Vehicular Area Network is an extension of Mobile Ad-hoc Networks, Vehicular

area networks are formed without central access point; therefore they are similar to Mobile Ad-

hoc Networks. The networks in vehicular area networks changes rapidly, and traditional mobile

2

ad-hoc networks standards does not adapt to these conditions. The rest of subsections discuss

about each layer and solution that will be implemented in standards

1.1.1 IEEE 802.11 Wireless Communication

 The IEEE 802.11 standard defines Medium Access Control (MAC) and physical layer

(PHY) of the open systems interconnection (OSI) model to ensure compatibility across all

manufacturers. The MAC layer controls fair sharing of network bandwidth. The physical layer

defines the signal coding and frequency of wireless medium.

Physical Layer:

 The physical layer of wireless networks in the OSI model is responsible for signal

generation. Analog signals received by physical layer are known as symbol. Symbols are a group

of waveforms, which can be easily recognized by the demodulator. There are many modulation

methods to encode a signal into symbols. The common modulation applied in IEEE802.11 are

Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM). Both methods

modulates binary digital signal into analog form and encodes more bits per symbol at the

expense of transmission error rate.

Direct Sequence Spread Spectrum (DSSS) is further applied to modulated signal to

further enhance success rate. The signal gained by applying such process is the process gain.

DSSS split symbols (PSK or QAM signals) into sequence of channels. The sequences of

channels are known by transmitter and receivers. Doing so makes signal resilient to channel

jamming or noise.

The bandwidth is further increased by using multiple channels to transmit data.

Orthogonal Frequency Division Multiplexing (OFDM) combines neighboring channel to further

increase signal bitrate.

3

Propagation of Radio Waves

The radio wave signals have been heavily researched. Free-space propagation formula

calculates received power over distance (eq1). Pr is the power received, Pt is the power

transmitted from station, Gr is the receiver’s antenna gain, Gt is transmitting antenna

amplification, and λ is the wave length. Power received is the ratio of distance multiplied by

distance.

(1.1)

Distance plays a big role in wireless modeling, and it affects quality of signal being

transmitted. Signal loss due to the distance is defined as the path loss. Wireless network design

involves transmission amplitude and receiver gain. A high amplitude may cause too much noise

generated at long distance, and transmit amplitude that is too low would not be enough to

overcome path loss. Ideal amplitude would be sufficient to transfer data without interference to

other nodes.

(1.2)

The NS-3 simulator does not encode bits to symbols; however the bitrate and error rate

can be computed as a function of distance and noise. The error rate calculation can be computed

using equation 1.2. Eb is the energy required per bit, and N0 is the Gaussian Noise Level. Using

Equation 1.1 and 1.2, it is sufficient to calculate bit error probability given a distance and

transmit power. The higher encoding bit rate, the higher the probability of error. For example,

QPSK encoding has bit error rate of Pb = Ps/2 [2]

4

1.1.2 Medium Access Control

For a shared wireless medium, transmission nodes are required to contend for the

channel. Signal collision happens when two nodes transmit using the same channel, resulting in

interference and hence packet lost. To overcome such inefficiency, ad-hoc nodes uses distributed

coordinated function (DCF) to contend for signal transmission. This function optimizes for fair

usage of wireless medium even in a high utilization rate. [3] One common problem in this

mechanism is the hidden node problem.

A BC

Figure 1: Hidden Node Problem

The hidden node can be illustrated using Figure 1. In this situation, Node A and Node B

does not interfere. When node B transmit to node C, node A will not sense the medium being

busy, and cause interference, resulting a failed packet transmission in Node C.

5

Figure 2 RTS-CTS illustration

To overcome such problem, IEEE 802.11 uses RTS-CTS mechanism. Before a packet is

transmitted, ready-to-send (RTS) packet control packet is transmitted to receiver. Receiver will

acknowledge RTS request by replying continue-to-send (CTS) packet. The hidden node-A which

receives CTS will enter silent period to avoid channel conflict.

Signal collision between nodes in the same channel can be simulated accurately. By simulating

signal collision behavior, network engineer can place nodes strategically to optimize a network.

N

o

d

e

C

N

o

d

e

B

N

o

d

e

A

T
im

e

Contentio

n

Silent

RTS

CTS CTS

DATA

ACK

6

1.2 IEEE 802.11p

 The IEEE 802.11p is an extension of existing IEEE 802.11 standard. The Wireless

Access for Vehicular Environment (WAVE) and DSRC (Dedicated Short Range

Communications) is established in European Countries and United States as a standard for

vehicular network. This Federal Communications Commission standard allocated 75MHz

spectrum at 5.9GHz bandwidth for vehicular communication [4].

Table 1-FCC Allocation of VANET networks

Frequency

(Ghz)

5.850 5.860 5.870 5.880 5.890 5.900 5.910 5.920

Channel

Number

 172 174 176 178 180 182 184

Uses Spacing Critical

Safety

Service Channels Control

Channel

Service Channels Public

Safety

Vehicular Network has short link times, thus transmission windows are optimized to

exchange data efficiently. Table 1 presents the allocated spectrum and frequency for current

IEEE 802.11p standards. Current DSRC standard divides 75 MHz spectrum into 10 MHz

channels. Each channel in DSRC is managed. Control Channels (CCH) are reserved for critical

messages and Service Channels (SCH) is used for data packets. All nodes switch channels

periodically to receive messages from different channels. Since all terminals are required to

switch to CCH during the CCH interval, critical messages is transmitted during CCH interval

and guaranteed to be received [4].

The MAC Layer of 802.11p is similar to 802.11e. The Enhanced Distributed Channel

Access Function (EDCAF) is split into multiple channel access (CA). Each channel maintain a

7

contention window such that transmit opportunity of one channel does not affect the other

channels [5].

The Physical layer of 802.11p uses Orthogonal Frequency Division Multiplexing

(OFDM) to make use different channels. IEEE 802.11p states optional enhanced receiver

performance requirements; this allows each channel to be encoded in different rate, resulting in

different Bit Error Rate (BER). By introducing sub-carrier encoding, each channel is customized

to trade-off between transmit range and bandwidth.

1.3 Mobility Modelling

 This section discusses simulated behavior beyond the context of networking. These

behaviors are necessary model vehicular movement and road traffic scenarios.

1.3.1 Vehicular Area Network

The main task of Vehicular ad-hoc networking is distributing data to other nodes. The

distribution is split into three categories. Vehicle to Vehicle transfer (V2V) is concerned in

transferring data from vehicle nodes to vehicle nodes. Vehicle to Infrastructure (V2I) focuses on

transferring data between vehicular nodes and infrastructure such as internet backhaul or access

points. Vehicle to Other Units (V2X) looks at interaction between Vehicular Nodes and other

nodes that is not infrastructure or vehicular, such as the road side units.

The data distribution behavior can be modelled by epidemiological model and isolated

epidemiological model proposed by Nekovee [6]. The model is computed based on speed,

position, and path of the node. Driving behavior and route plays a big role in simulation. The

routes can be imported from scenario generator software such as BonnMotion or Simulation of

Urban Mobility (SUMO) [7]. This software uses real-world scenario maps to create mobility

position and waypoints. The positions and position changes of nodes is simulated on the NS-3

8

simulator. By using real-world maps, the simulated positions and routes are closely related to

real-world scenarios.

1.3.2 Driving Behavior

The mobility models in NS-3 consist of position and routes. The traffic routes are derived

using real-world scenarios. Each vehicle in map holds the value of position, velocity, and is

considered as a network node. NS-3 simulator uses Treiber’s Intelligent Driving Model (IDM)

to calculate the change in velocity and position [8]. The driving behavior also incorporates lane

changing behavior; the model named “Minimizing Overall Braking decelerations Induced by

Lane changes (MOBIL)” is introduced for realistic lane changing behavior [9]. These models

have been verified against realistic data derived from experiments [10].

(1.3)

where

(1.4)

The IDM model in equation 1.3 and 1.4 defines change in velocity as a function of

acceleration and current velocity. On a free-road, change in velocity dv, depends on acceleration

and deceleration a, comfortable braking value b, current velocity v, desired velocity v0 and

desired distance of the vehicle in front s* and actual distance of the vehicle in front s.

 (1.5)

9

 (1.6)

 The lane changing behavior simulates decision of drivers to change lane. It first

calculates the “incentive” using equation 1.5 based on current lane and “incentive” of changing

lane. When changing lane has more “incentive”, it checks if it would be safe to change lane

using equation 1.6. The acc’ denotes the acceleration of target lane and M denotes ‘Me’ and M’

denotes ‘Me’ after changing to target lane. B refers to vehicles in the target lane and B’ refers to

target lane after making the decision. p is the politeness factor that weights importance of other

vehicles against itself. athr is the weight threshold to avoid changing lane if conditions are equal

or differences are negligible. bsafe is the maximum safe deceleration or vehicles of the other

lanes.

1.4 Applications

Applications utilizing VANET can be categorized into safety and user applications.

Safety applications are essential to enhance driving, while user applications provide

entertainment and commerce functionality. Safety applications use CCH while user applications

use SCH.

Safety applications enhance user’s driving experience by communicating with other

nodes or road-side units. This application reduces road accidents, improves intersections, and

reduces road congestions.

10

Vehicles travelling at high speed have very little response time to respond to accidents

ahead. Furthermore, drivers do not usually see beyond vehicle in front. The safety application

can communicate over a distance, preventing the pile-up accidents from happening. The early

warnings give drivers more response time, or even automate the vehicle to stop.

Driving through uncontrolled intersections poses as a challenge for drivers, given limited

viewing range, and the need for drivers to look into many directions (e.g., intersections without a

traffic light). In VANET, safety application detects and warns drivers of an oncoming vehicle to

prevent accident, and vehicles can coordinate in an intersection to prevent collision.

Road congestion can be reduced using VANET. This is done by properly planning the

route to destination. Since vehicles are connected, congested road is avoided. It also indirectly

reduces traffic accidents [11] because drivers would be less frustrated and more inclined to

follow traffic regulations.

User applications in VANET use the Service Channel (SCH) and provide drivers and

passengers with network capabilities. This may include internet service on the road, or other

network services like commercial advertisements or location directory. VANET appears to be

invisible layer, and thus existing applications can be applied to VANET.

The NS-3 simulator is built on top of these rules and behaviors. They are sufficient to

simulate real-world conditions and generate data outputs by applying basic networking theories,

and applying VANET standard above it. We then model the driving behavior and realistic maps

to generate realistic data.

11

1.5 Thesis Organization

In chapter 2, this chapter discusses current state of the simulation technology, and the proposed

solution of this thesis.

Chapter 3 explains about the current simulators that exist and the study of some applications that

are commonly used.

In chapter 4, the chapter presents a clear idea about the proposed solution and the methodologies

to improve the compute performance.

In chapter 5, the chapter evaluates proposed solution by using common workload between NS-3

simulator and proposed NS-3 simulator.

In chapter 6, an ultimate conclusion of the work done and the future scope for this particular

solution is discussed.

12

CHAPTER 2

PROBLEM DESCRIPTION AND CONTRIBUTIONS

The current VANET Simulator uses NS-3 to simulate networking and driving models.

Simulation is the first step of designing networks; network designers optimize Quality of Service

by tweaking parameters. Cristea et al [12] states the usefulness of large scale VANET simulators.

Contemporary large scale VANET simulation is proved to be time consuming and often energy

consuming.

Some solution such as Mobile wireless Vehicular Environment Simulator (MoVES) uses

distributed computing to simulate large scale networks [13]. These simulators achieve higher

computation throughput by distributing workload across computers, but power and hardware

costs for such solutions are expensive [14]. There is also solution proposed by Moritz et al that

use mathematical model to optimize simulation by reducing computation workload thus trading

off output accuracy [15]. The computation resources play an important role in computation

performance.

The solution of this thesis concentrates on how to design energy efficient high performance

vehicular area network simulator for large scale networks. In this thesis work we have proposed

using General Purpose Graphics Processing Unit (GPGPU) to assist VANET simulation to

improve computation performance. This solution is known for large scale and efficient

simulation. Many simulators adapted to such solution yield promising speed up[16]. In this thesis

work, a Compute Unified Device Architecture (CUDA) is used to offload expensive

computations from NS-3 simulator to improve simulation throughput.

13

2.1 Problem Statement

 Simulation of VANETs not only requires the simulation of network standards, but also

the mobility of nodes. Such dynamic system involves computation of node distance, routing

protocols, application layers, data send, data receive, etc. The simulation model of VANET

requires both hardware and software supports to deal with massive computational problems.

Currently available network simulators, like network simulator 3 (NS-3), are not adequate for

simulating large-scale VANET systems.

2.2 Thesis Contributions

 After studying the challenges which are to be surmounted in designing of a large scale

vehicular area network simulator, we propose a solution to offload heavy computations to a

SIMD processor. The major contributions of this research include:

 A CUDA-assisted VANET simulation model for multicore CPU-GPU platform to

increase computational throughput.

 CUDA/C programs for fast simulation of large scale VANET network.

 CUDA/C programs to solve massively parallel big data problems faster.

 Evaluation technique to measure the accuracy of the proposed CUDA-assisted VANET

simulator.

14

CHAPTER 3

LITERATURE SURVEY

This chapter provides a detailed overview of the two main aspects of this dissertation, the

NS-3 network simulator and VANET extension of NS-3. Hadi Arbabi and Michele C. Weigle

[17] extended NS-3 to simulate VANET based on models described in Chapter 1.

3.1 Network Simulators

 Before going into details of NS-3 simulator, this subsection describes the other network

simulators available for research and explains why author prefers NS-3 simulator. The simulators

studied include OMNET++ [18], NCTuns [19], and iTETRIS platform [20]. These simulators

share the same models and objective. Design of simulators varies and inherits different features.

OMNET++ inherits the Eclipse Integrated Development Environment (IDE) to assist

users in simulation. It features a graphical user interface (GUI) to design networks. Its open

source license allows and users to modify simulator to customize a model. This platform is easy

to use because it inherits a powerful GUI.

 NCTuns is a network simulator created by Network and System Laboratory in National

Chiao Tung University, Taiwan. This simulator features a simulation engine and a loosely-

coupled GUI for designing networks. This simulator was intentionally developed as commercial

software. Before version 6.0, the simulation engine is open source software, while the GUI is

closed source, and the simulator will not work without the GUI client[21]. As of version 8.0, the

simulator is fully commercial, and is being marketed as Estinet simulator, featuring ease of use

and robust simulation [22].

15

 The iTETRIS platform is a project funded by European Commission, and mainly used by

and developed by European nations. This platform serves as a connector for NS-3 simulator and

Simulation of Urban Mobility (SUMO) simulator to simulate Intelligent Transportation System

(ITS). The platform is being commercially used but developed as open source software. It is

distributed by invitation or request only. It features three realms simulation, including traffic

management, network communications, and ITS facilities support.

 The NS-3 simulator is open source software and fully developed by academia for

academia purposes. Software can be modified for specific uses, and due to the large user base, it

has large community support. NS-3 does not require a GUI to use, but extensions of GUI are

being developed to review simulation results. NS-3 is not compatible with NS-2, it has been

written from scratch based on python and C++ programming language. In a recent study [23], the

NS-3 simulator yields better performance than OMNET++ simulator. NCTuns is commercial

licensed, and researchers no longer have access to the source code. NS-3 is the suitable target

because it uses the similar programming language as CUDA. It is also open source; users are free

to modify the source code to their needs. NS-3 also inherits the best simulation speed.

3.1 The NS-3 Simulator

NS-3 simulator is a discrete event simulator. Model behavior is simulated by generating

events which represent an event happened in reality. For example, when a node sends a packet,

Application layer will first generate an event, which will be processed by the Network Layer.

Network layer will then generate events to the MAC Layer, and the events cascade until the

packet reaches its destination.

16

 1 #include "ns3/core-module.h"
 2 #include "ns3/network-module.h"

 3 #include "ns3/internet-module.h"

 4 #include "ns3/point-to-point-module.h"

 5 #include "ns3/applications-module.h"

 6

 7 using namespace ns3;

 8

 9 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

 10

 11 int

 12 main (int argc, char *argv[])

 13 {

 14 Time::SetResolution (Time::NS);

 15 LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);

 16 LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

 17

 18 NodeContainer nodes;

 19 nodes.Create (2);

 20

 21 PointToPointHelper pointToPoint;

 22 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

 23 pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

 24

 25 NetDeviceContainer devices;

 26 devices = pointToPoint.Install (nodes);

 27

 28 InternetStackHelper stack;

 29 stack.Install (nodes);

 30

 31 Ipv4AddressHelper address;

 32 address.SetBase ("10.1.1.0", "255.255.255.0");

 33

 34 Ipv4InterfaceContainer interfaces = address.Assign (devices);

 35

 36 UdpEchoServerHelper echoServer (9);

 37

 38 ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));

 39 serverApps.Start (Seconds (1.0));

 40 serverApps.Stop (Seconds (10.0));

 41

 42 UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);

 43 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

 44 echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

 45 echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

 46

 47 ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));

 48 clientApps.Start (Seconds (2.0));

 49 clientApps.Stop (Seconds (10.0));

 50

 51 Simulator::Run ();

 52 Simulator::Destroy ();

 53 return 0;

 54 }
Figure 3 Simple NS-3 simulation codes

http://www.nsnam.org/doxygen/group__logging.html#ga225a95395fa117b7309aa3c43518d02e
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/classns3_1_1_time.html#ac89165ba7715b66017a49c718f4aef09
http://www.nsnam.org/doxygen/classns3_1_1_time.html#a87a7f4d29c68b047a72d291ad660295aae324232af1b8cf625cecd92a22e0f2dc
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#aeef295fc2c70ecf5529c61a6c891467b
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a787f059e2813e8b951cc6914d11dfe69
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a255aef441a060820cd802ceebc8a00e5
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#a4577f5ab8c387e5528af2e0fbab1152e
http://www.nsnam.org/doxygen/classns3_1_1_string_value.html
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#a6b5317fd17fb61e5a53f8d66a90b63b9
http://www.nsnam.org/doxygen/classns3_1_1_string_value.html
http://www.nsnam.org/doxygen/classns3_1_1_net_device_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a2b5068815662a5e4555baccc541df7b2
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#ab9162fea3e88722666fed1106df1f9ec
http://www.nsnam.org/doxygen/classns3_1_1_internet_stack_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#abe3437b4fe63ea4c90a8078fb1871419
http://www.nsnam.org/doxygen/classns3_1_1_internet_stack_helper.html#a6645b412f31283d2d9bc3d8a95cebbc0
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a2a7d1214417d54d2ed8c21ffc54035e9
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html#acf7b16dd25bac67e00f5e25f90a9a035
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_interface_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a9a9e54963cc74a94ff173779d16f2e01
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html#af8e7f4a1a7e74c00014a1eac445a27af
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_server_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a97f9aa56c91953bccd47fb5757e42083
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a13130afe390ebf64b1d29f09968893cf
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_server_helper.html#aad381d52905f3f4cb0fc3cb7cb3f660b
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a9ed96e2ecc22e0f5a3d4842eb9bf90bf
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#a8eff87926507020bbe3e1390358a54a7
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#adfc52f9aa4020c8714679b00bbb9ddb3
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_client_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_interface_container.html#ae63208dcd222be986822937ee4aa828c
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_uinteger_value.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_time_value.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_uinteger_value.html
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#af4e1888f8480b22f8020c516136832cd
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a9ed96e2ecc22e0f5a3d4842eb9bf90bf
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#a8eff87926507020bbe3e1390358a54a7
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#adfc52f9aa4020c8714679b00bbb9ddb3
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a84be982e6d03b62c3dc3303c75a9b909
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a2a056e59a6623225df0957eda0ee8252

17

 Figure 3 presents an example of NS-3 simulation; this code simulates point-to-point

communication between two nodes. NS-3 simulation is written in C++, it is perceived as a

subset of C++ libraries. Line 19 defines two communicating entities, and line 28 and 29 installs

network layer stack to created nodes. Line 39 and Line 40 generates an event to start and stop an

echo server. Line 48 and 49 generates events to start and stop echo client. Line 51 starts the

simulation by generating events. The execution step will remain in line 51 until all events have

been completed or Simulator::Stop is called. Simulator::Destroy frees allocated memory. Notice

Line 15 and 16 requests the object to log the results; this sends received packets to log file. The

parameters (e.g., the network speed and network address) of a network are configured before

simulation is run.

At time 2s client sent 1024 bytes to 10.1.1.2 port 9
At time 2.00369s server received 1024 bytes from 10.1.1.1 port 49153
At time 2.00369s server sent 1024 bytes to 10.1.1.1 port 49153
At time 2.00737s client received 1024 bytes from 10.1.1.2 port 9

Figure 4 Simulation results

 The resulting output from the simulation generates simple result. The first packet sent is

at 2 second; this is defined at line 48, and it is limited to only one packet at line 43. The delay

defined by channel is 2ms, and subsequently, the server received packets at 2ms delay plus

latency by layer propagation.

 The NS-3 Simulator class is the main access point for event scheduling facilities. When

one or more events are scheduled to run (e.g., Simulator::run is called), the simulator class will

start processing events. Each event may or may not generate more events, and simulator will

stop when none of the events are left to execute, or Simulator::stop is called. [24]

18

 Events are logged in the output of the simulation. Logs are important for precise output.

To find out exact propagation delay in example in figure 4, we need a more detailed output.

More packets can be logged by changing line 15 and 16 replacing LOG_LEVEL_INFO to

LOG_LEVEL_ALL.

1
2
3
4
5
6
7
8
9

10

11
12

13
14

15
16
17
18
19
20

0s UdpEchoServerApplication:UdpEchoServer(0x165023c0)
0s UdpEchoClientApplication:UdpEchoClient(0x16502890)
0s UdpEchoClientApplication:SetDataSize(0x16502890, 1024)
1s UdpEchoServerApplication:StartApplication(0x165023c0)
2s UdpEchoClientApplication:StartApplication(0x16502890)
2s UdpEchoClientApplication:ScheduleTransmit(0x16502890, +0.0ns)
2s UdpEchoClientApplication:Send(0x16502890)
2s UdpEchoClientApplication:Send(): At time 2s client sent 1024 bytes to 10.1.1.2 port 9
2.00369s UdpEchoServerApplication:HandleRead(0x165023c0, 0x165029d0)
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server received 1024 bytes
from 10.1.1.1 port 49153
2.00369s UdpEchoServerApplication:HandleRead(): Echoing packet
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server sent 1024 bytes to
10.1.1.1 port 49153
2.00737s UdpEchoClientApplication:HandleRead(0x16502890, 0x16502fc0)
2.00737s UdpEchoClientApplication:HandleRead(): At time 2.00737s client received 1024 bytes
from 10.1.1.2 port 9
10s UdpEchoClientApplication:StopApplication(0x16502890)
10s UdpEchoServerApplication:StopApplication(0x165023c0)
UdpEchoClientApplication:DoDispose(0x16502890)
UdpEchoServerApplication:DoDispose(0x165023c0)
UdpEchoClientApplication:~UdpEchoClient(0x16502890)
UdpEchoServerApplication:~UdpEchoServer(0x165023c0)

Figure 5 Detailed Output

 Detailed output shows in figure 5 line 7 that send function is called, while at line 9 shows

Handle Read subroutine is executed. The propagation delay in this case is 3.69ms.

3.2.1 NS-3 Architecture

From previous subsection, we witnessed some usage of NS-3 simulator, it is driven by events

and it is based on C++. This subsection explains how the simulation libraries work. The NS-3

internals are categorized into hierarchy.

19

test

helper

protocols

internet

network

core

propagation Etc.

mobility

Figure 6 NS-3 architecture

Modules in NS-3 simulator are categorized into libraries. Figure 6 presents the NS-3

architecture. Each library simulates certain functionalities. A simulation scenario is created

by combining one or more libraries. In the previous example, Internet, UDP Application, and

Point-to-point libraries are used. Each of these libraries simulates a subset of functionality of

a network, from the node, to wire, or wireless propagation is simulated using these libraries.

Core module provides the event scheduler, logging and tracing, and random number

generator facilities. Event scheduler maintains an event queue, which will be used to run the

simulator. The queue is added in chronological order (see figure 7); this serves as the

mechanism for NS-3 simulator.

 148 uint32_t

 149 Node::AddApplication (Ptr<Application> application)

 150 {

 151 NS_LOG_FUNCTION (this << application);

 152 uint32_t index = m_applications.size ();

 153 m_applications.push_back (application);

 154 application->SetNode (this);

 155 Simulator::ScheduleWithContext (GetId (), Seconds (0.0),

 156 &Application::Initialize, application);

 157 return index;

 158 }

Figure 7 Example callback code

http://www.nsnam.org/doxygen/classns3_1_1_node.html#ab98b4fdc4aadc86366b80e8a79a53f47
http://www.nsnam.org/doxygen/classns3_1_1_node.html#ab98b4fdc4aadc86366b80e8a79a53f47
http://www.nsnam.org/doxygen/classns3_1_1_ptr.html
http://www.nsnam.org/doxygen/group__logging.html#ga90b90d5bad1f39cb1b64923ea94c0761
http://www.nsnam.org/doxygen/classns3_1_1_node.html#a3984bdbc05cc8a6d2eda6c41963f16f6
http://www.nsnam.org/doxygen/classns3_1_1_node.html#a3984bdbc05cc8a6d2eda6c41963f16f6
http://www.nsnam.org/doxygen/classns3_1_1_application.html#a2cab718227b06a7ea643282c807aed93
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a63865b5c4030eca04d51b033f61ff600
http://www.nsnam.org/doxygen/classns3_1_1_node.html#aaf49b64a843565ce3812326313b370ac
http://www.nsnam.org/doxygen/classns3_1_1_object.html#a900bb91b733c232cb18e44782cebcdc6

20

 The modules work together by calling back module functions by the core scheduler.

Callback works by first storing function pointer to scheduler. Figure 7 presents an example use

of callback mechanism commonly used by NS-3 simulator; this is the actual source code

excerpt of node.cc. In line 155 and 156, simulator scheduled an event to be called, and the

actual function is Application::Initialize, which initializes an arbitrary application, such as UDP

server in previous example. This mechanism allows developers to extend the modules by using

custom callbacks; the module names need not to be known during compile time, allowing

modules to be extended by changing the callbacks made.

 The network module defines objects and data types such as the node object, channel, and

packet. Modules on top of it depend on the network module to define a model. The Internet

module extends network module by defining types of packets such as IPv4 and TCP packets.

The mobility module constructs node in Cartesian coordinate, allowing nodes to change its

position. The helpers are pre-defined configuration for example, the WiFi node; the WiFi node

inherently requires free-space propagation modelling and Internet for IPv4 connection.

 Further details of this simulator can be resolved from NS-3 documentation [25], but this

section is sufficient to further extend NS-3 to simulate VANET environments.

3.3 NS-3 VANET Simulation

 Previous sub-chapter discussed about the architecture of NS-3 and how extension can be

made possible. This sub-chapter discusses about the VANET extensions.

Michelle Weigle et al developed VANET Highway simulator. This implementation is

verified against other models for consistency [17]. This implementation does not use real maps

21

and only models highway and intersection environments. The simplistic model is sufficient to

simulate environments such as four way intersections, but does not use real maps for simulation.

The simulator configuration is stored in XML format. The configuration file stores values

such as the speed limit and the length of the highway. This VANET simulator generates a

network and a vehicle trace file. The vehicle trace file can be visualized using a JAVA

application created by the same author, as seen in figure 9.

Figure 8 Source code excerpt

void HighwayProject::Start() {

 m_vehTrace.open(m_vehTraceFileName.c_str());

 m_netTrace.open(m_netTraceFileName.c_str());

 for(list<Ptr<VehicleGenerator> >::iterator it = m_vehGens.begin(); it != m_vehGens.end();

it++) {

 (*it)->init();

 }

 for(list<Ptr<TrafficLightGenerator> >::iterator it = m_trafficGens.begin(); it !=

m_trafficGens.end(); it++) {

 (*it)->Start();

 }

 Simulator::Schedule(Seconds(0.0), &Step, this);

 Simulator::Stop(Seconds(m_projectXml.GetTotalTimeInSeconds()));

}

void HighwayProject::Step(HighwayProject* project) {

 for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) {

 Ptr<Highway> highway = it->second;

 Highway::Step(highway);

 }

 for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) {

 Ptr<Highway> highway = it->second;

 highway->HandleTransfers();

 }

 for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) {

 Ptr<Highway> highway = it->second;

 for(int i = 1; i <= highway->GetNumberOfLanes(); i++) {

 list<Ptr<Vehicle> >* vehList = highway->GetVehiclesInLane(i);

 if(vehList != NULL) {

 for(list<Ptr<Vehicle> >::iterator it2 = vehList->begin(); it2 != vehList-

>end(); it2++) {

 Ptr<Vehicle> veh = (*it2);

 project->m_vehTrace << Simulator::Now().GetNanoSeconds() << "," << veh-

>GetVehicleId() << "," << veh->GetVehicleType() << "," << veh->GetPosition().x << "," << veh-

>GetPosition().y << "," << veh->GetDirection() << ","

 << veh->GetVelocity() << "," << veh->GetAcceleration() << endl;

 }

 }

 }

 }

 Simulator::Schedule(Seconds(project->m_dt), &HighwayProject::Step, project);

}

22

In figure 8, the simulator uses a linked list to store vehicles and uses maps to store highway

paths. Highway paths are defined in XML file, for each simulation step, vehicles positions are re-

evaluated based on the driving models.

Figure 9 Visualized vehicular trace file

3.4 Large Scale NS-3 Simulation

Large scale network simulations are fundamental part of active networking research. NS-

3 supports distributed simulation. This effectively parallelizes process across a network using

multiple computers. Pelkey and Riley [26] recent study yield 2.4 times speed up using distributed

simulation. The author experimented with node size up to 5000 nodes. The authors also pointed

out that synchronization is the big factor to consider when running a simulation for speed up.

CUDA architecture accelerates processes by applying large scale SIMD processors. The

details of CUDA architecture will be discussed in next chapter. Swenson et al [27] developed

routing models to make use of NS-3 simulator running on CUDA GPGPU processor. This is the

23

first use of CUDA in NS-3 simulator to simulate large scale nodes. The author translated Floyd-

Warshall algorithm to Graph-Matrix format to effectively use GPGPU resources. The author also

claims the speed up of 3.5 over simulation of 5000 nodes connected in BRITE topology. The

simulation showed promising results, using significantly less resources and yield higher speed up

than MPI implementation.

These two outcomes suggest that large number of nodes needs to be parallelized in order

to create a scalable simulation. Swenson et al stated the impact of parallelization; in one

experiment, a single run took 30 minutes to run. VANET simulation can yield the same speed up

using this approach. MPI and CUDA implementation can be combined to yield even better speed

up, and would take a lot of effort to develop such solution.

This chapter concludes that NS-3 is the proper platform for this thesis work. The NS-3

simulator yields better performance and is natively supported by CUDA. NS-3 simulator is

simple to use, and its architecture allows developers to easily extend the NS-3 simulator

functionality. Furthermore, the NS-3 VANET simulation model is developed and verified against

other simulators. Finally, large scale network simulation is commonly used and scalable

solutions are being researched.

24

CHAPTER 4

PROPOSED SOLUTION

The main objective of the proposed solution is to improve speed up using CUDA

architecture. Previous chapter, we discussed some knowledge of NS-3 VANET implementation

allowing us to arrive at this solution. We also briefly discussed about parallelization and methods

of implementation. This chapter propose a solution by focusing on parallelization using CUDA

and how to integrating the solution into NS-3.

4.1 CUDA

CUDA is a general purpose parallel computing platform and programming language to

optimally use NVIDIA Graphics Processing Unit (GPU)[28]. CUDA is perceived as a co-

processor to offload programmer’s workload into GPU hardware. GPU has the advantage of

handling many threads in parallel using the same instruction. A CUDA program which runs on

GPU hardware is called a kernel. When kernel is called, CPU can either wait for GPU to

complete its computation, or it may continue processing other tasks until kernel execution is

complete.

25

Grid 1
CUDA Block 1

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

Thread
13

Thread
14

Thread
15

Thread
16

Thread
17

Thread
18

Thread
19

Thread
20

Thread
21

Thread
22

Thread
23

Thread
24

Thread
25

Thread
26

Thread
27

Thread
28

Thread
29

Thread
30

Thread
31

Thread
32

Shared Memory

CUDA Block X

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

Thread
13

Thread
14

Thread
15

Thread
16

Thread
17

Thread
18

Thread
19

Thread
20

Thread
21

Thread
22

Thread
23

Thread
24

Thread
25

Thread
26

Thread
27

Thread
28

Thread
29

Thread
30

Thread
31

Thread
32

Shared Memory

Figure 10 CUDA Logical Organization

CUDA code execution hierarchy is based on Grid, Block, and Threads. Figure 10 is used

to visualize the grid, block and thread organization of CUDA architecture. Grid is a group of

Blocks; and Blocks are a group of Threads. Each block is guaranteed to execute in parallel in

CUDA. Each thread in the same block shares the same Shared Memory and executes the same

instruction. The Shared memory is the fastest memory built in GPU Streaming Multiprocessors.

Due to the fact that each block of threads are guaranteed to execute in parallel, number of threads

in a block is limited to 32 in each dimension, or 1024 maximum number of threads per

block[29]. The shared memory is also limited to 64KB for Fermi Architecture. The programmer

does not need to be aware of the hardware used in order to get the program to run; but a good

programmer needs to know the limitation of the hardware to write an optimal program.

26

Fermi GF110 Chip

Streaming Multiprocessor (Physical)

D
RA

M
H

os
t

In
te

rf
ac

e
G

ig
aT

hr
ea

d

L2 Cache

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

SM
8

SM
9

SM
10

SM
11

SM
12

SM
13

SM
14

SM
15

SM
16

D
RA

M

D
RA

M
D

RA
M

D
RA

M
D

RA
M

Figure 11 Fermi GPU Floor Plan

Physically, the GPU chip is organized into streaming multiprocessors (SM) and the SMs

are surrounded by memory units. This is layout is consistent with the logical organization of the

CUDA software; each grid contain multiple blocks where each block populate a Streaming

Multiprocessor.

27

CUDA Core

Streaming Multiprocessor (Physical)

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit

Register File (32,768 x 32 bit)

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Interconnect Network

64 KB Shared Memory/L1 Cache

Uniform Cache

Dispatch Unit
Operand Collector

FPU ALU

Result Queue

Figure 12 Fermi Streaming Multiprocessor

Figure 12 illustrates streaming multiprocessor in a GPU chip. Each Streaming

Multiprocessor contains 32 CUDA cores, 16 load/store unit, Special Function Units, and two

warp schedulers. It is also worth noticing that each streaming multiprocessor contains 64KB of

configurable memory; this can be used as shared memory, or L1 Cache. The warp schedulers

select a core and schedule instructions to run in each core. This guarantees two instructions to be

scheduled at any time. Inside each CUDA Core, dispatch unit receives instructions from warp

scheduler, and operand collector receives operands from the register file. The Arithmetic Logic

Unit or Floating Point Unit will then process the input data and write it to result queue.

28

The Streaming Multiprocessor is also consistent with the CUDA Blocks. Developers are

allowed to use 48KB of shared memory and 16KB of L1 Cache, or 16KB of Shared memory and

48KB of L1 Cache in each block, which is the hardware limit of the SM. Each block is

guaranteed to execute in parallel by scheduling instructions to the cores in SM until the all the

threads in a block is completed.

F __global__ void add(int *a, int *b, int *c){

 *c[threadIdx.x] = *a[threadIdx.x] + *b[threadIdx.x];

}

 void main(){

 int a, b, c;

 int *dev_a, *dev_b, *dev_c;

 int size = sizeof(int) * 4 ;

A cudaMalloc((void**)&dev_a, size);

 cudaMalloc((void**)&dev_b, size);

 cudaMalloc((void**)&dev_c, size);

 a = {1,2,3,4};

b = {10,20,30,40};

b = {0,0,0,0};

B cudaMemcpy(dev_a, &a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(dev_b, &b, size, cudaMemcpyHostToDevice);

 cudaMemcpy(dev_c, &c, size, cudaMemcpyHostToDevice);

C add<<< 1,4 >>>(dev_a, dev_b, dev_c);

D cudaMemcpy(&c, dev_c, size, cudaMemcpyDeviceToHost);

E cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

}

Figure 13 CUDA Code

Figure 13 presents an example CUDA code to add 1x4 matrix. In section A, the memory

is allocated inside the GPU. Section B copies matrix A, B, and C to the GPU. At this point, the

matrix A and B is already residing in GPU. The GPU kernel is then executed in Section C. The

arrow bracket <<<1,4>>> orders GPU to execute the kernel with 1 block and 4 threads per

block. In this case, there are 4 parallel threads executed concurrently. Section F executes the

29

matrix add code, the __global__ identifier tells compiler to compile this subroutine as GPU code.

Notice threadIdx.x is not a defined keyword, but it is implicitly defined keyword in CUDA; this

variable is the thread identifier, each thread in a block has a unique thread identifier. Once

execution is completed, Section D copies the resulting matrix C back to host memory. Section E

frees the reserved memory. The allocated memory remains in the GPU until cudaFree() is called.

4.2 Current NS-3 VANET Implementation

In the previous subtopic, we know that CUDA is efficient in computing SIMD problems.

This subtopic explains how Weigle and Arbabi’s NS-3 VANET is modified to SIMD CUDA

code.

Recall that NS-3 simulation is event based, each event creates a callback; callback

executes a subroutine. By translating the subroutines to CUDA subroutines, we can offload the

workload to GPU, and process it faster. The VANET simulator classes are organized in

hierarchy, with specific purpose for each class. Most of the computational code is held in two

subroutine of the VANET simulator, which are the distance computation and movement

subroutine.

30

List of Highways (In highwayProject)

Highway 1

Start Coordinate

End Coordinate

Angle

List of Vehicles

Vehicle 1

Vehicle N

Highway N

Start Coordinate

End Coordinate

Angle

List of Vehicles

Vehicle 1

Vehicle N

Figure 14 Data Structures of VANET simulator

In Weigle and Arbabi’s simulator, mobility module is enhanced to simulate Vehicles,

while the default networking stack is used. The highway mobility module is named

highwayProject. The highwayProject instance contains a list of highway. Highway object defines

highway length, direction, position, lane width, highway position, and list of vehicles. Vehicles

and Highways are stored in a linked list. Each instance of highway contains a list of vehicles. The

vehicle object represents a network entity. This node can send and receive packets using the

mobility module. The vehicle class is responsible for computing distance and change of position.

31

Calculate Distance

Update Speed,
Acceleration, and

Lane Change

Begin Simulation

PHY Module

Initialize Highway
Generate Vehicles

MAC Module

Schedule Callback
At DeltaT

Etc.

After DeltaT

Interrupt Events

Figure 15 VANET NS-3 subroutine calls

The VANET simulator schedules a callback to calculate distance every nominal time

deltaT. This value is set to 0.1 as default. This will schedule a callback to re-evaluate position

after 0.1s simulation time. Updating speed and changing lane is done after 10 steps of position

evaluation subroutine. This will avoid erratic driving behavior and lane changing. The

networking stacks are simulated by NS-3 built-in libraries. Each vehicle is installed with an IEEE

802.11p model. The networking module can be changed if user prefers to use otherwise.

32

Figure 16 Distance Computation

To calculate the distance between each vehicle, the subroutine visits each vehicle in a

linked list and calculates the distance based on Cartesian coordinates as displayed in figure 16.

The computational complexity of this algorithm has big-O notation of O(n
2
). As number of

nodes increases, we expect the computational time to increase exponentially.

4.3 Proposed NS-3 VANET Implementation

The proposed simulator inherits speeds up from CUDA by offloading distance and

movement computation. These are the computationally expensive parts of the simulation; while

the network simulation can be implemented using CUDA, but it necessarily increases

complexity. The GPU has advantage of computing SIMD workload, e.g. matrix calculation,

therefore solution involving matrix computation is theoretically fruitful [30].

Figure 17 Distance Matrix

The coordinates of vehicles in the linked list will first be serialized, and stored as a

matrix. The coordinate matrix can then be used to calculate distance matrix from figure 17. For

33

example, the distance between node A and node B can be retrieved in element 1,2 of the

matrix.[28]

Figure 18 Position and Movement Matrix

Calculate Distance

Update Speed,
Acceleration, and

Lane Change

Begin Simulation

PHY Module

Initialize Highway
Generate Vehicles

MAC Module

Schedule Callback
At DeltaT

Etc.

After DeltaT

Interrupt Events

Copy initial position
matrix to GPU

Figure 19 Proposed NS-3 workflow

The position matrix in figure 18, Pt stores coordinate for each node, and Mt stores the

movement matrix for each step. Figure 19 represents a flowchart of the proposed design. During

initialization, Pt and Mt are first copied to the GPU. On subsequent steps, the output matrix Dt is

34

copied to CPU for networking stack computation. In any iteration, Mt is added to Pt to change

the coordinates, simulating the vehicular position change. Using equation 1.3, new movement

matrix Mt’ can be computed by substituting Mt into v. Because Mt is a matrix, the same

operation is applied to the matrix, GPU can use all cores to apply the same operation across all

elements. This workload is categorized as a SIMD instruction.

__global__ void computeDistanceMatrix(Vector3D *a, Vector3D *b, double *c,

int numberOfNodes){

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 double dx = b[i].x - a[i].x;

 double dy = b[i].y - a[i].y;

 double dz = b[i].z - a[i].z;

 if ((i<numberOfNodes) && (j < numberOfNodes)){

 c[i*numberOfNodes + j] = sqrt(dx*dx + dy*dy + dz*dz);

 }

}

Figure 20 CUDA code for Distance matrix computation

The subroutine in figure 20 executes a CUDA kernel for distance computation and

movement computation is initiated by callback functions. Parallel processing is done by

calculating distance matrix for all vehicles concurrently. Each position for a vehicle can then be

retrieved from the matrix. This generates a distance matrix, matrix d.

(4.1)

The movement vector is also calculated and applied for every iteration. Equation 4.1 is

derived from equation 1.3 in chapter 1 to calculate Treiber’s IDM in matrix form. Using CUDA

programming technique, this equation can be computed in parallel and acceleration matrix Mt’ is

generated. Matrix Mt is then used to calculate the acceleration. By applying the change in

velocity to movement matrix, we can compute the position of nodes.

35

CHAPTER 5

RESULTS AND DISCUSSIONS

Chapter 4 described the technique and implementation used to improve the network

simulation speed. This chapter verifies correctness of the output, and discusses speed

improvement of the VANET simulator.

5.1 Assumption

For verification, the model uses same random number generator, and we assume the same

set of movement and random variables are used. This number is particularly important to

influence driver’s decision to change lanes. The assumption can be made by using the same

random generator seed.

For timing experiments, the workstation and server is assumed to have no other users

sharing the same resources. This can be done by running the experiments repeatedly for three

times and check for consistency. The results can be checked for consistency.

5.2 Experimental Setup

The workload is being executed on workstation and supercomputer. Workstation

represents an ideal machine commonly used in lab setup. Supercomputer is commonly used to

compute big problems. Table 2 presents the specification of the machines used for this

experiment.

36

Table 2: Hardware Setup

 Supercomputer Workstation

CPU AMD Opteron 6134 Intel Xeon E5506

CPU Cache Size 512KB 4096KB

Cores 32 8

RAM Size 64GB 12GB

GPU NVidia Tesla K20m NVidia Tesla C2075

GPU Architecture Keper Fermi

GPU Core Clock 0.71GHz 1.15GHz

GPU Memory Size 5GB 6144MB

GPU Cores 2496 448

This setup shows the strength of supercomputer, the CPU cores and memory are

significantly higher than a workstation. While the number of GPU cores in Tesla K20m are

significantly higher than Tesla C2075, the clock speed suggests that Tesla C2075 (Fermi) has

more advantage for small workload.

5.1 Validation of CUDA Implementation

The developed technique computes change of physical position in a Vehicular Area

Network. The simulation uses models of Treiber IDM, and proposed solution solves this

modeling equation in matrix form. The movement matrix is calculated using Equation 1.3.

Resulting acceleration is added to movement matrix, and then applied to position matrix. The

distance between each node is computed using Cartesian distance equation, and stored as a

distance matrix format.

37

1 2 3 4 5

Figure 21: VANET Highway illustrated

Figure 22 Matrices representing results

On a highway, assuming normal driving behavior, vehicles follow each other separated

by a safe distance. Figure 1 illustrate the movement of the nodes in the same direction. The

position matrix P0 represents the X and Y coordinate of each node. Each node is represented by a

row. This initial position is stored in both CPU and GPU for comparison purposes. The

movement matrix M0 is an initial movement matrix. The initial movement matrix for normal

driving behavior has constant velocity e.g. no change in speed. In ideal situation, each vehicle

moves at the same speed, (3m/s in this case), therefore the movement matrix shares the same

element. At second iteration (t=0.2, dt=0.1), movement matrix is calculated; given constant

distance and v=3, movement matrix remains the same. The new position P1 is calculated by

adding M0. Distance matrix at second iteration is calculated as matrix D0. After five iterations, P5

is computed by repeating the steps.

38

Table 3: Node Position

Node
Number

X position Y position

Before After Before After

Node 1 1 16 1 1

Node 2 3 21 1 1

Node 3 5 23 1 1

Node4 7 25 1 1

Node 5 9 27 1 1

The resulting matrix is then compared with NS-3 output. Table 3 compares the NS-3

result using original output. From comparison, proposed solution and traditional NS-3 generates

the same output.

5.3 Isolated Workload

The first set of benchmark isolates workload to only nodes movement. On this workload,

only Treiber IDM is modelled, while the network simulation is not executed. This allows us to

compare the improvement of CUDA implementation by itself.

Figure 23 Execution time vs Problem Size

39

We anticipate more time taken as the number of nodes increases. The workload ranged

from 10000 nodes to 55000 nodes. The workload consists of calculating the position based on

movement and distance. The workload has compute complexity of O(n
2
), a linear increase in

number of nodes expected to increase time exponentially. Supercomputer is marginally faster

than a workstation for this workload. Since nodes information is stored in a Linked List in CPU

implementation, no parallelization is possible for this data structure. By converting the linked list

to a matrix, the GPU workload uses all the cores possible.

Figure 24 Calculated Speed up

Figure 5.3 represents the speed up over CPU calculated. Speed up improves as workload

increases. The CPU implementation results in exponential time increase against problem size.

The supercomputer achieved better speed up because GPU has more cores.

5.3 Full Workload

This final workload tests for the full workload for including mobility (vehicular

movement) and the network simulation. The network simulation uses only CPU, and does not

40

use GPU for computation. In proposed solution, as workload increases, CPU becomes the

bottleneck of the problems, and speed-up saturates.

Figure 25 Comparison against iterations

The first scenario in resulting figure 26 simulates 100 nodes and varies iteration, i.e.

dt=0.1, t=10,20,..70. The proposed solution offloads SIMD operations while CPU consumes

data from GPU. Traditional CPU-only implementation requires processor to compute both SIMD

and MIMD operations. Supercomputer has faster processor, resulting marginally faster

simulation for traditional simulator. For proposed solution, the resulting time taken is almost

similar on both platforms.

41

Figure 26 Comparison against number of nodes

When comparing number of nodes versus time, the memory complexity and time

increases exponentially. At saturation point (number of nodes = 2500), CPU is becoming the

bottleneck; e.g., each iteration waits for CPU to complete before next iteration can be executed.

The results show up to 40x increases in speed up. This comparison against single-core CPU and

many core GPU is not a fair comparison, therefore the significant speed-up is expected.

5.3 Energy Consumption Analysis

The energy consumed by simulation is analyzed based on the time used to run the

simulation. In isolated and full workload traditional simulator analysis, the power is calculated as

a function of time used for simulation. For isolated GPU only analysis, only GPU are running at

full workload, while CPU is idle. For full workload on proposed simulation, both CPU and GPU

are running at full workload.

In isolated workload, the GPU performs calculation without dependency on the CPU. In

this best case scenario, the GPU executes at a much faster rate. With the steep speed up, GPU

only takes little energy to compute the worklaod.

42

Figure 27 Power Consumed in Isolated Workload

Figure 27 presents the energy consumed by workstation in an isolated workload. Energy

required to compute large workload in GPU are less than 1.15 kJ, due to the minimal time

consumed by GPU to perform isolated calculation.

Figure 28 Power Consumed in Isolated Workload

In figure 28, power consumed by proposed solution initially uses 60x less energy to

perform same simulation compared to traditional implementation. As workload increases, time

43

taken to compute increases and speed up saturates at 2000 nodes, where the GPU waits for CPU

before an iteration can be completed.

44

CHAPTER 6

CONCLUSION AND FUTURE SCOPES

 We hope the discussion presented in the thesis motivates the interested scholars into

considering research in emerging technologies in Vehicular Area Networking and GPU

Computing. Vehicular Area Networking poses challenging networking problems and solutions.

On the other hand, the use of GPU in simulation gives advantages in throughput.

6.1 Conclusion

 By accelerating computation using GPU, we achieve speed up of 75x. We can further

exploit this method to develop even faster simulation by integrating more models into NS-3

simulator. CPU had long hit the performance wall, and GPU computation has been a trend to

improve efficiency.

NS-3 allows modules to be added or removed due to low-level design. By adding

modules which offload task to GPU, simulation throughput can be improved. Many work has

been done to make use of GPU, for example the GPU-based simulation models such as BRITE

[27] on NS-3. As this trend follows, a higher throughput and more cost-efficient method can be

utilized for simulation. By combining multiple GPU-based modules BRITE model [27] will

inherently speed up simulation.

New development of NS3 has been using distributed framework such as MPI [26] yields

even higher speed up on large scale simulation. With integration of GPU, large scale simulations

can benefit higher magnitude speed up.

45

6.2 Future Extensions

 This work makes VANET simulator more efficient. The CUDA implementation

can be extended to run including:

 NS-3 Core Components: By extending CUDA implementation to NS-3 core, the

workload can be completely offloaded by GPU without the bottleneck of CPU. This

allows CPU to do further work.

 Self-Optimization: Chung et.al. Suggested simulation approach for self-

optimizing network. That work focuses on simulating network over different

configurations to generate the best results. In his expensive simulation, GPU can be used

to simulate events at faster rate [31].

 Data-Regrouping: Gummadi et.al. Suggested improving GPU performance by

using data-partitioning technique. This technique improves GPU computation

performance by regrouping data based on locality principle. This will make GPU

computation more efficient [x2].

46

REFERENCES

47

REFERENCES

[1] Yousefi, Saleh, Mahmoud Siadat Mousavi, and Mahmood Fathy. "Vehicular ad hoc

networks (VANETs): challenges and perspectives." In ITS Telecommunications

Proceedings, 2006 6th International Conference on, pp. 761-766. IEEE, 2006.

[2] Goldsmith, Andrea. Wireless communications. Cambridge university press, 2005.

[3] Bianchi, Giuseppe. "Performance analysis of the IEEE 802.11 distributed coordination

function." Selected Areas in Communications, IEEE Journal on 18, no. 3 (2000): 535-

547.

[4] Andrews, Scott, and Michael Cops. "Final report: Vehicle infrastructure integration proof

of concept executive summary–Vehicle." US DOT, IntelliDrive (sm) Report FHWA-JPO-

09-003 (2009).

[5] Dulmage, J., M. Tsai, M. P. Fitz, and B. Daneshrad. "A Case Study in Incremental

Prototyping with Reconfigurable Hardware: DSRC Software Defined-Radio,‖ IEEE

Tridentcom." (2007).

[6] Nekovee, Maziar. "Modeling the spread of worm epidemics in vehicular ad hoc

networks." In Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd, vol.

2, pp. 841-845. IEEE, 2006.

[7] Krajzewicz, Daniel, Georg Hertkorn, C. Rössel, and P. Wagner. "Sumo (simulation of

urban mobility)." In Proc. of the 4th middle east symposium on simulation and modelling,

pp. 183-187. 2002.

[8] Kesting, Arne, Martin Treiber, and Dirk Helbing. "Enhanced intelligent driver model to

access the impact of driving strategies on traffic capacity."Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1928

(2010): 4585-4605.

[9] Gluck, Jerome S., Herbert S. Levinson, and Vergil G. Stover. Impacts of access

management techniques. No. 420. Transportation Research Board, 1999.

[10] Ibrahim, Khaled, and Michele C. Weigle. "ASH: Application-aware SWANS with

highway mobility." In INFOCOM Workshops 2008, IEEE, pp. 1-6. IEEE, 2008

[11] Toor, Yasser, Paul Muhlethaler, and Anis Laouiti. "Vehicle ad hoc networks: Applications

and related technical issues." Communications Surveys & Tutorials, IEEE 10, no. 3

(2008): 74-88

48

[12] Cristea, Valentin, Victor Gradinescu, Cristian Gorgorin, Raluca Diaconescu, and Liviu

Iftode. "Simulation of vanet applications." Automotive Informatics and Communicative

Systems (2009).

[13] Bononi, Luciano, Marco Di Felice, Marco Bertini, and Emidio Croci. "Parallel and

distributed simulation of wireless vehicular ad hoc networks." InProceedings of the 9th

ACM international symposium on Modeling analysis and simulation of wireless and

mobile systems, pp. 28-35. ACM, 2006

[14] Zhai, Yan, Mingliang Liu, Jidong Zhai, Xiaosong Ma, and Wenguang Chen. "Cloud

versus in-house cluster: evaluating amazon cluster compute instances for running mpi

applications." In State of the Practice Reports, p. 11. ACM, 2011.

[15] Killat, Moritz, Felix Schmidt-Eisenlohr, Hannes Hartenstein, Christian Rössel, Peter

Vortisch, Silja Assenmacher, and Fritz Busch. "Enabling efficient and accurate large-scale

simulations of VANETs for vehicular traffic management." In Proceedings of the fourth

ACM international workshop on Vehicular ad hoc networks, pp. 29-38. ACM, 2007.

[16] Asmatulu, R., Asaduzzaman, A.; Yip, C.M.; Kumar, S.S.A.;, "An effective CUDA based

simulation for lightning strike protection on nanocomposite materials," Southeastcon,

2013 Proceedings of IEEE , pages.1-5, 2013. doi: 10.1109/SECON.2013.6567368

[17] Arbabi, Hadi, and Michele C. Weigle. "Highway mobility and vehicular ad-hoc networks

in ns-3." In Proceedings of the Winter Simulation Conference, pp. 2991-3003. Winter

Simulation Conference, 2010.

[18] Varga, András. "The OMNeT++ discrete event simulation system." InProceedings of the

European Simulation Multiconference (ESM’2001), vol. 9, p. 185. sn, 2001.

[19] Wang, S. Y., and C. L. Chou. "NCTUns tool for wireless vehicular communication

network researches." Simulation Modelling Practice and Theory17, no. 7 (2009): 1211-

1226.

[20] Kumar, Vineet, Lan Lin, Daniel Krajzewicz, Fatma Hrizi, Oscar Martinez, Javier

Gozalvez, and Ramon Bauza. "itetris: Adaptation of its technologies for large scale

integrated simulation." In Vehicular Technology Conference (VTC 2010-Spring), 2010

IEEE 71st, pp. 1-5. IEEE, 2010.

[21] Simulator, NCTUns Network. "Emulator." (2007).

[22] Wang, Shie-Yuan, Chih-Liang Chou, and Chun-Ming Yang. "Estinet open flow network

simulator and emulator." IEEE Communications Magazine 51, no. 9 (2013): 110-117.

49

[23] Weingartner, Elias, Hendrik Vom Lehn, and Klaus Wehrle. "A performance comparison

of recent network simulators." In Communications, 2009. ICC'09. IEEE International

Conference on, pp. 1-5. IEEE, 2009.

[24] Henderson, Thomas R., Mathieu Lacage, George F. Riley, C. Dowell, and J. B. Kopena.

"Network simulations with the ns-3 simulator." SIGCOMM demonstration (2008).

[25] Riley, George F., and Thomas R. Henderson. "The ns-3 network simulator." InModeling

and Tools for Network Simulation, pp. 15-34. Springer Berlin Heidelberg, 2010.

[26] Pelkey, Joshua, and George Riley. "Distributed simulation with MPI in ns-3."

InProceedings of the 4th International ICST Conference on Simulation Tools and

Techniques, pp. 410-414. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2011.

[27] Swenson, Brian Paul, and George F. Riley. "Simulating large topologies in ns-3 using

BRITE and CUDA driven global routing." In Proceedings of the 6th International ICST

Conference on Simulation Tools and Techniques, pp. 159-166. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering), 2013

[28] Patterson, David. "The top 10 innovations in the new NVIDIA Fermi architecture, and the

top 3 next challenges." NVIDIA Whitepaper (2009).

[29] Alfakih, Abdo Y., Amir Khandani, and Henry Wolkowicz. "Solving Euclidean distance

matrix completion problems via semidefinite programming." Computational optimization

and applications 12, no. 1-3 (1999): 13-30.

[30] Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,

and Wen-mei W. Hwu. "Optimization principles and application performance evaluation

of a multithreaded GPU using CUDA." In Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming, pp. 73-82. ACM, 2008.

[31] Chen, Chung Shue, and François Baccelli. "Self-optimization in mobile cellular networks:

Power control and user association." In Communications (ICC), 2010 IEEE International

Conference on, pp. 1-6. IEEE, 2010

