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ABSTRACT 

 

 

Both size and computational activities of Vehicular Area Network (VANET) are 

growing. Simulation of VANETs not only requires the simulation of network standards, but also 

the mobility of nodes. Such dynamic system involves computation of node distance, routing 

protocols, application layers, data send, data receive, etc. The simulation model of VANET 

requires both hardware and software supports to deal with massive computational problems. 

Currently available network simulators, like network simulator 3 (NS-3), are not adequate for 

simulating large-scale VANET systems. In this work, we propose a dual-stream Compute 

Unified Device Architecture (CUDA)-assisted VANET simulation model for multicore Central 

Processing Unit (CPU) / manycore Graphics Processing Unit (GPU) platform to increase 

computational throughput. The proposed CUDA assisted VANET simulator uses NS-3 as the 

core engine and improves throughput by exploiting massively parallel processing on the GPU. 

Experimental results show that the computation throughput can be increased up to 75x by 

splitting workload between CPU and GPU 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 In this chapter, we discuss the simulated behaviors of the NS-3 network simulator, 

specifically on wireless networking simulation and vehicular movement simulation. These are 

fundamental models necessary to simulate realistic behavior.  

 

1.1 Wireless Networking Technology 

 In the present era, wireless networking technologies have become a common networking 

interface for modern consumer devices. The contemporary usage of computer networks presents 

many challenges for network engineers to provide scalable and reliable networks. The evolution 

of wireless networks in the last decade has changed the scale of devices. Network designers had 

to adapt network topologies and modify existing protocols in order to adapt to wireless networks 

[1]. 

Consumer wireless networks on modern devices are governed by IEEE 802.11 standard, 

also known as WiFi. This standard is to ensure devices interoperate across all manufacturers and 

implementations. As consumer devices become more network functional, consumers expect 

devices to be more ubiquitous and reliable without centralized controls. Wireless Ad-Hoc 

network is a standard that governs network connections without central access point. The 

network layer which governs route formations is responsible for the robustness of Mobile Ad-

hoc Networks. Vehicular Area Network is an extension of Mobile Ad-hoc Networks, Vehicular 

area networks are formed without central access point; therefore they are similar to Mobile Ad-

hoc Networks. The networks in vehicular area networks changes rapidly, and traditional mobile 
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ad-hoc networks standards does not adapt to these conditions. The rest of subsections discuss 

about each layer and solution that will be implemented in standards 

1.1.1 IEEE 802.11 Wireless Communication 

 The IEEE 802.11 standard defines Medium Access Control (MAC) and physical layer 

(PHY) of the open systems interconnection (OSI) model to ensure compatibility across all 

manufacturers. The MAC layer controls fair sharing of network bandwidth. The physical layer 

defines the signal coding and frequency of wireless medium.  

Physical Layer:  

 The physical layer of wireless networks in the OSI model is responsible for signal 

generation. Analog signals received by physical layer are known as symbol. Symbols are a group 

of waveforms, which can be easily recognized by the demodulator. There are many modulation 

methods to encode a signal into symbols. The common modulation applied in IEEE802.11 are 

Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM). Both methods 

modulates binary digital signal into analog form and encodes more bits per symbol at the 

expense of transmission error rate. 

Direct Sequence Spread Spectrum (DSSS) is further applied to modulated signal to 

further enhance success rate. The signal gained by applying such process is the process gain. 

DSSS split symbols (PSK or QAM signals) into sequence of channels. The sequences of 

channels are known by transmitter and receivers. Doing so makes signal resilient to channel 

jamming or noise. 

The bandwidth is further increased by using multiple channels to transmit data. 

Orthogonal Frequency Division Multiplexing (OFDM) combines neighboring channel to further 

increase signal bitrate.  



3 

 

 

Propagation of Radio Waves   

The radio wave signals have been heavily researched. Free-space propagation formula 

calculates received power over distance (eq1). Pr is the power received, Pt is the power 

transmitted from station, Gr is the receiver’s antenna gain, Gt is transmitting antenna 

amplification, and λ is the wave length. Power received is the ratio of distance multiplied by 

distance. 

 

(1.1) 

Distance plays a big role in wireless modeling, and it affects quality of signal being 

transmitted. Signal loss due to the distance is defined as the path loss. Wireless network design 

involves transmission amplitude and receiver gain. A high amplitude may cause too much noise 

generated at long distance, and transmit amplitude that is too low would not be enough to 

overcome path loss. Ideal amplitude would be sufficient to transfer data without interference to 

other nodes.  

 

(1.2) 

The NS-3 simulator does not encode bits to symbols; however the bitrate and error rate 

can be computed as a function of distance and noise. The error rate calculation can be computed 

using equation 1.2. Eb is the energy required per bit, and N0 is the Gaussian Noise Level. Using 

Equation 1.1 and 1.2, it is sufficient to calculate bit error probability given a distance and 

transmit power. The higher encoding bit rate, the higher the probability of error. For example, 

QPSK encoding has bit error rate of Pb = Ps/2 [2] 
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1.1.2 Medium Access Control 

For a shared wireless medium, transmission nodes are required to contend for the 

channel. Signal collision happens when two nodes transmit using the same channel, resulting in 

interference and hence packet lost. To overcome such inefficiency, ad-hoc nodes uses distributed 

coordinated function (DCF) to contend for signal transmission. This function optimizes for fair 

usage of wireless medium even in a high utilization rate. [3] One common problem in this 

mechanism is the hidden node problem. 

A BC

 

Figure 1: Hidden Node Problem 

The hidden node can be illustrated using Figure 1. In this situation, Node A and Node B 

does not interfere. When node B transmit to node C, node A will not sense the medium being 

busy, and cause interference, resulting a failed packet transmission in Node C.  
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Figure 2 RTS-CTS illustration 

To overcome such problem, IEEE 802.11 uses RTS-CTS mechanism. Before a packet is 

transmitted, ready-to-send (RTS) packet control packet is transmitted to receiver. Receiver will 

acknowledge RTS request by replying continue-to-send (CTS) packet. The hidden node-A which 

receives CTS will enter silent period to avoid channel conflict. 

Signal collision between nodes in the same channel can be simulated accurately. By simulating 

signal collision behavior, network engineer can place nodes strategically to optimize a network.  
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1.2 IEEE 802.11p 

 The IEEE 802.11p is an extension of existing IEEE 802.11 standard. The Wireless 

Access for Vehicular Environment (WAVE) and DSRC (Dedicated Short Range 

Communications) is established in European Countries and United States as a standard for 

vehicular network. This Federal Communications Commission standard allocated 75MHz 

spectrum at 5.9GHz bandwidth for vehicular communication [4]. 

Table 1-FCC Allocation of VANET networks 

Frequency 

(Ghz) 

5.850 5.860 5.870 5.880 5.890 5.900 5.910 5.920 

Channel 

Number 

 172 174 176 178 180 182 184 

Uses Spacing Critical 

Safety 

Service Channels Control 

Channel 

Service Channels Public 

Safety 

 

Vehicular Network has short link times, thus transmission windows are optimized to 

exchange data efficiently. Table 1 presents the allocated spectrum and frequency for current 

IEEE 802.11p standards. Current DSRC standard divides 75 MHz spectrum into 10 MHz 

channels. Each channel in DSRC is managed. Control Channels (CCH) are reserved for critical 

messages and Service Channels (SCH) is used for data packets. All nodes switch channels 

periodically to receive messages from different channels. Since all terminals are required to 

switch to CCH during the CCH interval, critical messages is transmitted during CCH interval 

and guaranteed to be received [4]. 

The MAC Layer of 802.11p is similar to 802.11e. The Enhanced Distributed Channel 

Access Function (EDCAF) is split into multiple channel access (CA). Each channel maintain a 
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contention window such that transmit opportunity of one channel does not affect the other 

channels [5]. 

The Physical layer of 802.11p uses Orthogonal Frequency Division Multiplexing 

(OFDM) to make use different channels. IEEE 802.11p states optional enhanced receiver 

performance requirements; this allows each channel to be encoded in different rate, resulting in 

different Bit Error Rate (BER). By introducing sub-carrier encoding, each channel is customized 

to trade-off between transmit range and bandwidth.  

1.3 Mobility Modelling 

 This section discusses simulated behavior beyond the context of networking. These 

behaviors are necessary model vehicular movement and road traffic scenarios.  

1.3.1 Vehicular Area Network 

The main task of Vehicular ad-hoc networking is distributing data to other nodes. The 

distribution is split into three categories. Vehicle to Vehicle transfer (V2V) is concerned in 

transferring data from vehicle nodes to vehicle nodes. Vehicle to Infrastructure (V2I) focuses on 

transferring data between vehicular nodes and infrastructure such as internet backhaul or access 

points. Vehicle to Other Units (V2X) looks at interaction between Vehicular Nodes and other 

nodes that is not infrastructure or vehicular, such as the road side units. 

The data distribution behavior can be modelled by epidemiological model and isolated 

epidemiological model proposed by Nekovee [6]. The model is computed based on speed, 

position, and path of the node. Driving behavior and route plays a big role in simulation. The 

routes can be imported from scenario generator software such as BonnMotion or Simulation of 

Urban Mobility (SUMO) [7]. This software uses real-world scenario maps to create mobility 

position and waypoints. The positions and position changes of nodes is simulated on the NS-3 
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simulator. By using real-world maps, the simulated positions and routes are closely related to 

real-world scenarios. 

1.3.2 Driving Behavior 

The mobility models in NS-3 consist of position and routes. The traffic routes are derived 

using real-world scenarios. Each vehicle in map holds the value of position, velocity, and is 

considered as a network node.  NS-3 simulator uses Treiber’s Intelligent Driving Model (IDM) 

to calculate the change in velocity and position [8]. The driving behavior also incorporates lane 

changing behavior; the model named “Minimizing Overall Braking decelerations Induced by 

Lane changes (MOBIL)” is introduced for realistic lane changing behavior [9]. These models 

have been verified against realistic data derived from experiments [10]. 

 

 

(1.3) 

where 

 
(1.4) 

 

The IDM model in equation 1.3 and 1.4 defines change in velocity as a function of 

acceleration and current velocity. On a free-road, change in velocity dv, depends on acceleration 

and deceleration a, comfortable braking value b, current velocity v, desired velocity v0 and 

desired distance of the vehicle in front s* and actual distance of the vehicle in front s.  

 

 (1.5) 



9 

 

 (1.6) 

 

 The lane changing behavior simulates decision of drivers to change lane. It first 

calculates the “incentive” using equation 1.5 based on current lane and “incentive” of changing 

lane. When changing lane has more “incentive”, it checks if it would be safe to change lane 

using equation 1.6. The acc’ denotes the acceleration of target lane and M denotes ‘Me’ and M’ 

denotes ‘Me’ after changing to target lane. B refers to vehicles in the target lane and B’ refers to 

target lane after making the decision. p is the politeness factor that weights importance of other 

vehicles against itself. athr is the weight threshold to avoid changing lane if conditions are equal 

or differences are negligible. bsafe is the maximum safe deceleration or vehicles of the other 

lanes. 

1.4 Applications 

Applications utilizing VANET can be categorized into safety and user applications. 

Safety applications are essential to enhance driving, while user applications provide 

entertainment and commerce functionality. Safety applications use CCH while user applications 

use SCH. 

Safety applications enhance user’s driving experience by communicating with other 

nodes or road-side units. This application reduces road accidents, improves intersections, and 

reduces road congestions.  
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Vehicles travelling at high speed have very little response time to respond to accidents 

ahead. Furthermore, drivers do not usually see beyond vehicle in front. The safety application 

can communicate over a distance, preventing the pile-up accidents from happening. The early 

warnings give drivers more response time, or even automate the vehicle to stop. 

Driving through uncontrolled intersections poses as a challenge for drivers, given limited 

viewing range, and the need for drivers to look into many directions (e.g., intersections without a 

traffic light). In VANET, safety application detects and warns drivers of an oncoming vehicle to 

prevent accident, and vehicles can coordinate in an intersection to prevent collision.  

Road congestion can be reduced using VANET. This is done by properly planning the 

route to destination. Since vehicles are connected, congested road is avoided. It also indirectly 

reduces traffic accidents [11] because drivers would be less frustrated and more inclined to 

follow traffic regulations. 

User applications in VANET use the Service Channel (SCH) and provide drivers and 

passengers with network capabilities. This may include internet service on the road, or other 

network services like commercial advertisements or location directory. VANET appears to be 

invisible layer, and thus existing applications can be applied to VANET. 

The NS-3 simulator is built on top of these rules and behaviors. They are sufficient to 

simulate real-world conditions and generate data outputs by applying basic networking theories, 

and applying VANET standard above it. We then model the driving behavior and realistic maps 

to generate realistic data.  
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1.5 Thesis Organization 

In chapter 2, this chapter discusses current state of the simulation technology, and the proposed 

solution of this thesis. 

Chapter 3 explains about the current simulators that exist and the study of some applications that 

are commonly used. 

In chapter 4, the chapter presents a clear idea about the proposed solution and the methodologies 

to improve the compute performance. 

In chapter 5, the chapter evaluates proposed solution by using common workload between NS-3 

simulator and proposed NS-3 simulator. 

In chapter 6, an ultimate conclusion of the work done and the future scope for this particular 

solution is discussed. 
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CHAPTER 2 

PROBLEM DESCRIPTION AND CONTRIBUTIONS 

The current VANET Simulator uses NS-3 to simulate networking and driving models.  

Simulation is the first step of designing networks; network designers optimize Quality of Service 

by tweaking parameters. Cristea et al [12] states the usefulness of large scale VANET simulators. 

Contemporary large scale VANET simulation is proved to be time consuming and often energy 

consuming.  

Some solution such as Mobile wireless Vehicular Environment Simulator (MoVES) uses 

distributed computing to simulate large scale networks [13]. These simulators achieve higher 

computation throughput by distributing workload across computers, but power and hardware 

costs for such solutions are expensive [14]. There is also solution proposed by Moritz et al that 

use mathematical model to optimize simulation by reducing computation workload thus trading 

off output accuracy [15]. The computation resources play an important role in computation 

performance. 

The solution of this thesis concentrates on how to design energy efficient high performance 

vehicular area network simulator for large scale networks. In this thesis work we have proposed 

using General Purpose Graphics Processing Unit (GPGPU) to assist VANET simulation to 

improve computation performance. This solution is known for large scale and efficient 

simulation. Many simulators adapted to such solution yield promising speed up[16]. In this thesis 

work, a Compute Unified Device Architecture (CUDA) is used to offload expensive 

computations from NS-3 simulator to improve simulation throughput.  



13 

 

2.1 Problem Statement 

 Simulation of VANETs not only requires the simulation of network standards, but also 

the mobility of nodes. Such dynamic system involves computation of node distance, routing 

protocols, application layers, data send, data receive, etc. The simulation model of VANET 

requires both hardware and software supports to deal with massive computational problems. 

Currently available network simulators, like network simulator 3 (NS-3), are not adequate for 

simulating large-scale VANET systems. 

2.2 Thesis Contributions 

 After studying the challenges which are to be surmounted in designing of a large scale 

vehicular area network simulator, we propose a solution to offload heavy computations to a 

SIMD processor.  The major contributions of this research include: 

 A CUDA-assisted VANET simulation model for multicore CPU-GPU platform to 

increase computational throughput. 

 CUDA/C programs for fast simulation of large scale VANET network. 

 CUDA/C programs to solve massively parallel big data problems faster. 

 Evaluation technique to measure the accuracy of the proposed CUDA-assisted VANET 

simulator. 
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CHAPTER 3 

LITERATURE SURVEY 

 

 

This chapter provides a detailed overview of the two main aspects of this dissertation, the 

NS-3 network simulator and VANET extension of NS-3. Hadi Arbabi and Michele C. Weigle 

[17] extended NS-3 to simulate VANET based on models described in Chapter 1.  

3.1 Network Simulators 

 Before going into details of NS-3 simulator, this subsection describes the other network 

simulators available for research and explains why author prefers NS-3 simulator. The simulators 

studied include OMNET++ [18], NCTuns [19], and iTETRIS platform [20]. These simulators 

share the same models and objective. Design of simulators varies and inherits different features. 

OMNET++ inherits the Eclipse Integrated Development Environment (IDE) to assist 

users in simulation. It features a graphical user interface (GUI) to design networks. Its open 

source license allows and users to modify simulator to customize a model. This platform is easy 

to use because it inherits a powerful GUI. 

 NCTuns is a network simulator created by Network and System Laboratory in National 

Chiao Tung University, Taiwan. This simulator features a simulation engine and a loosely-

coupled GUI for designing networks. This simulator was intentionally developed as commercial 

software. Before version 6.0, the simulation engine is open source software, while the GUI is 

closed source, and the simulator will not work without the GUI client[21]. As of version 8.0, the 

simulator is fully commercial, and is being marketed as Estinet simulator, featuring ease of use 

and robust simulation [22]. 
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 The iTETRIS platform is a project funded by European Commission, and mainly used by 

and developed by European nations. This platform serves as a connector for NS-3 simulator and 

Simulation of Urban Mobility (SUMO) simulator to simulate Intelligent Transportation System 

(ITS). The platform is being commercially used but developed as open source software. It is 

distributed by invitation or request only. It features three realms simulation, including traffic 

management, network communications, and ITS facilities support. 

 The NS-3 simulator is open source software and fully developed by academia for 

academia purposes. Software can be modified for specific uses, and due to the large user base, it 

has large community support. NS-3 does not require a GUI to use, but extensions of GUI are 

being developed to review simulation results. NS-3 is not compatible with NS-2, it has been 

written from scratch based on python and C++ programming language. In a recent study [23], the 

NS-3 simulator yields better performance than OMNET++ simulator. NCTuns is commercial 

licensed, and researchers no longer have access to the source code. NS-3 is the suitable target 

because it uses the similar programming language as CUDA. It is also open source; users are free 

to modify the source code to their needs. NS-3 also inherits the best simulation speed. 

3.1 The NS-3 Simulator 

NS-3 simulator is a discrete event simulator. Model behavior is simulated by generating 

events which represent an event happened in reality. For example, when a node sends a packet, 

Application layer will first generate an event, which will be processed by the Network Layer. 

Network layer will then generate events to the MAC Layer, and the events cascade until the 

packet reaches its destination. 
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    1   #include "ns3/core-module.h" 
    2 #include "ns3/network-module.h" 

    3 #include "ns3/internet-module.h" 

    4 #include "ns3/point-to-point-module.h" 

    5 #include "ns3/applications-module.h" 

    6  

    7 using namespace ns3; 

    8  

    9 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample"); 

   10  

   11 int 

   12 main (int argc, char *argv[]) 

   13 { 

   14  Time::SetResolution (Time::NS); 

   15  LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO); 

   16  LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO); 

   17  

   18  NodeContainer nodes; 

   19  nodes.Create (2); 

   20  

   21  PointToPointHelper pointToPoint; 

   22  pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps")); 

   23  pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms")); 

   24  

   25  NetDeviceContainer devices; 

   26  devices = pointToPoint.Install (nodes); 

   27  

   28  InternetStackHelper stack; 

   29  stack.Install (nodes); 

   30  

   31  Ipv4AddressHelper address; 

   32  address.SetBase ("10.1.1.0", "255.255.255.0"); 

   33  

   34  Ipv4InterfaceContainer interfaces = address.Assign (devices); 

   35  

   36  UdpEchoServerHelper echoServer (9); 

   37  

   38  ApplicationContainer serverApps = echoServer.Install (nodes.Get (1)); 

   39  serverApps.Start (Seconds (1.0)); 

   40  serverApps.Stop (Seconds (10.0)); 

   41  

   42  UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9); 

   43  echoClient.SetAttribute ("MaxPackets", UintegerValue (1)); 

   44  echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0))); 

   45  echoClient.SetAttribute ("PacketSize", UintegerValue (1024)); 

   46  

   47  ApplicationContainer clientApps = echoClient.Install (nodes.Get (0)); 

   48  clientApps.Start (Seconds (2.0)); 

   49  clientApps.Stop (Seconds (10.0)); 

   50  

   51  Simulator::Run (); 

   52  Simulator::Destroy (); 

   53  return 0; 

   54 } 
Figure 3 Simple NS-3 simulation codes 

http://www.nsnam.org/doxygen/group__logging.html#ga225a95395fa117b7309aa3c43518d02e
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/first_8cc.html#a0ddf1224851353fc92bfbff6f499fa97
http://www.nsnam.org/doxygen/classns3_1_1_time.html#ac89165ba7715b66017a49c718f4aef09
http://www.nsnam.org/doxygen/classns3_1_1_time.html#a87a7f4d29c68b047a72d291ad660295aae324232af1b8cf625cecd92a22e0f2dc
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628
http://www.nsnam.org/doxygen/group__logging.html#gadc4ef4f00bb2f5f4edae67fc3bc27f20
http://www.nsnam.org/doxygen/group__logging.html#ggaa6464a4d69551a9cc968e17a65f39bdbae36aedc880de94fd5a5b53bb9fe65628
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#aeef295fc2c70ecf5529c61a6c891467b
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a787f059e2813e8b951cc6914d11dfe69
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a255aef441a060820cd802ceebc8a00e5
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#a4577f5ab8c387e5528af2e0fbab1152e
http://www.nsnam.org/doxygen/classns3_1_1_string_value.html
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#a6b5317fd17fb61e5a53f8d66a90b63b9
http://www.nsnam.org/doxygen/classns3_1_1_string_value.html
http://www.nsnam.org/doxygen/classns3_1_1_net_device_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a2b5068815662a5e4555baccc541df7b2
http://www.nsnam.org/doxygen/classns3_1_1_point_to_point_helper.html#ab9162fea3e88722666fed1106df1f9ec
http://www.nsnam.org/doxygen/classns3_1_1_internet_stack_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#abe3437b4fe63ea4c90a8078fb1871419
http://www.nsnam.org/doxygen/classns3_1_1_internet_stack_helper.html#a6645b412f31283d2d9bc3d8a95cebbc0
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a2a7d1214417d54d2ed8c21ffc54035e9
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html#acf7b16dd25bac67e00f5e25f90a9a035
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_interface_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a9a9e54963cc74a94ff173779d16f2e01
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_address_helper.html#af8e7f4a1a7e74c00014a1eac445a27af
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_server_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a97f9aa56c91953bccd47fb5757e42083
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#a13130afe390ebf64b1d29f09968893cf
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_server_helper.html#aad381d52905f3f4cb0fc3cb7cb3f660b
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a9ed96e2ecc22e0f5a3d4842eb9bf90bf
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#a8eff87926507020bbe3e1390358a54a7
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#adfc52f9aa4020c8714679b00bbb9ddb3
http://www.nsnam.org/doxygen/classns3_1_1_udp_echo_client_helper.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_ipv4_interface_container.html#ae63208dcd222be986822937ee4aa828c
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_uinteger_value.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_time_value.html
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_uinteger_value.html
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html
http://www.nsnam.org/doxygen/namespacefirst.html#af4e1888f8480b22f8020c516136832cd
http://www.nsnam.org/doxygen/namespacefirst.html#a28017b47990e4c3b19a47031969051e3
http://www.nsnam.org/doxygen/classns3_1_1_node_container.html#a9ed96e2ecc22e0f5a3d4842eb9bf90bf
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#a8eff87926507020bbe3e1390358a54a7
http://www.nsnam.org/doxygen/classns3_1_1_application_container.html#adfc52f9aa4020c8714679b00bbb9ddb3
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a84be982e6d03b62c3dc3303c75a9b909
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a2a056e59a6623225df0957eda0ee8252
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 Figure 3 presents an example of NS-3 simulation; this code simulates point-to-point 

communication between two nodes. NS-3 simulation is written in C++, it is perceived as a 

subset of C++ libraries. Line 19 defines two communicating entities, and line 28 and 29 installs 

network layer stack to created nodes. Line 39 and Line 40 generates an event to start and stop an 

echo server. Line 48 and 49 generates events to start and stop echo client. Line 51 starts the 

simulation by generating events. The execution step will remain in line 51 until all events have 

been completed or Simulator::Stop is called. Simulator::Destroy frees allocated memory. Notice 

Line 15 and 16 requests the object to log the results; this sends received packets to log file. The 

parameters (e.g., the network speed and network address) of a network are configured before 

simulation is run.  

At time 2s client sent 1024 bytes to 10.1.1.2 port 9 
At time 2.00369s server received 1024 bytes from 10.1.1.1 port 49153 
At time 2.00369s server sent 1024 bytes to 10.1.1.1 port 49153 
At time 2.00737s client received 1024 bytes from 10.1.1.2 port 9 

Figure 4 Simulation results 

 The resulting output from the simulation generates simple result. The first packet sent is 

at 2 second; this is defined at line 48, and it is limited to only one packet at line 43. The delay 

defined by channel is 2ms, and subsequently, the server received packets at 2ms delay plus 

latency by layer propagation.  

 The NS-3 Simulator class is the main access point for event scheduling facilities. When 

one or more events are scheduled to run (e.g., Simulator::run is called), the simulator class will 

start processing events. Each event may or may not generate more events, and simulator will 

stop when none of the events are left to execute, or Simulator::stop is called. [24] 
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 Events are logged in the output of the simulation. Logs are important for precise output. 

To find out exact propagation delay in example in figure 4, we need a more detailed output. 

More packets can be logged by changing line 15 and 16 replacing LOG_LEVEL_INFO to 

LOG_LEVEL_ALL. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

11 
12 

 
13 
14 

 
15 
16 
17 
18 
19 
20 

0s UdpEchoServerApplication:UdpEchoServer(0x165023c0) 
0s UdpEchoClientApplication:UdpEchoClient(0x16502890) 
0s UdpEchoClientApplication:SetDataSize(0x16502890, 1024) 
1s UdpEchoServerApplication:StartApplication(0x165023c0) 
2s UdpEchoClientApplication:StartApplication(0x16502890) 
2s UdpEchoClientApplication:ScheduleTransmit(0x16502890, +0.0ns) 
2s UdpEchoClientApplication:Send(0x16502890) 
2s UdpEchoClientApplication:Send(): At time 2s client sent 1024 bytes to 10.1.1.2 port 9 
2.00369s UdpEchoServerApplication:HandleRead(0x165023c0, 0x165029d0) 
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server received 1024 bytes 
from 10.1.1.1 port 49153 
2.00369s UdpEchoServerApplication:HandleRead(): Echoing packet 
2.00369s UdpEchoServerApplication:HandleRead(): At time 2.00369s server sent 1024 bytes to 
10.1.1.1 port 49153 
2.00737s UdpEchoClientApplication:HandleRead(0x16502890, 0x16502fc0) 
2.00737s UdpEchoClientApplication:HandleRead(): At time 2.00737s client received 1024 bytes 
from 10.1.1.2 port 9 
10s UdpEchoClientApplication:StopApplication(0x16502890) 
10s UdpEchoServerApplication:StopApplication(0x165023c0) 
UdpEchoClientApplication:DoDispose(0x16502890) 
UdpEchoServerApplication:DoDispose(0x165023c0) 
UdpEchoClientApplication:~UdpEchoClient(0x16502890) 
UdpEchoServerApplication:~UdpEchoServer(0x165023c0) 

Figure 5 Detailed Output 

 Detailed output shows in figure 5 line 7 that send function is called, while at line 9 shows 

Handle Read subroutine is executed. The propagation delay in this case is 3.69ms.  

3.2.1 NS-3 Architecture 

From previous subsection, we witnessed some usage of NS-3 simulator, it is driven by events 

and it is based on C++. This subsection explains how the simulation libraries work. The NS-3 

internals are categorized into hierarchy. 
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Figure 6 NS-3 architecture 

Modules in NS-3 simulator are categorized into libraries. Figure 6 presents the NS-3 

architecture. Each library simulates certain functionalities. A simulation scenario is created 

by combining one or more libraries. In the previous example, Internet, UDP Application, and 

Point-to-point libraries are used. Each of these libraries simulates a subset of functionality of 

a network, from the node, to wire, or wireless propagation is simulated using these libraries. 

Core module provides the event scheduler, logging and tracing, and random number 

generator facilities. Event scheduler maintains an event queue, which will be used to run the 

simulator. The queue is added in chronological order (see figure 7); this serves as the 

mechanism for NS-3 simulator. 

  148 uint32_t  

  149 Node::AddApplication (Ptr<Application> application) 

  150 { 

  151  NS_LOG_FUNCTION (this << application); 

  152  uint32_t index = m_applications.size (); 

  153  m_applications.push_back (application); 

  154  application->SetNode (this); 

  155  Simulator::ScheduleWithContext (GetId (), Seconds (0.0),  

  156  &Application::Initialize, application); 

  157  return index; 

  158 } 

Figure 7 Example callback code 

http://www.nsnam.org/doxygen/classns3_1_1_node.html#ab98b4fdc4aadc86366b80e8a79a53f47
http://www.nsnam.org/doxygen/classns3_1_1_node.html#ab98b4fdc4aadc86366b80e8a79a53f47
http://www.nsnam.org/doxygen/classns3_1_1_ptr.html
http://www.nsnam.org/doxygen/group__logging.html#ga90b90d5bad1f39cb1b64923ea94c0761
http://www.nsnam.org/doxygen/classns3_1_1_node.html#a3984bdbc05cc8a6d2eda6c41963f16f6
http://www.nsnam.org/doxygen/classns3_1_1_node.html#a3984bdbc05cc8a6d2eda6c41963f16f6
http://www.nsnam.org/doxygen/classns3_1_1_application.html#a2cab718227b06a7ea643282c807aed93
http://www.nsnam.org/doxygen/classns3_1_1_simulator.html#a63865b5c4030eca04d51b033f61ff600
http://www.nsnam.org/doxygen/classns3_1_1_node.html#aaf49b64a843565ce3812326313b370ac
http://www.nsnam.org/doxygen/classns3_1_1_object.html#a900bb91b733c232cb18e44782cebcdc6
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 The modules work together by calling back module functions by the core scheduler. 

Callback works by first storing function pointer to scheduler. Figure 7 presents an example use 

of callback mechanism commonly used by NS-3 simulator; this is the actual source code 

excerpt of node.cc. In line 155 and 156, simulator scheduled an event to be called, and the 

actual function is Application::Initialize, which initializes an arbitrary application, such as UDP 

server in previous example. This mechanism allows developers to extend the modules by using 

custom callbacks; the module names need not to be known during compile time, allowing 

modules to be extended by changing the callbacks made.  

 The network module defines objects and data types such as the node object, channel, and 

packet. Modules on top of it depend on the network module to define a model. The Internet 

module extends network module by defining types of packets such as IPv4 and TCP packets. 

The mobility module constructs node in Cartesian coordinate, allowing nodes to change its 

position. The helpers are pre-defined configuration for example, the WiFi node; the WiFi node 

inherently requires free-space propagation modelling and Internet for IPv4 connection. 

 Further details of this simulator can be resolved from NS-3 documentation [25], but this 

section is sufficient to further extend NS-3 to simulate VANET environments. 

3.3 NS-3 VANET Simulation 

 Previous sub-chapter discussed about the architecture of NS-3 and how extension can be 

made possible. This sub-chapter discusses about the VANET extensions.  

Michelle Weigle et al developed VANET Highway simulator. This implementation is 

verified against other models for consistency [17]. This implementation does not use real maps 
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and only models highway and intersection environments. The simplistic model is sufficient to 

simulate environments such as four way intersections, but does not use real maps for simulation. 

The simulator configuration is stored in XML format. The configuration file stores values 

such as the speed limit and the length of the highway. This VANET simulator generates a 

network and a vehicle trace file. The vehicle trace file can be visualized using a JAVA 

application created by the same author, as seen in figure 9. 

Figure 8 Source code excerpt 

void HighwayProject::Start() { 

    m_vehTrace.open(m_vehTraceFileName.c_str()); 

    m_netTrace.open(m_netTraceFileName.c_str()); 

    for(list<Ptr<VehicleGenerator> >::iterator it = m_vehGens.begin(); it != m_vehGens.end(); 

it++) { 

        (*it)->init(); 

    } 

    for(list<Ptr<TrafficLightGenerator> >::iterator it = m_trafficGens.begin(); it != 

m_trafficGens.end(); it++) { 

        (*it)->Start(); 

    } 

    Simulator::Schedule(Seconds(0.0), &Step, this); 

    Simulator::Stop(Seconds(m_projectXml.GetTotalTimeInSeconds())); 

} 

 

void HighwayProject::Step(HighwayProject* project) { 

 

    for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) { 

        Ptr<Highway> highway = it->second; 

        Highway::Step(highway); 

    } 

    for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) { 

        Ptr<Highway> highway = it->second; 

        highway->HandleTransfers(); 

    } 

 

    for(map<int, Ptr<Highway> >::iterator it = project->m_highways.begin(); it != project-

>m_highways.end(); it++) { 

        Ptr<Highway> highway = it->second; 

        for(int i = 1; i <= highway->GetNumberOfLanes(); i++) { 

            list<Ptr<Vehicle> >* vehList = highway->GetVehiclesInLane(i); 

            if(vehList != NULL) { 

                for(list<Ptr<Vehicle> >::iterator it2 = vehList->begin(); it2 != vehList-

>end(); it2++) { 

                    Ptr<Vehicle> veh = (*it2); 

                    project->m_vehTrace << Simulator::Now().GetNanoSeconds() << "," << veh-

>GetVehicleId() << "," << veh->GetVehicleType() << "," << veh->GetPosition().x << "," << veh-

>GetPosition().y << "," << veh->GetDirection() << "," 

                            << veh->GetVelocity() << "," << veh->GetAcceleration() << endl; 

                } 

            } 

        } 

    } 

    Simulator::Schedule(Seconds(project->m_dt), &HighwayProject::Step, project); 

} 
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In figure 8, the simulator uses a linked list to store vehicles and uses maps to store highway 

paths. Highway paths are defined in XML file, for each simulation step, vehicles positions are re-

evaluated based on the driving models. 

 
Figure 9 Visualized vehicular trace file 

3.4 Large Scale NS-3 Simulation 

Large scale network simulations are fundamental part of active networking research. NS-

3 supports distributed simulation. This effectively parallelizes process across a network using 

multiple computers. Pelkey and Riley [26] recent study yield 2.4 times speed up using distributed 

simulation. The author experimented with node size up to 5000 nodes. The authors also pointed 

out that synchronization is the big factor to consider when running a simulation for speed up. 

CUDA architecture accelerates processes by applying large scale SIMD processors. The 

details of CUDA architecture will be discussed in next chapter. Swenson et al [27] developed 

routing models to make use of NS-3 simulator running on CUDA GPGPU processor. This is the 
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first use of CUDA in NS-3 simulator to simulate large scale nodes. The author translated Floyd-

Warshall algorithm to Graph-Matrix format to effectively use GPGPU resources. The author also 

claims the speed up of 3.5 over simulation of 5000 nodes connected in BRITE topology. The 

simulation showed promising results, using significantly less resources and yield higher speed up 

than MPI implementation. 

These two outcomes suggest that large number of nodes needs to be parallelized in order 

to create a scalable simulation. Swenson et al stated the impact of parallelization; in one 

experiment, a single run took 30 minutes to run. VANET simulation can yield the same speed up 

using this approach. MPI and CUDA implementation can be combined to yield even better speed 

up, and would take a lot of effort to develop such solution. 

This chapter concludes that NS-3 is the proper platform for this thesis work. The NS-3 

simulator yields better performance and is natively supported by CUDA. NS-3 simulator is 

simple to use, and its architecture allows developers to easily extend the NS-3 simulator 

functionality. Furthermore, the NS-3 VANET simulation model is developed and verified against 

other simulators. Finally, large scale network simulation is commonly used and scalable 

solutions are being researched. 

 



24 

 

CHAPTER 4 

PROPOSED SOLUTION 

 

The main objective of the proposed solution is to improve speed up using CUDA 

architecture. Previous chapter, we discussed some knowledge of NS-3 VANET implementation 

allowing us to arrive at this solution. We also briefly discussed about parallelization and methods 

of implementation. This chapter propose a solution by focusing on parallelization using CUDA 

and how to integrating the solution into NS-3. 

4.1 CUDA 

CUDA is a general purpose parallel computing platform and programming language to 

optimally use NVIDIA Graphics Processing Unit (GPU)[28]. CUDA is perceived as a co-

processor to offload programmer’s workload into GPU hardware. GPU has the advantage of 

handling many threads in parallel using the same instruction. A CUDA program which runs on 

GPU hardware is called a kernel. When kernel is called, CPU can either wait for GPU to 

complete its computation, or it may continue processing other tasks until kernel execution is 

complete. 
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Figure 10 CUDA Logical Organization 

CUDA code execution hierarchy is based on Grid, Block, and Threads. Figure 10 is used 

to visualize the grid, block and thread organization of CUDA architecture. Grid is a group of 

Blocks; and Blocks are a group of Threads. Each block is guaranteed to execute in parallel in 

CUDA. Each thread in the same block shares the same Shared Memory and executes the same 

instruction. The Shared memory is the fastest memory built in GPU Streaming Multiprocessors. 

Due to the fact that each block of threads are guaranteed to execute in parallel, number of threads 

in a block is limited to 32 in each dimension, or 1024 maximum number of threads per 

block[29]. The shared memory is also limited to 64KB for Fermi Architecture. The programmer 

does not need to be aware of the hardware used in order to get the program to run; but a good 

programmer needs to know the limitation of the hardware to write an optimal program. 
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Figure 11 Fermi GPU Floor Plan 

Physically, the GPU chip is organized into streaming multiprocessors (SM) and the SMs 

are surrounded by memory units. This is layout is consistent with the logical organization of the 

CUDA software; each grid contain multiple blocks where each block populate a Streaming 

Multiprocessor.  
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Figure 12 Fermi Streaming Multiprocessor 

Figure 12 illustrates streaming multiprocessor in a GPU chip. Each Streaming 

Multiprocessor contains 32 CUDA cores, 16 load/store unit, Special Function Units, and two 

warp schedulers. It is also worth noticing that each streaming multiprocessor contains 64KB of 

configurable memory; this can be used as shared memory, or L1 Cache. The warp schedulers 

select a core and schedule instructions to run in each core. This guarantees two instructions to be 

scheduled at any time. Inside each CUDA Core, dispatch unit receives instructions from warp 

scheduler, and operand collector receives operands from the register file. The Arithmetic Logic 

Unit or Floating Point Unit will then process the input data and write it to result queue.  
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The Streaming Multiprocessor is also consistent with the CUDA Blocks. Developers are 

allowed to use 48KB of shared memory and 16KB of L1 Cache, or 16KB of Shared memory and 

48KB of L1 Cache in each block, which is the hardware limit of the SM. Each block is 

guaranteed to execute in parallel by scheduling instructions to the cores in SM until the all the 

threads in a block is completed.  

F __global__ void add(int *a, int *b, int *c){ 

    *c[threadIdx.x] = *a[threadIdx.x] + *b[threadIdx.x]; 

} 

 void main(){ 

    int a, b, c; 

    int *dev_a, *dev_b, *dev_c; 

    int size = sizeof(int) * 4 ; 

     

A     cudaMalloc( (void**)&dev_a, size ); 

    cudaMalloc( (void**)&dev_b, size ); 

    cudaMalloc( (void**)&dev_c, size ); 

     

     a = {1,2,3,4}; 

b = {10,20,30,40};     

b = {0,0,0,0}; 

B     cudaMemcpy( dev_a, &a, size, cudaMemcpyHostToDevice ); 

    cudaMemcpy( dev_b, &b, size, cudaMemcpyHostToDevice ); 

    cudaMemcpy( dev_c, &c, size, cudaMemcpyHostToDevice ); 

     

C     add<<< 1,4 >>>( dev_a, dev_b, dev_c ); 

     

D     cudaMemcpy( &c, dev_c, size, cudaMemcpyDeviceToHost ); 

     

E     cudaFree( dev_a ); 

    cudaFree( dev_b ); 

    cudaFree( dev_c ); 

} 

Figure 13 CUDA Code 

Figure 13 presents an example CUDA code to add 1x4 matrix. In section A, the memory 

is allocated inside the GPU. Section B copies matrix A, B, and C to the GPU. At this point, the 

matrix A and B is already residing in GPU. The GPU kernel is then executed in Section C. The 

arrow bracket <<<1,4>>> orders GPU to execute the kernel with 1 block and 4 threads per 

block. In this case, there are 4 parallel threads executed concurrently. Section F executes the 
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matrix add code, the __global__ identifier tells compiler to compile this subroutine as GPU code. 

Notice threadIdx.x is not a defined keyword, but it is implicitly defined keyword in CUDA; this 

variable is the thread identifier, each thread in a block has a unique thread identifier. Once 

execution is completed, Section D copies the resulting matrix C back to host memory. Section E 

frees the reserved memory. The allocated memory remains in the GPU until cudaFree() is called.  

4.2 Current NS-3 VANET Implementation 

In the previous subtopic, we know that CUDA is efficient in computing SIMD problems. 

This subtopic explains how Weigle and Arbabi’s NS-3 VANET is modified to SIMD CUDA 

code. 

Recall that NS-3 simulation is event based, each event creates a callback; callback 

executes a subroutine. By translating the subroutines to CUDA subroutines, we can offload the 

workload to GPU, and process it faster. The VANET simulator classes are organized in 

hierarchy, with specific purpose for each class. Most of the computational code is held in two 

subroutine of the VANET simulator, which are the distance computation and movement 

subroutine.  
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Figure 14 Data Structures of VANET simulator 

In Weigle and Arbabi’s simulator, mobility module is enhanced to simulate Vehicles, 

while the default networking stack is used. The highway mobility module is named 

highwayProject. The highwayProject instance contains a list of highway. Highway object defines 

highway length, direction, position, lane width, highway position, and list of vehicles. Vehicles 

and Highways are stored in a linked list. Each instance of highway contains a list of vehicles. The 

vehicle object represents a network entity. This node can send and receive packets using the 

mobility module. The vehicle class is responsible for computing distance and change of position. 
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Figure 15 VANET NS-3 subroutine calls 

The VANET simulator schedules a callback to calculate distance every nominal time 

deltaT. This value is set to 0.1 as default. This will schedule a callback to re-evaluate position 

after 0.1s simulation time. Updating speed and changing lane is done after 10 steps of position 

evaluation subroutine. This will avoid erratic driving behavior and lane changing. The 

networking stacks are simulated by NS-3 built-in libraries. Each vehicle is installed with an IEEE 

802.11p model. The networking module can be changed if user prefers to use otherwise. 
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Figure 16 Distance Computation 

To calculate the distance between each vehicle, the subroutine visits each vehicle in a 

linked list and calculates the distance based on Cartesian coordinates as displayed in figure 16. 

The computational complexity of this algorithm has big-O notation of O(n
2
). As number of 

nodes increases, we expect the computational time to increase exponentially. 

4.3 Proposed NS-3 VANET Implementation 

The proposed simulator inherits speeds up from CUDA by offloading distance and 

movement computation. These are the computationally expensive parts of the simulation; while 

the network simulation can be implemented using CUDA, but it necessarily increases 

complexity. The GPU has advantage of computing SIMD workload, e.g. matrix calculation, 

therefore solution involving matrix computation is theoretically fruitful [30]. 

 

Figure 17 Distance Matrix 

The coordinates of vehicles in the linked list will first be serialized, and stored as a 

matrix. The coordinate matrix can then be used to calculate distance matrix from figure 17. For 
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example, the distance between node A and node B can be retrieved in element 1,2 of the 

matrix.[28] 

 

Figure 18 Position and Movement Matrix 
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Figure 19 Proposed NS-3 workflow 

The position matrix in figure 18, Pt stores coordinate for each node, and Mt stores the 

movement matrix for each step. Figure 19 represents a flowchart of the proposed design. During 

initialization, Pt and Mt are first copied to the GPU. On subsequent steps, the output matrix Dt is 
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copied to CPU for networking stack computation. In any iteration, Mt is added to Pt to change 

the coordinates, simulating the vehicular position change. Using equation 1.3, new movement 

matrix Mt’ can be computed by substituting Mt into v. Because Mt is a matrix, the same 

operation is applied to the matrix, GPU can use all cores to apply the same operation across all 

elements. This workload is categorized as a SIMD instruction. 

__global__ void computeDistanceMatrix(Vector3D *a, Vector3D *b, double *c, 

int numberOfNodes){ 

 int i = blockIdx.x * blockDim.x + threadIdx.x; 

 int j = blockIdx.y * blockDim.y + threadIdx.y; 

 double dx = b[i].x - a[i].x; 

 double dy = b[i].y - a[i].y; 

 double dz = b[i].z - a[i].z; 

 if ( (i<numberOfNodes) && (j < numberOfNodes)){ 

  c[i*numberOfNodes + j] = sqrt(dx*dx + dy*dy + dz*dz); 

 } 

} 

Figure 20 CUDA code for Distance matrix computation 

The subroutine in figure 20 executes a CUDA kernel for distance computation and 

movement computation is initiated by callback functions. Parallel processing is done by 

calculating distance matrix for all vehicles concurrently. Each position for a vehicle can then be 

retrieved from the matrix. This generates a distance matrix, matrix d. 

 

(4.1) 

The movement vector is also calculated and applied for every iteration. Equation 4.1 is 

derived from equation 1.3 in chapter 1 to calculate Treiber’s IDM in matrix form. Using CUDA 

programming technique, this equation can be computed in parallel and acceleration matrix Mt’ is 

generated. Matrix Mt is then used to calculate the acceleration. By applying the change in 

velocity to movement matrix, we can compute the position of nodes. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

Chapter 4 described the technique and implementation used to improve the network 

simulation speed. This chapter verifies correctness of the output, and discusses speed 

improvement of the VANET simulator. 

5.1 Assumption 

For verification, the model uses same random number generator, and we assume the same 

set of movement and random variables are used. This number is particularly important to 

influence driver’s decision to change lanes. The assumption can be made by using the same 

random generator seed. 

For timing experiments, the workstation and server is assumed to have no other users 

sharing the same resources. This can be done by running the experiments repeatedly for three 

times and check for consistency. The results can be checked for consistency. 

 

5.2 Experimental Setup 

The workload is being executed on workstation and supercomputer. Workstation 

represents an ideal machine commonly used in lab setup. Supercomputer is commonly used to 

compute big problems. Table 2 presents the specification of the machines used for this 

experiment. 
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Table 2: Hardware Setup 

 Supercomputer Workstation 

CPU AMD Opteron 6134 Intel Xeon E5506 

CPU Cache Size 512KB 4096KB 

Cores 32 8 

RAM Size 64GB 12GB 

GPU NVidia Tesla K20m NVidia Tesla C2075 

GPU Architecture Keper Fermi 

GPU Core Clock 0.71GHz 1.15GHz 

GPU Memory Size 5GB 6144MB 

GPU Cores 2496 448 
 

This setup shows the strength of supercomputer, the CPU cores and memory are 

significantly higher than a workstation. While the number of GPU cores in Tesla K20m are 

significantly higher than Tesla C2075, the clock speed suggests that Tesla C2075 (Fermi) has 

more advantage for small workload.  

5.1 Validation of CUDA Implementation 

The developed technique computes change of physical position in a Vehicular Area 

Network. The simulation uses models of Treiber IDM, and proposed solution solves this 

modeling equation in matrix form. The movement matrix is calculated using Equation 1.3. 

Resulting acceleration is added to movement matrix, and then applied to position matrix. The 

distance between each node is computed using Cartesian distance equation, and stored as a 

distance matrix format. 
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1 2 3 4 5

Figure 21: VANET Highway illustrated 

 

 

Figure 22 Matrices representing results 

On a highway, assuming normal driving behavior, vehicles follow each other separated 

by a safe distance. Figure 1 illustrate the movement of the nodes in the same direction. The 

position matrix P0 represents the X and Y coordinate of each node. Each node is represented by a 

row. This initial position is stored in both CPU and GPU for comparison purposes. The 

movement matrix M0 is an initial movement matrix. The initial movement matrix for normal 

driving behavior has constant velocity e.g. no change in speed. In ideal situation, each vehicle 

moves at the same speed, (3m/s in this case), therefore the movement matrix shares the same 

element. At second iteration (t=0.2, dt=0.1), movement matrix is calculated; given constant 

distance and v=3, movement matrix remains the same. The new position P1 is calculated by 

adding M0. Distance matrix at second iteration is calculated as matrix D0. After five iterations, P5 

is computed by repeating the steps.  
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Table 3: Node Position 

Node 
Number 

X position Y position 

Before After Before After 

Node 1 1 16 1 1 

Node 2 3 21 1 1 

Node 3 5 23 1 1 

Node4 7 25 1 1 

Node 5 9 27 1 1 

 

The resulting matrix is then compared with NS-3 output. Table 3 compares the NS-3 

result using original output. From comparison, proposed solution and traditional NS-3 generates 

the same output.  

5.3 Isolated Workload 

The first set of benchmark isolates workload to only nodes movement. On this workload, 

only Treiber IDM is modelled, while the network simulation is not executed. This allows us to 

compare the improvement of CUDA implementation by itself.  

 
Figure 23 Execution time vs Problem Size 
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We anticipate more time taken as the number of nodes increases. The workload ranged 

from 10000 nodes to 55000 nodes. The workload consists of calculating the position based on 

movement and distance. The workload has compute complexity of O(n
2
), a linear increase in 

number of nodes expected to increase time exponentially. Supercomputer is marginally faster 

than a workstation for this workload. Since nodes information is stored in a Linked List in CPU 

implementation, no parallelization is possible for this data structure. By converting the linked list 

to a matrix, the GPU workload uses all the cores possible. 

 
Figure 24 Calculated Speed up 

Figure 5.3 represents the speed up over CPU calculated. Speed up improves as workload 

increases. The CPU implementation results in exponential time increase against problem size. 

The supercomputer achieved better speed up because GPU has more cores. 

5.3 Full Workload 

This final workload tests for the full workload for including mobility (vehicular 

movement) and the network simulation. The network simulation uses only CPU, and does not 
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use GPU for computation. In proposed solution, as workload increases, CPU becomes the 

bottleneck of the problems, and speed-up saturates. 

 
Figure 25 Comparison against iterations 

The first scenario in resulting figure 26 simulates 100 nodes and varies iteration, i.e. 

dt=0.1, t=10,20,..70. The proposed solution offloads SIMD operations while CPU consumes 

data from GPU. Traditional CPU-only implementation requires processor to compute both SIMD 

and MIMD operations. Supercomputer has faster processor, resulting marginally faster 

simulation for traditional simulator. For proposed solution, the resulting time taken is almost 

similar on both platforms.  
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Figure 26 Comparison against number of nodes 

When comparing number of nodes versus time, the memory complexity and time 

increases exponentially. At saturation point (number of nodes = 2500), CPU is becoming the 

bottleneck; e.g., each iteration waits for CPU to complete before next iteration can be executed. 

The results show up to 40x increases in speed up. This comparison against single-core CPU and 

many core GPU is not a fair comparison, therefore the significant speed-up is expected. 

5.3 Energy Consumption Analysis 

The energy consumed by simulation is analyzed based on the time used to run the 

simulation. In isolated and full workload traditional simulator analysis, the power is calculated as 

a function of time used for simulation. For isolated GPU only analysis, only GPU are running at 

full workload, while CPU is idle. For full workload on proposed simulation, both CPU and GPU 

are running at full workload. 

In isolated workload, the GPU performs calculation without dependency on the CPU. In 

this best case scenario, the GPU executes at a much faster rate. With the steep speed up, GPU 

only takes little energy to compute the worklaod.  



42 

 

 
Figure 27 Power Consumed in Isolated Workload 

Figure 27 presents the energy consumed by workstation in an isolated workload. Energy 

required to compute large workload in GPU are less than 1.15 kJ, due to the minimal time 

consumed by GPU to perform isolated calculation. 

 
Figure 28 Power Consumed in Isolated Workload 

In figure 28, power consumed by proposed solution initially uses 60x less energy to 

perform same simulation compared to traditional implementation. As workload increases, time 
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taken to compute increases and speed up saturates at 2000 nodes, where the GPU waits for CPU 

before an iteration can be completed. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPES 

 

 We hope the discussion presented in the thesis motivates the interested scholars into 

considering research in emerging technologies in Vehicular Area Networking and GPU 

Computing. Vehicular Area Networking poses challenging networking problems and solutions. 

On the other hand, the use of GPU in simulation gives advantages in throughput. 

 

6.1  Conclusion 

 By accelerating computation using GPU, we achieve speed up of 75x. We can further 

exploit this method to develop even faster simulation by integrating more models into NS-3 

simulator. CPU had long hit the performance wall, and GPU computation has been a trend to 

improve efficiency. 

NS-3 allows modules to be added or removed due to low-level design. By adding 

modules which offload task to GPU, simulation throughput can be improved. Many work has 

been done to make use of GPU, for example the GPU-based simulation models such as BRITE 

[27] on NS-3. As this trend follows, a higher throughput and more cost-efficient method can be 

utilized for simulation. By combining multiple GPU-based modules BRITE model [27] will 

inherently speed up simulation. 

New development of NS3 has been using distributed framework such as MPI [26] yields 

even higher speed up on large scale simulation. With integration of GPU, large scale simulations 

can benefit higher magnitude speed up. 
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6.2  Future Extensions 

 This work makes VANET simulator more efficient. The CUDA implementation 

can be extended to run including: 

 NS-3 Core Components: By extending CUDA implementation to NS-3 core, the 

workload can be completely offloaded by GPU without the bottleneck of CPU. This 

allows CPU to do further work. 

 Self-Optimization: Chung et.al. Suggested simulation approach for self-

optimizing network. That work focuses on simulating network over different 

configurations to generate the best results. In his expensive simulation, GPU can be used 

to simulate events at faster rate [31].  

 Data-Regrouping: Gummadi et.al. Suggested improving GPU performance by 

using data-partitioning technique. This technique improves GPU computation 

performance by regrouping data based on locality principle. This will make GPU 

computation more efficient [x2]. 
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