

i

DESIGNING MULTI-CORE ARCHITECTURE USING FOLDED TORUS CONCEPT TO

MINIMIZE THE NUMBER OF SWITCHES

A Thesis by

Sri RamyaChaturvedula

Bachelor of Engineering and Technology, Jawaharlal Nehru Technological University, 2009

Submitted to the Department of Electrical Engineering and Computer Science

and the faculty of the Graduate School of

Wichita State University

in partial fulfillment of

the requirements for the degree of

Master of Science

December 2011

ii

© Copyright2011 by Sri RamyaChaturvedula

All Rights Reserved

iii

DESIGNING MULTI-CORE ARCHITECTURE USING FOLDED TORUS CONCEPT TO

MINIMIZE THE NUMBER OF SWITCHES

The following faculty members have examined the final copy of this thesis for form and

content, and recommends that it be accepted in partial fulfillment of the requirement for the

degree of Master of Science with a major in Computer Science.

Abu Asaduzzaman, Committee Chair

Ravi Pendse, Committee Member

Krishna Krishnan, Committee Member

iv

DEDICATION

To the Almighty, my loving parents, grandparents, for their encouragement throughout my

studies and for incomparable advice throughout my life

v

ACKNOWLEDGEMENTS

I am grateful to my thesis advisor Dr. Abu Asaduzzaman for his support, encouragement,

and supervision. He always has the time for guidance in spite of his busy schedule and offers me

assistancewith my academics in a timely manner. I am also thankful for his great patience during

my research work.

I extend my gratitude to Dr. Ravi Pendse for his valuable advice, suggestions and

encouragement throughout my career at Wichita State University. It has been an honor to work

for him as a graduate research assistant; I learned about professional work ethics. I also thank Dr.

Krishna Krishnan for being one of my committee members and for his time and effort.

I take enormous pleasure in recognizing, with endless thanks, to all those who assisted

me directly and indirectly with my experimental research. Finally, I acknowledge WSU

CAPPLab research group and facilities for helping me validate and prepare my research work.

vi

ABSTRACT

A multi-core system provides improved performance/power ratio than a single-core one.

However, multi-core architecture suffers from thermal constraint and data inconsistency. Current

multi-core system is not adequate to increase memory-level parallelism and cache performance

due to its poor core-to-core interconnection topology. In some architecture, like MIT Raw, each

node/core has computing and switching components. Switching component of such a node

consumes power while the node is only computing and vice versa. In this paper, we propose a

design methodology to reduce the number of switches in multi-core architecture without

compromising the performance. According to this method, nodes are separated between

computing cores and network switches. Using folded torus topology, we develop a scheme to

connect the components (cores and switches) in the multi-core architecture. We use multi-core

architectures with various numbers of nodes (cores and switches) to evaluate the proposed

methodology. Using synthetic workload, we obtain the core-to-core communication delay and

total power consumption for MIT RAW, Triplet Based Architecture (TriBA), Logic-Based

Distributed Routing (LBDR), and the proposed architecture. Experimental results show that the

proposed architecture outperforms Raw, TriBA, and LBDR by cutting down the need for the

number of switches significantly. According to the results, proposed architecture reduces total

power consumption approximately by 77% and average delay by 54%. Power reduction comes

from the fact that number of switches is cut down. Average delay is decreased as each switch

provides adequate communicate channels.

vii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1

 1.1 Network Topologies...1

 1.1.1 Folded Torus Topology...2

 1.2Multi-Core Architecture..3

 1.2.1 Switches in Multi-Core Architecture ..4

 1.2.2 Raw Architecture ..6

 1.3Problem Description ...7

 1.4 Contributions ...8

 1.5 Thesis Organization ...9

2. LITERATURE SURVEY ..10

 2.1 Raw Architecture ...10

 2.2 Triplet Based Architecture ...12

 2.3 Logic Based Distributed Routing ...14

 2.4 Intra-Chip Communication ..16

 2.5 Multi-Core Performance/Power Ratio ...16

3. PROPOSED MULTI-CORE ARCHITECTURE ..18

 3.1 Node Selection ...18

 3.1.1 Selecting Switching Nodes ...19

 3.1.2 Selecting Computing Nodes ...20

 3.1.3 Selecting Switching-Computing Nodes ..20

 3.2Node Connections ...21

 3.2.1 Connecting Switching Nodes ..22

 3.2.2 Connecting Computing Nodes ..23

 3.2.3 Connecting Switching-Computing Nodes ..24

 3.3 Communication Among Nodes..25

4. EVALUATION..31

 4.1 Assumptions ...31

 4.2 Synthetic Work Load ..32

 4.3 Output Parameters ..38

 4.4 Comparison of Number of Switches with Other Architectures38

 4.5 Comparison of Power Consumption with Other Architecture39

 4.6 Comparison of Communication Delay with Other Architecture43

 4.7 Summary and Observations ...47

viii

TABLE OF CONTENTS (continued)

Chapter Page

5. CONCLUSION AND FUTURE WORK ..49

 5.1 Conclusion ..49

 5.2 Future Work ...49

REFERENCES ..50

ix

LIST OF TABLES

Table Page

1a.Communication paths for Raw and TriBA in case of 16 nodes topology33

1b.Communication paths for LBDR and proposed architectures in case of 16 nodes topology ...33

2a.Communication paths for Raw and TriBA in case of 25 nodes topology34

2b.Communication paths for LBDR and proposed architectures in case of 25 nodes topology ...34

3a.Communication paths for Raw and TriBA in case of 36 nodes topology35

3b.Communication paths for LBDR and proposed architectures in case of 36 nodes topology ...35

4a.Communication paths for Raw and TriBA in case of 49 nodes topology36

4b.Communication paths for LBDR and proposed architectures in case of 49 nodes topology ...36

5a.Communication paths for Raw and TriBA in case of 64 nodes topology37

5b. Communication paths for LBDR and proposed architectures in case of 64 nodes topology ..37

x

LIST OF FIGURES

Figure Page

1.1 Ring Network Topology ... 2

1.2 Mesh Network Topology .. 2

1.3 Folded Torus Network Topology.. 3

2.1 Raw Architecture Tile ... 11

2.2 Triple Based Architecture Design ... 13

2.3 Memory Allocation Strategy in TriBA ... 14

2.4 Architecture used to Implement LBDR .. 15

2.5 Packet Header Format ... 17

3.1 Selecting Switching Nodes ... 19

3.2 Selecting Computing Nodes and Special Nodes ... 21

3.3 Connections between Switching Nodes .. 22

3.4 Connections between Switching Nodes and Computing Nodes 23

3.5 Connections for Special Nodes ... 26

3.6 Distinguishing Different Layered Nodes .. 27

3.7 Flowchart showing the Methodology for the Proposed Architecture 30

4.1 Numbering Convention for the Nodes .. 31

4.2 Graph Comparing the Number of Switching Components ... 39

4.3 Power Analysis for 16 Nodes ... 40

4.4 Power Analysis for 25 Nodes ... 41

4.5 Power Analysis for 36 Nodes ... 41

4.6 Power Analysis for 49 Nodes ... 42

xi

LIST OF FIGURES (continued)

Figure Page

4.7 Power Analysis for 64 Nodes ... 43

4.8 Delay Analysis for 16 Nodes .. 44

4.9 Delay Analysis for 25 Nodes .. 45

4.10 Delay Analysis for 36 Nodes .. 45

4.11 Delay Analysis for 49 Nodes .. 46

4.12 Delay Analysis for 64 Nodes .. 46

1

CHAPTER 1

INTRODUCTION

1.1 Network Topologies

In everyday scenario “network” is the most general term used in the technology field.

Communication among different physical nodes is defined as Network. There exist various

topologies for having connections among these nodes. Multi-Core is such a technology where

multiple cores communicate with each other to process a job. Here each core is considered as a

node that is needed to be connected to other cores in a multi-core environment. With the

advancement of Network on Chip (technology) on-chip network architecture can be explained

through four parameters: topology, routing algorithm, flow control protocol and router micro

architecture. Topology term in networking is defined as the how the links are connected between

the nodes. Using topology of nodes all the possible paths from a particular source and

destination pair can be determined. Using Routing algorithm the best path to from a source and

destination pair can be identified. Using flow control protocol more details about the path

selected from a source and destination pair is stored. The details include message traversal of the

assigned route, when a message leaves a source node and also the time the path must be stored or

buffered for future usage. Micro architecture of a networking component analyzes all the above

parameters and uses it for network implementations.

In this we mainly concentrate on the topology parameter. A proper topology for a network is

highly necessary for a better cost-performance on the whole network. The effect of topology

while analyzing parameter is very important. Using topology of a network one can determine the

number of hops a message from a source node should traverse before reaching the destination.

2

In general networking world different topologies like bus, mesh, ring topologies are extensively

used. Figure 1.1 and Figure 1.2 shows the general ring and mesh topologies respectively.

Each topology has its own prototype for the nodes to be connected. In multi-core architecture

most of the designs have the cores connected in a mesh topology format. When these cores are

connected in a multi-core environment, networking components like switches are used for

communication among the cores. The topologies like Hypercube [1], Warmhole switching [2],

and Crossbar switching [3] already exist in multi-core architectural designs. In this thesis we are

proposing a new multi-core architectural design based on Folded Torus Topology.

1.1.1 Folded Torus Topology

Folded Torus topology is the extension of torus topology. Torus topology generally has

wrap around links. When the number of nodes increases the wrap around links between the edge

nodes becomes a drawback of torus topology. Hence, folded torus has a similar layout as torus,

in which the links are arranged physically in a folded manner to equalize wire lengths. This can

eliminate wrap around links unlike torus topology.

Figure 1.1:Ring Network Topology Figure 1.2:Mesh Network Topology

Figure 1.1 Ring Network Topology 1

1.1 Figure 1.2

Figure 1

 Mesh topology

Figure 2

3

Figure 1.3:Folded Torus Network Topology [4]

As per Figure 1.3, in folded torus topology every node has a link to its every alternate node in

both horizontal and vertical directions. In torus topology, source and destination pair will have

lower hop count which leads to lower delay and energy.

1.2 Multi-core Architecture

To obtain more processing speed, many manufacturing companies adopt these multi-core

systems in embedded systems. Multi-core systems are designed in such a way that 2 or more

cores combine and work parallel to increase the speed of processing a particular job [5-12]. This

kind of systemenables an embedded system for multitasking by having each core share a task or

application of a job. This is not possible in single-core systems. This kind of multi tasking helps

to process a job in a more efficient way. In multi-core architecture the concept of multi-core

4

processor improvises the computational capacity of the processors through parallel computing

technology[13]. Multi-core architecture shares required resources like memory to process an

application in a parallel manner. For successful and efficient processing of an application it is

necessary that each core should have sufficient resources according to their respective tasks.

Hence, design of multi-core architecture to utilize the available resources is very important. As

discussed before nowadays multi-core designs uses bus topology to connect different cores.

Designing of multi-core architecture can be done based on various components of cores in the

architecture. For example designing can be done based on memory usage of architectures. In

present days multi-core architectures adopt isomorphic architecture. [14-16].in this kind of

architecture each core will have its own first level Cache, shared second level Cache through a

bus. Also, Triplet Based Architecture [TriBA] is another kind of architecture where group of 3

cores will have common shared memory. Designs are proposed basing on the most common

problem Deadlock. Deadlock is such a situation that occurs in multi-core environment where

threads get stuck forever in a clash over access to shared resources like memory [17].

In [18] polling-transmission policy was discussed to solve the deadlock problem which occurs in

intermediate nodes of a multi-core architecture network. This algorithm uses Hypercube

topology for implementation.

Due to recent technological revolution, majority of the embedded systems are implementing

more than one core for faster and efficient computations. When implementing multiple cores in a

single chip it is very important to design the multi-core for efficient usage of chip volume. With

this recent trends, billions of transistors are integrated on the same chip possibly. With the same

capacity of chips designers are implementing multiple computing and memory cores on a single

chip. This ensures computational tasks to be performed in efficient and fastest way. To design

5

and use such kind of systems with multiple cores requires a large design space and challenges in

the research areas. This paper focuses on one of those challenges to design an efficient on-chip

communication infrastructure for the multi-cores with networking components on the chip. In

this era of technology multi-core processors are playing a very prominent role with their

computing capabilities. Multi-core architecture has become the interesting research area to

handle all the drawbacks in the present architecture like utilizing optimal space on the silicon

area of a chip and minimizing heat dissipation without compromising the computing efficiency

of multi-core processor. There are many designs proposed addressing the same. Some of them

are like RAW architecture by MIT, Triplet Based Architecture. In a multi-core architecture for

faster computational capabilities it is very much important to have efficient communication

among the cores. The components that take care about this kind of communication are switches

on a multi-core architecture. Generally multi-core architectures will have 2D mesh topology.

When comes to the network topology there are wide range of network topologies already defined

for different purposes. We are proposing a new design for multi-core architecture by

concentrating on number of switching components used in the hardware of multi-core

architecture. In this thesis we are using an already existing network topology called Folded

Torus topology for addressing some of the issues in the existing multi-core architecture.

In [19] it is proved that the Torus based topology, with wrapper around links, will have half the

network diameter. Also while accommodating the cores and switches, the bisection connections

will be 2X times the number of connections on a mesh topology. Torus topology is considered to

be highly efficient accepted topology for intra-chip network.

6

 Using that topology we are proposing a design for multi-core architecture to utilize more space

in a given mesh and have an efficient communication between the cores with minimal number of

switching components on the mesh of cores.

1.2.1 Switches in Multi-core Architecture

 It is necessary in multi-core architecture cores should pass on information to other cores

on the chip to process a single application. For the cores to communicate with each other

networking components like switches or routers are necessary. In this thesis we use only the term

switch for networking component. Switches will actually establish a communication channel

between different cores. Depending on the source and destination parameters switches will

transmit packets accordingly. Network on chip (NoC) is the famous term used in nowadays

multi-core environment. Very active research is going on the same NoC technology.

Interconnecting different cores on the same chip for efficient communication is one of the

greatest challenges of NoC. Using NoC in place of bus and ring based topologies is more

flexible, scalable and reliable [20]. In [1] it is discussed that a NoC solution which switch based,

happens to be the natural way for addressing the communication challenges that are due to

increase in the number of cores in the multi-core environment. With increase in number of cores

and usage of NoC architectures the main challenge is to improve communication efficiency

among the cores. [21] Hence, the communication efficiency can be achieved through proper

communication channel like switches. There are several routing algorithms proposed for NoC

architectures. Wormhole switching [2], NoC Router design [22], Programmable NoC

architecture [3], Hypercube-based NoC Routing algorithm [1], Logic Based Distributed Routing

algorithm [23] are several proposals in the multi-core architecture for having efficient

communication among the cores. In multi-core environment all the networking components are

7

expected to support the parallel communication patterns on demand to increase the data

throughput [22]. Considering all these parameters and all the functionalities of a networking

component in a multi-core environment, we are proposing a design based on number of switches

that are utilized in folded torus based multi-core design. In the following sections of the

document all the details about the design and other advantages of the proposed design are

explained.

1.2.2 Raw Architecture

 Raw Architecture from MIT is extensively analyzed for proposing this new design. This

architecture uses mesh topology and processes an application. It considers the concept of tiles

and each tile has a switching component, computing component and other components like cache

main memory. More details about this architecture are discussed in the next chapter. The major

disadvantage of this architecture in case of nxn mesh topology isthat there exists n
2

number of

switches and n
2

number of computing components. Having more number of switches will

increment the energy consumption. Considering this disadvantage in the following section the

Problem Description is discussed.

1.3 Problem Description

In the present designs of multi-core architectures it is observed that most of the widely

used topologies are mesh, ring and bus based topologies. Following are general topological

views of mesh and ring topologies.

These topologies have issues like High power consumption and latency. Also, due to large

number of networking components in the architecture network complexity increases. Folded

8

torus topology is identified as a better topology for having multiple links among the nodes in the

given network. It increases the reliability of the network. As the topology of a network plays a

very important role in designing multi-core architecture, the problem description of this thesis

concentrates on how to propose a most reliable network topology for multi-core environment

without compromising on computational efficiency. Also, we concentrated on how to minimize

power consumption and latency through a better design of multi-core architecture.

In this aspect we came up with an idea of using the Folded Torus topology to increase the

number of core to core connections by making some nodes as switches. This proposed design

shows that we can decrease the number of switches, network power consumption and the

latency. Following sections gives the detailed description of my work.

1.4 Contributions

 The major contributions in my thesis are:

 Reducing the number of switches in Raw like architectures using Folded Torus topology

 Developing a methodology to compare various multi-core architecture designs to analyze

performance and energy consumption. Synthetic work load is developed for different

cases.

 Collaborating to develop a simulation platform to model multi-core architectures through

the analysis that are calculated manually in this thesis.

All these contributions are discussed in detailed in the next chapters.

9

1.5 Thesis Organization

 In chapter 2, we presented some of the related architectures that are already existing and

well approved from various published journals and conference papers.

 In chapter 3, we explained the proposed multi-core architecture and the approach to

understand the methodology.

 In chapter 4, we evaluated the proposed architecture by using synthetic workload and

comparing with the selected existing architectures.

 In chapter 5, we concluded our work by briefing the entire work and suggested future

work that can be extended through this work.

10

CHAPTER 2

LITERATURE REVIEW

 There exist various kinds on network topologies in the real world scenarios.

Internetworking is also based on the network topologies. I have studied different topologies like

star, mesh, bus and ring topologies. For this proposed design mesh topology is considered and

customized using Folded Torus Topology. There are also other topologies like Hypercube

topology that was discussed in the Introduction section. Different kinds of architectures are also

studied to know the issues in the present multi-core architecture. In this chapter I would like to

discuss Raw Architecture from MIT, Triplet Based Architecture (TriBA), and the architecture

used for Logic Based Distributed Routing.

2.1 Raw Architecture

Raw architecture implements tile based design where each tile consists of a switching

component and computing component. The main goal of RAW architecture is to improve

performance over the existing architectures and provide more flexibility for the compilers of

multi-core by implementing fine-grain parallelism. The Raw Architecture Workstation (Raw) is

a simple, wire-efficient multi-core architecture that scales with increasing VLSI gate densities

[24]. Figure 2.1 shows the components of a tile that is defined in the Raw Architecture.

11

Figure 2.1: Raw Architecture Tile [25]

The tiles in this design are interconnected with several components like routers, programmable

switch, switch instruction, data-memory, ALU. Firstly, Raw architecture sees to implement fine-

grain parallelism in a more efficient way. Secondly, Raw architecture is designed to provide all

the details about the hardware system in an architecture for the software system integrated with

the architecture, such that scheduling and routing are taken care without any conflicts between

the cores for shared resources. There has been some advancements in the Raw architecture [17,

25-27] proposed by Michael Bedford Taylor. This new architecture looked into concept of

having static and dynamic networks for communication among the tiles. Static networks define a

fixed communication channel before the compile time and the compiler exactly know where to

send the message. In this static network communication each Raw tile is connected to its nearest

neighbors through a series or separate, pipelines channels[17, 25-27]. In this advancement the

behavior of the FPGA prototype is mainly taken care.

12

Also, Dynamic network communication is proposed to avoid the situations wherein the memory

requirement cannot be decided before the compilation time. It uses a header and implements

some protocols for dynamic routing between the tiles [26].

In spite of all the above advantages due to more switching components in a multi-core

architecture the heat dissipation has become the prime concern. In our proposal we are looking

into that disadvantage by decrementing the number of switching components.

2.2 Triplet Based Architecture

Triplet Based Architecture is another design model for multi-core architecture which also

looked into the drawbacks of having large number of switching components. TriBA a new idea

in multi-core architectures and a direct interconnection network (DIN), is compared with 2D

Mesh on single chip multi core architecture. TriBA consists of a 2D grid of small, programmable

processing units, each physically connected to its three neighbors so that advantageous features

of group locality can be fully and efficiently utilized for getting maximum out of an on-chip

Interconnection of cores. Cores on the same chip are connected via triplet-based hierarchical

interconnection network (THIN), which has simple topology and computing locality

characteristic [27]. TriBA basically looked at the concern where interconnected cores use the

same transmission medium. To overcome the latency due to the usage of shared medium TriBA

is proposed which follows hierarchical interconnected networks. In this architecture mechanisms

are proposed in such a way that at each level the program decides where to send the incoming

message. It decides whether to send the message to a local processor or to any other neighboring

node. Efficient routing algorithms are used for this kind of mechanism and to improve the

performance in the communication between the interconnected nodes in a network. Distributed

Deterministic routing algorithm (DDRA) is mainly implemented for TriBA. Addressing schemes

13

are used for each node at each level in the hierarchical interconnection network. As TriBA is

hierarchical architecture VLSI issues such as silicon area is compromised.

Figure 2.2:Triple Based Architecture Design [27]

As shown in the Figure 2.2, TriBA implements kind of layered architecture defining different

levels. Hence, it is difficult to implement the design in 2D mesh topology. In real word scenarios

2D mesh topology is the most widely used topology is multi-core designs. Hence, we are

proposing a design where maximum silicon area in a 2D mesh architecture is utilized with

efficient communication among the cores.

TriBA implements a different mechanism for accessing the memory for each level of cores.

There exist different memory levels depending on the type of messages each core sends.

14

Figure 2.3:Memory Allocation Strategy in TriBA [27]

As shown in figure 2.3, three nodes (cell) are connected to each other in triangular pattern in

TriBA. Each node has its local memory L1, while three nodes share a common L2 memory [25].

Prime motivation for our proposal is Raw architecture. There exist wide varieties of network

topologies. In our proposal we take Folded Torus as the base topology and implement our design

using the Folded Torus interconnection of nodes.

2.3 Logic-based Distributed Routing

It is known that 2D mesh topologies are generally used by designers of Network-on-

Chips (NoCs). In the case of irregularities in the network it is claimed that managing routing

tables as a challenging task. To overcome this complexity while dealing with the routing tables

in the switches in a multi-core architecture design, a new method is proposed known as Logic-

15

Based Distributed Routing (LBDR). In the proposed design for LBDR, 4 cores are connected to

a single switch and all switches are connected to each other.

Figure 2.4:Architecture used to Implement LBDR [23]

LBDR mechanism [23] was extended to support multiple cores per switch. Figure 2.4 shows the

topology where the LBDR is implemented and has multiple cores connected to each switch. In

the above design it is shown that 4 cores are connected to a single switch. Motivated from the

same, we proposed a new design which has multiple cores connected to the switches instead of

having switching and computing components in the same node.

16

In the existing design every core is connected to only one switch. In the proposed design each

core will be connected to minimum of 2 switches and maximum of 3 switches such that when the

core finds a switch busy or dead it takes the alternative route through another switch and

communicates with the other core.

2.4 Intra-chip Communication

The primary purpose of the switching components in a multi-core architecture

environment is to provide intra-chip communication among the multiple cores. Intra-chip

communication is defined as the communication among the computing components (cores) on a

single chip for efficient throughput. In [19] the same was discussed and efficient mechanism was

proposed. Folded Torus was taken as the basic architecture design with switching components at

each tile for the mechanism. The main aim is to provide guaranteed throughput in terms of dead-

and live-lock free and in-order data delivery, which is suitable for real-time processing

applications. It was proved that power consumption with this intra-chip communication is

efficient when compared to other designs.

This implement of three stage probe mechanism is to have intra-chip communication. The probe

can be adaptively routed back and forth by switching nodes using a backtracked routing

algorithm. It is always proven that backtracking algorithms provide efficient communication

without any failure in node-node communication. As backtracking algorithms are known to have

dead-lock and live-lock free communication, it is used to improve performance Intra-chip

communication. In this intra-chip communication pipelined circuit-switched network is used for

probe mechanism. Using circuit-switched network available path is discovered by sending three

phase probe messages between each source and destination pair. For efficient communication

17

each probe contains a header with 3 different fields. The first field in the header contains 2 bits.

There are 2 bits in the priority field, one for the interlane priority and the other for the intra-lane

priority. The interlane priority bit is processed by the wrapper in order to choose an appropriate

lane before sending the probe into the intra-chip network. The intra-lane priority bit is used by a

switch to resolve the conflict that arises when more than one probe competes for the same output

port at the switch in the circuitsetup phase.

Figure 2.5:Packet Header Format [19]

As shown in the Figure 2.5 the other fields indicate Source address and destination addresses.

2.5 Multi-Core Performance/Power Ratio

Performance/power ratio is used to measure the effectiveness of a system in terms of

performance (like mean delay per task) and total power consumption. Multi-core modeling and

simulation techniques are presented in [28, 29] to analyze the impact of various components (like

cache) on performance/power ratio. We apply some of those techniques to collect the results and

evaluate our proposed torus-based multi-core architectures

18

CHAPTER 3

PROPOSED MULTI-CORE ARCHITECTURE

In this proposed design main goal is to reduce the number of switching components and

thereby reducing the power consumption and heat dissipation. The design is mainly based on

Folded Torus based network topology. In present multi-core architectures each core consists of a

switching component and a computing component. Thus if nxn mesh topology is considered

there exists n
2
 switching components and n

2
 computing components. In this proposed design,

basing Torus topology a novel design is implemented for multi-core architecture to reduce the

number of switches and utilize maximum silicon area on a chip. Considering nxn mesh topology

every third node in a column or a row is considered as switch, such that reducing the number of

switches from n
2
 to considerable number of switches by following an algorithm. All the

remaining number of nodes is considered as computing components or cores. In this design it is

made sure that all the cores have equal number of switching components connected to have

proper communication among the cores.

3.1 Node Selection

In the Proposed design unlike Raw architecture, considering the nxn mesh topology a few

nodes are considered to be the switches and a few considered to be exclusively computing nodes

and very few nodes are considered to be a tile like a nodes in Raw Architecture. The node

selection criteria are explained in a very detailed way in the following sections.

19

3.1.1 Selecting Switching Components

In a given nxn topology starting from the first node, every node after 2 nodes are

considered to be the switches. The same pattern is followed both in row wise and column wise.

Following diagram depicts the format of selecting the switches in the case 8x8 mesh topology.

In Figure 3.1, the solid nodes indicate the switching nodes. Those nodes exclusively behave like

switches. As discussed, the first node is a switch and again the fourth node in that particular

column and row are switches. The same pattern is followed. Hence, the distance between 2

switches would be 3 units, considering the distance between 2 nodes is 1 unit. After all one of the

main goals of this thesis is to reduce the number of switching components, we developed an

algorithm to find the number of switching components in any kind of given mesh topology. In

the following sections other selection criteria are discussed.

Figure 3.1:Selecting Switching Nodes

20

3.1.2 Selecting Computing Components

There is no big logic for selecting computing components. Except very few nodes the

remaining nodes other than switches are considered to be the computing components. In the

Node Selection figure the non filled nodes are computing components.

3.1.3 Selecting Switching-Computing Components

In this design the connection between each node is restricted to either in vertical or

horizontal directions. There exist no connections which are diagonal. While connecting the

nodes,a situation may occur where layers would form and does not connection between each

layer. Hence, there comes the necessity of having a node common to those layers as both

switching and computing component as in Raw Architecture. These nodes help in having full

connectivity throughout the mesh. Figure 3.2 shows the connections and the special nodes that

are discussed in this section.

21

In the Figure 3.2 the striped nodes are the special nodes that are used to connect 3 different

layers in case of 8x8 mesh topology. The details about the connections between are discussed in

the later sections.

3.2 Node Connections

The important part of this proposed design is the way the nodes are connected and the

way they communicate for efficient processing of applications. The idea behind the Folded Torus

Network Topology is used while defining the connections among nodes. It is important in any

network topology to have proper connectivity among the switches. In multi-core architecture

switches are the major components which synchronize all the computation data of the cores and

provide a final result by collaborating with all the results obtained from each core involved in a

process. Cores will not be able to communicate with their neighboring cores without networking

Figure 3.2: Selecting Computing Nodes and Special Nodes

22

components associated with them. The proposed design ensures that every switch is connected to

every other switch using different routes.

3.2.1 Connecting Switching Nodes

While defining connections between switches it is considered that every switch will have

a link to its adjacent switch at a distance of 3 units (if distance between each node is 1 unit).

Figure 3.3 shows how the connections exist among the switches.

Figure 3.3: Connection between Switching Nodes

Figure 3.3 also has the special nodes just to ensure that there exists a full connectivity. All the

computing nodes communicate with each only through the switches. Hence, all the switches are

ensured to have full connectivity to any other switch in the network.

23

3.2.2 Connecting Computing Nodes

As mentioned in the previous sections, folded torus network topology idea is used to

connect computing nodes and switching nodes. In folded torus topology each node will have a

connection to a node at a distance of 2 units. Similarly in this proposed architecture each

computing component will have a link to a switch that is at a distance of 2 units and at a distance

1 unit.

Figure 3.4: Connections between Switching Nodes and Computing Nodes

In Figure 3.4 the nodes in the square box (higlighted) is an example of nodes having connections

with the switches. Computing component will have links only to the switches. They will not

have any link to other computing components.

24

3.2.3 Connecting Switching-Computing Nodes

As discussed earlier there are very few which acts as both computing and switching

nodes. These nodes will have a direct link to its adjacent node at a distance of 1 unit. In the

Figure 3.4 the dotted lines between the striped nodes and normal nodes shows the connection

between the special nodes and computing nodes.

All the connections among the nodes in the proposed design can be summarized using the

following algorithm

Connections are made using the following algorithm:

 A connection to every switch adjacent to core

 Starting from the initial node every third node in a column or a row is considered to be

the switch

 Connection to a switch at a distance of 2 physical units until the number of connections

to each core reaches 3

 There exists no core-core connection

 Also every switch is connected to its nearest neighboring switches

 Every node is identified with a proper location id on the network

 We can find all switches connected to each other in a cluster form.

 Exceptions for some nodes in making them as switching components to have all the

switches in the network have proper communication

 Identifying those nodes according to the location.

 Every core has equal of number switches connected to have uniform resources available

to each core.

25

Number of switches without exceptions in any kind of nxn mesh topology can be calculated

using the following loop sequence.

i number of rows in a mesh topology

j:number of columns in a mesh topology

k=0; //switch counter

for (i=1;i< number of nodes in a row;i++)

{

for(j=1;j<number of nodes in a column;j++)

{

 Counter=i%3;

if (j%3==Counter)

{

sw[k] =a[i][j];

 sw= sw+1; //counter for number of switches//

 k++;

}

}

}

“Sw” variable gives the number of switches that can be used in a given topology.

3.3 Communication among Nodes

As mentioned earlier, it is important in any network topology to have proper connectivity

among the switches. In multi-core architecture switches are the major components which

synchronize all the computation data of the cores and provide a final result by collaborating with

26

all the results obtained from each core involved in a process. Cores will not be able to

communicate with their neighboring cores without networking components associated with

them. The proposed design ensures that every switch is connected to every other switch using

different routes.Appropriate routing algorithms needs to be implemented for proper and efficient

routing between the switches. Having different routes to all the switches help to have a deadlock

free routes by using different algorithms.

Figure 3.5: Connections for Special Nodes

Figure 3.5 depicts the part of core-switch connections. Any core will have a connection to its

adjacent switch and to a switch at a distance of 2 units. As noticed before all the non filled nodes

in the above topology are considered to be computing components and each core will have a

0

,

0

0

,

0

27

minimum of three connections to switches. This proposed design takes care that all the

computing components have the uniform amount of network resources for efficient

communication with the other computing components in the given architecture. All the nodes in

the given nxn network are efficient used in the proposed design.

Figure 3.6: Distinguishing Different Layered Nodes

The Figure 3.6 shows all the different layers in the proposed design. All the switches which have

the difference of 2 units between their positions belong to the same layer. In 8X8 mesh network

there comes 3 layers. All the nodes of same layer are indicated with the same pattern in Figure

3.6. All the solid nodes indicate layer 1 nodes. As shown before striped nodes are the exception

nodes to connect the different layered switches. Large checker patterned and 80 percent solid

patterned nodes indicates layer 2 and layer 3 nodes respectively. The same layered nodes are

28

identified by the column they are present in the network. Following loop sequence is used to

identify the switches of the same layer.

i: number of rows in a mesh topology

j:number of columns in a mesh topology

k=0; //switch counter

for (i=0;i< number of nodes in a row;i++)

{

for(j=0;j<number of nodes in a column;j++)

{

 Counter=i%3;

if (j%3==Counter)

{

sw[k] =a[i][j];

 sw= sw+1; //counter for number of switches//

 k++;

 if (Counter==0)

 //sw[k] belongs to layer 1 with solid filling nodes

 if(Counter==1)

 //sw[k] belongs to layer 2 with checks filling nodes

 if(Counter==2)

 //sw[k] belongs to layer 3 with light dotted filling nodes color

 }

}

}

29

If a switch in a particular layer has to communicate with another switch in a different layer it has

communicate through the special node that is indicated with striped pattern. Exception acts as

both switching component and computing as in RAW architecture. Basically it acts as a tile in

the RAW architecture. Routing algorithms can be implemented depending on the layered

structure and the position of the special nodes in the mesh. The proposed design is mainly

focused on 8X8 mesh topology and algorithm is generated for annxn mesh network. When

compared with other existing architecture this design has the capability of utilizing more silicon

area on a given chip with efficient communication among the multiple cores.

Generally it is said that one of the factors that is taken into consideration while building a

network is the number of alternate routes for a given source and destination pair. In the proposed

design it is assured each source and destination pair of switches has multiple routes. Hence,

while defining routing algorithms one can easily find many ways to define a route either

statically or dynamically. There are many algorithms proposed previously for both static and

dynamic networks in multi-core architecture.

Raw Architecture Workstation also focused on same kind of discussion while proposing the

design decisions. In [17, 25-27], both static network design and dynamic network design are

strongly observed for the RAW architecture and new improvements are proposed for the RAW

architecture.

The nodes with stripes indicate the exceptional switches and those are used to connect the

switches belonging to different layers shown in Figure 3.6. Through this kind of connection the

full connectivity is achieved among cores which will improve communication efficiency.

30

Read N, M

i=0, k=0

i< N

j = 0

j < M

Counter = i%3

j%3 =

Counter

j++

i++

STOP

 False

 False

 False

 True

 True

Sw[k]=a[i][j]
Sw=Sw+1
k++

 N indicates # of Rows

M indicates # of Columns

START

Figure 3.7: Flowchart Showing the Methodology for the Proposed

Architecture

31

CHAPTER 4

EVALUATION

4.1 Assumptions

For each design among Raw, TriBA, design used to implement LBDR and proposed

design all the nodes are numbered rowwise for Raw and proposed design. The nodes in TriBA

are numbered from top to bottom in triplets. For convenience the nodes in the design that is used

for LBDR are numbered in a sequential manner in multiples of 5. We considered 16 nodes, 36

nodes and 64 nodes to calculate power consumption. While calculating results for each of nxn

nodes 5 cases are considered. Each case shows the number of units of power consumption when

one core tries to communicate with other core in the multi-core architecture for each of the

designs that are analyzed in this paper.

Following figure shows an example of the numbering convention of nodes followed for Raw

architecture and proposed design for calculating results.

1 2

5 6

3

7 8

9

10

14

11 12

15

4

13 16

Figure 4.1: Numbering Convention for the Nodes

32

The Figure 4.1 shows a 4x4 mesh which contains 16 nodes. With the increase in number of

nodes the nodes are renumbered as per rows and columns in the mesh. While evaluating the

power consumption and communication delay are calculated for different cases when cores at

random places in a given topology are communicating. It is assumed that computing components

consume more power when compared to switching components in a multi-core environment. For

Raw and TriBA designs it is considered that all the nodes have both switching and computing

components. Hence, the power consumption by each in the path is 3 units. For switching

component alone power consumption is considered as 1 unit. As discussed power consumption

for computing component alone is considered as 2 units (>1). Thus, having all assumptions in

place and considering different cases evaluation of new design is explained in the following

sections.

4.2 Synthetic Work Load

In this section, all the different cases for each kind of topology of Raw, TriBA, LBDR

and proposed are tabulated. These tables are used for evaluation of power consumption and

communication delay for the 4 architectures.

Following table indicates has 6 columns and 5 rows. The first column indicates the case

numbers. The second column indicates the source and destination nodes for that particular case.

The other columns indicate the node numbers in each of the architectures, which a packet has to

traverse from a source to destination. As assumed for Raw and TriBA architectures all the nodes

are considered to have switching component and computing component. But in case of LBDR

and Proposed the symbol “sw” differentiates the core node and computing node. The node with

“sw” beside it is considered to be the switching node. And accordingly all assumptions are

considered while evaluating.

33

Table 1a: Communication paths for Raw and TriBA in case of 16 nodes topology

Communication paths for 16 Nodes

 Source-Destination Raw TriBA

Case 1 Node 2 – Node 15 2,3,7,11,15 2,4, 6, 13 ,15

Case 2 Node 3- Node 14 3,2,6,10,14 3,2,4,6,13,14

Case 3 Node 7 – Node 15 7,11,15 7,8,6,13,15

Case 4 Node 2 – Node 10 2,6,10 2,4,5,10

Case 5 Node 8 – Node 14 8,12,16,15,14 8,6,13,14

Table 1b: Communication paths for LBDR and Proposed Architectures in case of 16 nodes

topology

Communication paths for 16 Nodes

 Source-Destination LBDR Proposed

Case 1 Node 2 – Node 15 2,1(sw),6(sw),11(sw),15 2,1(sw),13(sw) ,15

Case 2 Node 3- Node 14 3,1(sw),6(sw),11(sw),14 3,1(sw),13(sw),14

Case 3 Node 7 – Node 15 7, 6(sw),11(sw),15

7,11(sw),15

Case 4 Node 2 – Node 10 2,1(sw),6(sw),10(sw) 2,6(sw),10

Case 5 Node 8 – Node 14 8,6(sw),11(sw),14 8,4(sw),16(sw),14

Tables 1a and 1b show the node-node communication in case of 16 nodes topologies for all the 4

architectures

34

Table 2a:Communication paths for Raw and TriBA in case of 25 nodes topology

Communication paths for 25 Nodes

 Source-Destination Raw TriBA

Case 1 Node 2 – Node 24 2,7,12,17, 22,23, 24 2,4,5,10,11, 22,24

Case 2 Node 3- Node 23 3,8,13,18,23 3,2,4,5,10,11,22, 23

Case 3 Node 8 – Node 24 8,13,18,23, 24 8,6,5,10,11, 22,24

Case 4 Node 2 – Node 20 2,7,12,17,18,19,20 2,3,7,19,20

Case 5 Node 9 – Node 23 9,14,19, 24,23 9,8,6,5,10,11, 22,23

Table 2b: Communication paths for LBDR and Proposed Architectures in case of 25 nodes

topology

Communication paths for 25 Nodes

 Source-Destination LBDR Proposed

Case 1 Node 2 – Node 24 2,1(sw),21(sw),24 2,7(sw),22(sw) ,24

Case 2 Node 3- Node 23 3,1(sw),21(sw),23 3,13(sw),23

Case 3 Node 8 – Node 24 8,6(sw),1(sw),21(sw),24 8,7(sw),22(sw),24

Case 4 Node 2 – Node 20 2,1(sw),6(sw),11(sw),16(sw),20

2,7(sw),10(sw),20

Case 5 Node 9 – Node 23 9,6(sw),1(sw), 21(sw), 23 9,10(sw), 5(sw),23

Tables 2a and 2b show the node-node communication in case of 25 nodes topologies for all the 4

architectures.

35

Table 3a: Communication paths for Raw and TriBA in case of 36 nodes topology

Communication paths for 36 Nodes

 Source-Destination Raw TriBA

Case 1 Node 2 – Node 35 2,8,14,20,26,32,33,34,35 2,4,6,13,15,31,33,35

Case 2 Node 3- Node 34 3,9,15,21,27,33,34 3,7,9,19,20,34

Case 3 Node 9 – Node 35 9,15,21,27,33, 34,35 9,19,20,24,35

Case 4 Node 2 – Node 30 2,8,14,20,26,27,28,29,30 2,4,6,13,14,28,30

Case 5 Node 12 – Node 34 12,18,24,30,36, 34 12,14,15,17,18,20, 34

Table 3b: Communication paths for LBDR and proposed architectures in case of 36 nodes

topology

Communication paths for 36 Nodes

 Source-Destination LBDR Proposed

Case 1 Node 2 – Node 35 2,1(sw),21(sw),26(sw),31(sw),35 2,8(sw),11(sw),29(sw),
35

Case 2 Node 3- Node 34 3,1(sw),21(sw),26(sw),31(sw), 34 3,15(sw),33(sw),34

Case 3 Node 9 – Node 35 9, 6(sw),26(sw),35

9,11(sw),29(sw),35

Case 4 Node 2 – Node 30 2,1(sw),21(sw), 26(sw),30 2,8(sw),26(sw),29(sw),
30

Case 5 Node 12 – Node 34 12,11(sw),31(sw) ,34 12,18(sw), 36(sw), 34

Tables 3a and 3b show the node-node communication in case of 36 nodes topologies for all the 4

architectures

36

Table 4a:Communication paths for Raw and TriBA in case of 49 nodes topology

Communication paths for 49 Nodes

 Source-Destination Raw TriBA

Case 1 Node 2 – Node 48 2,9,16,23,30,37,44,45,46,4
7,48

2,4,5,12,25,26,48

Case 2 Node 3- Node 47 3,10,17,24,31,38,45,46,47 3,2,4,5,10,12,25,26,46,47

Case 3 Node 10 – Node 48 10,17,24,31,38,45,46,47,48 10,12,25,26,26,46,48

Case 4 Node 2 – Node 42 2,3,4,5,6,7,14,21,28,35,42 2,4,5,10,11,22,23,40,42

Case 5 Node 13 – Node 47 13,12,19,26,33,40,47 13,14,12,25,26,46,47

Table 4b: Communication paths for LBDR and proposed architectures in case of 49 nodes

topology

Communication paths for 49 Nodes

 Source-Destination LBDR Proposed

Case 1 Node 2 – Node 48 2,1(sw),6(sw),11(sw),41(sw)
,46(sw),48

2,22(sw),43(sw),46(sw)
,48

Case 2 Node 3- Node 47 3,1(sw),6(sw),11(sw),16(sw),
41(sw),46(sw),47

3,4(sw),7(sw),28(sw),
49(sw),47

Case 3 Node 10 – Node 48 10,6(sw),11(sw),16(sw),41(sw),
46(sw),48

10,17(sw),38(sw),
41(sw),48

Case 4 Node 2 – Node 42 2,1(sw),6(sw),11(sw),16(sw),
41(sw),42

2,4(sw),7(sw),28(sw),
49(sw),42

Case 5 Node 13 – Node 47 13,11(sw),31(sw),36(sw),
46(sw),47

13,12(sw),33(sw),47

Tables 4a and 4b shows the node-node communication in case of 49 nodes topologies for all the

4 architectures

37

Table 5a: Communication paths for Raw and TriBA in case of 64 nodes topology

Communication paths for 64 Nodes

 Source-Destination Raw TriBA

Case 1 Node 2–Node 63 2,10,18,26,34,42,50,58,59,60,
61,62,63

2,4,6,15,31,33,61, 63

Case 2 Node 3-Node 56 3,4,5,6,7,8,16,24, 32,40,48,56 3,2,4,6,13,14,28,30,
55,56

Case 3 Node 12–Node 63 12,13,14,15,23, 31,39,47,55,63 12,14,15,31,33,61,63

Case 4 Node 2–Node 56 2,10,18,26,34,42,50,51,52,53,
54,55,56

2,4,6,13,14,28,30,55,
56

Case 5 Node 15 –Node 62 15,23,31,39,47,55,63,62 15,31,33,61,62

Table 5b: Communication paths for LBDR and proposed architectures in case of 64 nodes

topology

Communication paths for 64 Nodes

 Source-Destination LBDR Proposed

Case 1 Node 2 – Node 48 2,1(sw),6(sw),11(sw),16(sw),
41(sw),51(sw),61(sw),63

2,4(sw),7(sw),31(sw),
55(sw), 63

Case 2 Node 3- Node 47 3,1(sw),6(sw),11(sw),16(sw),
41(sw),51(sw),56

3,4(sw),28(sw),52(sw),
55(sw),56

Case 3 Node 10 – Node 48 12,11(sw),16(sw),41(sw),51(sw),
61(sw),63

12,10(sw),34(sw),58(sw),
61(sw),63

Case 4 Node 2 – Node 42 2,1(sw),6(sw),11(sw),16(sw),
41(sw),51(sw),56

2,4(sw),7(sw),31(sw),
55(sw),56

Case 5 Node 13 – Node 47 15,11(sw),16(sw),41(sw), 51(sw),
61(sw),62

15,16(sw),40(sw),
64(sw),62

Tables 5a and 5b show the node-node communication in case of 64 nodes topologies for all the 4

architectures.

All the above tables are used to evaluate and compare the performance of Proposed architecture

with the existing architectures.

38

4.3 Output Parameters

As mentioned in the assumption section, while evaluating power consumption, the power

consumed by the switch is considered to be less when compared with power consumed by the

core node. The logical reason for this kind of assumption is the basic behavior of a computing

component and switching component. When a packet arrives a switching component it will just

check the source and destination fields in a packet header and some other small parameters like

checksum to check if it is a valid packet or not. While a core checks the actual message and

processes the whole detail of the packet. It will certainly consume more energy until the

particular task is completed. While the switching component just checks the header and it will

not bother about the details of the data that is transferred between source and destination nodes.

Hence, if power consumption by a switching component is considered to be 1 unit, then the

power consumption by a computing component is certainly greater than 1 (>1). Hence, it is taken

as 2 units for computing component which is the next highest integer. The following sections

show the evaluation parts using the above output parameters.

4.4 Comparison of Number of Switches

In this section of results the number of switches required to have full connectivity among

cores are compared for all the analyzed designs in multi-core architecture. Proposed design is

compared with Raw architecture, TriBA and design used to implement LBDR. From the graph in

Figure 4.2, it can be analyzed that the proposed design requires less number of switches when

compared with Raw and TriBA. But, when compared with the design that is used to implement

LBDR, it requires more number of switches. Inspite of this drawback it can be seen in the next

sections that the power consumption and communication delay is efficient in the proposed design

than the latter.

39

Figure 4.2: Graph Comparing the Number of Switching Components

Also, the main advantage of the proposed methodology over the other architectures that is used

for LBDR is all the 4 cores are connected to only a single switch and if the switch goes bad all

the cores will lost connectivity with the remaining cores. In case of proposed design it is taken

care that each core is connected to minimum of 2 switches which provides alternate routes when

one switch goes bad. And in most of the cases the computing components are connected to more

than 2 switches.

4. 5 Comparison of Power Consumption

As per [30] there are 2 key requirements for the designers of multi-core architecture. The

first requirement is network power, which is the amount of power consumed by the network

nodes while they are up and running. Second requirement that the designers should consider

while designing the multi-core architecture is Latency. Details about latency are described well

in the next section.

40

 Below is the graphical representation of the calculated results for power consumption in each

case.

Figure 4.3:Power Analysis for 16 Nodes

The graph in Figure4.3, indicates that the power consumption in case of proposed architecture is

less when compared to other 3 architectures. When calculated the bars in the graph indicates the

exact number of units of power consumed for each design for 16 nodes.

Similarly power consumption is calculated for 25 nodes,36 nodes, 49 nodes and 64 nodes.

Following graphs shows the comparison and values for each combination.

41

Figure 4.4:Power Analysis for 25 Nodes

The graph in Figure4.4, indicates the power consumption analysis for the selected 3 architectures

and the proposed architecture in case of 25 nodes topology in each architecture.

Figure 4.5:Power Analysis for 36 Nodes

42

The graph in Figure4.5, indicates the power consumption analysis for the selected 3 architectures

and the proposed architecture in case of 36 nodes topology in each architecture.

Figure 4.6:Power Analysis for 49 Nodes

The graph in Figure4.6, indicates the power consumption analysis for the selected 3 architectures

and the proposed architecture in case of 49 nodes topology in each architecture.

Figure 4.7: Power Analysis for 64 Nodes

43

The graph in Figure4.7, indicates the power consumption analysis for the selected 3 architectures

and the proposed architecture in case of 25 nodes topology in each architecture.

Thus after going through all the graphs it can be observed that the power consumption in all the

cases for all kinds of topologies is more efficient for proposed design when compared with

remaining 3 architectures.

4.6 Comparison of Communication Delay

 As described in the previous results section, in this section of results communication delay is

calculated for different cases when cores at random places in a given topology are

communicating. As discussed in the introduction section latency is a term which refers to the

delay for a message to reach its destination while it traverses the path between the source and

destination. Hence, it can be inferred that the less number of hops a message traverses from

source to destination the less would be delay. Therefore in the section of results communication

delay is measured in terms of number of hops required for a core to communicate with the other

core in each of the analyzed cases. 5 cases are considered for 16, 36, 64 node networks. In each

case all the values of the obtained for the proposed design are compared with Raw, TriBA and

with the design used for LBDR. Values obtained are the number of hops. Following graphs show

the comparison of the same. The cases considered for communication delay are same as the cases

that are considered for power consumption.

44

Figure 4.8: Delay Analysis for 16 Nodes

Figure 4.8, shows the number of hop counts required for a message between 2 different cores on

the same chip in case of 3 selected architectures and the proposed architecture. As discussed

before hop count determines the delay for a message to traverse from a source core to a

destination core. The graph in Figure4.8, indicates the delay analysis for 16 nodes topology of all

the 4 architectures.

45

Figure 4.9:Delay Analysis for 25 Nodes

The graph in Figure4.9, indicates the delay analysis for 25 nodes topology of all the 4

architectures.

Figure 4.10: Delay Analysis for 36 Nodes

46

The graph in Figure4.10, indicates the delay analysis for 36 nodes topology of all the 4

architectures.

Figure 4.11: Delay Analysis for 49 Nodes

The graph in Figure4.11, indicates the delay analysis for 49 nodes topology of all the 4

architectures.

Figure 4.12:Delay Analysis for 64 Nodes

47

The graph in Figure4.12, indicates the delay analysis for 64 nodes topology of all the 4

architectures.

From the above results it can be concluded that the communication delay in case of the proposed

design is less when compared with remaining 3 designs in multi-core architecture.

4.7 Summary and Observations

 From the above evaluations we can summarize that proposed architecture performs better

than the other 3 selected architectures. After analyzing all the available values that are used for

evaluation it is observed that the power consumption in case of proposed architecture is

approximately 77% lesser than the Raw architecture from MIT in case of 64 nodes mesh

topology. Similarly, it is observed that the communication delay in case of proposed architecture

is 54% lesser than the communication delay for Raw architecture from MIT. The comparison in

terms of percentage is calculated by summation of all the available values in case of each

architecture and by calculating the difference ratio. Hence, it can be analyzed that proposed

architecture performs better than the other similar architectures without compromising the

computational efficiency.

The following table summarizes the impact of the proposed architecture on number of switches,

power consumption and communication delay when compared with the selected architectures.

The percentage is calculated by considering the summation of the values that are obtained only

for 64 nodes topologies for all the architectures.

48

Table 6: Comparison of Proposed Architecture with Raw, TriBA, and LBDR

 RAW TriBA LBDR

Number of Switches (+) 62.5 (+) 62.5 (-) 50

Power Consumption (+)77 (+) 67 (+)17

Communication Delay (+) 54 (+)31 (+) 29

49

CHAPTER 5

CONCLUSION AND FUTURE WORK

We hope the discussion presented in the thesis motivates the interested scholars into considering

research in the challenging but prosperous area of multi-core systems. Multi-core architecture is

the future of all modern computing areas from server to desktop to embedded environments.

With the appropriate architecture, the potential of multi-core systems can be enormous. Our

contributions lead to solutions that overcome the disadvantages due to current poor core-to-core

communication and the presence of caches in multi-core. In this chapter, we conclude our work

and offer a list of possible future extensions of this work.

5.1 Conclusion

It is proven that multi-core architecture provides better performance/power ratio suitable

for real-time applications. However, current multi-core system is not suitable to decrease power

consumption and increase memory-level parallelism due to the wasteful core-to-core

interconnection topology. For example, each node/core in MIT Raw architecture has computing

and switching components. Computing component of such a node consumes power while the

node is working (only) as a switching component and vice versa. Moreover, due to the presence

of multiple level-1 caches (each core has its own private cache) multi-core architecture suffers

from data inconsistency, power consumption, and heat dissipation.

In this paper, we propose a multi-core design methodology to reduce the number of switches

without any negative impact on the performance. According to this method, nodes are separated

50

between computing cores and network switches. However, there are some special nodes

(computing/switching nodes) with dual functionalities. Using folded torus concept, we develop

an algorithm to determine the computing cores and network switches and how to connect them

(cores and switches) in the multi-core architecture. Multi-core architectures with various

numbers of nodes (cores and switches) are used to evaluate the proposed methodology. We

obtain the core-to-core communication delay and total power consumption for MIT Raw, Triplet

Based Architecture (TriBA), Logic-Based Distributed Routing (LBDR), and the proposed

architecture using synthetic workload. In addition, we collaborate with other students to develop

a simulation platform for multi-core systems.

According to the experimental results, the proposed architecture outperforms Raw, TriBA, and

LBDR by cutting down the number of switches significantly. Average delay is decreased due to

the fact that each switch provides adequate communication channels. Total power consumption

is reduced as the number of switches is cut down. Based on the results, proposed architecture

may reduce the total power consumption by up to 77% and average delay by up to 54%. It is also

noted that the communication is more reliable in the proposed architecture because each

computing core is connected to multiple switches.

5.2 Future Extensions

Our thesis contributions including the design methodology to reduce the number of

switches in multi-core architectures can be extended to cope with the following important

research areas.

51

 Efficient routing algorithms for multi-core systems: Develop routing tables for the

switches and propose efficient routing algorithms for multi-core systems for reliable

communication with minimal delay.

 Multi-core modeling and simulation platform support: Modeling and simulation

platforms are important to analyze multi-core systems. Proposed methodology can be

extended to assist developing and/or evaluating multi-core modeling and simulation

platforms.

 Evaluate core allocation strategies in multi-core: Effective core allocation in multi-core

architecture may significantly reduce heat intensity of a multi-core chip. Proposed

methodology can be extended to measure the impact of various core allocation strategies

on power consumption and heat dissipation of multi-core architecture.

52

REFERENCES

53

LIST OF REFERENCES

[1] Chatti, Majed; Yehia, Sami; Timsit, Claude; Zertal, Soraya; 2010 International

Conference on High Performance Computing and Simulation (HPCS), page(s): 623–630.

DOI: 10.1109/HPCS.2010.5547065.2010.

[2] Jin Liu; Delgado-Frias, J.G.; Xiaofeng Wang; “A Novel Analytical Model for Wormhole

Switching Network on Chip with Adaptive Routing” , 2010 53rd IEEE International

Midwest Symposium on Circuits and Systems (MWSCAS), page(s): 733–736.

DOI: 10.1109/MWSCAS.2010.5548715. 2010.

[3] Freitas, H.C.; Santos, T.G.S.; Navaux, P.O.A.; “Design of programmable NoC router

architecture on FPGA for multi-cluster NoC” Electronics Letters Volume: 44, Issue:

16,page(s): 969–971. DOI: 10.1049/el:20080854. 2008.

[4] Li-ShiuanPeh, Stephen W. Keckler, and SriramVangal; “On-Chip Networks for

Multicore Systems”; Springer Science+Business Media, LLC 2009,page(s) 35-71. doi:

10.1007/978-1-4419-0263-4. 2009.

[5] D.K. Every. “IBM’s Cell Processor: The next generation of computing”.Shareware

Press, 2005, http://www.mymac.com/fileupload/CellProcessor.pdf (accessed in October

2011).

[6] S. Rader, J. Corleto-Mena, N. Marshall, et al. “Mobile Extreme Convergence: A

Streamlined Architecture to Deliver Mass-Market Converged Mobile Devices”;

Freescale Semiconductor.2005.

[7] P. Ranganathan, S. Adve, and N.P. Jouppi. “Reconfigurable Caches and their

Application to Media Processing.” ISCA/ ACM, page(s) 214–224, Vancouver,

Canada. 2000.

[8] P. Reed, M. Alexander, et al (Motorola). “A 66-MHz Configurable Secondary

Cache Controller with Primary Cache Copy-back Support”. IEEE-1992, page(s) 16-

17. 1992.

[9] V. Romanchenko. “Evaluation of the multicore processor architecture Intel core:

Conroe”, Kentsfield, Digital-Daily.com. 2006.

[10] T. Tian. Intel Corp. “Effective Use of the Shared Cache in Multicore Architectures”.

Dr. Dobb's Portal, 2007.

[11] Q. Xu and P.J. Teller. Unified vs. split TLBs and caches in shared-memory MP

systems. 9th International Parallel Processing Symposium page(s) 398. 1995

54

 [12] Manira S. Rani “An Efficient and scalable core allocation strategy for Multi-core

systems”, Thesis in Masters of Science, Florida Atlantic University, May, 2011.

[13] Jing-Mei Li; Ping Jiao; Chao-GuangMen; “The Heterogeneous architecture of Multi-

Core research and design” , MASS '09. International Conference on Management and

Service Science , 2009.doi: 10.1109/ICMSS.2009.5302477 Publication Year: 2009,

page(s): 1 – 6. 2009.

[14] McNairy C, Bhatia R. Montecito: “A Dual-core, Dual-thread Itanium

Processor” [J]. IEEE Micro, 25(2): 10-20.2005.

[15] Intel® Multi-Core Processor. 2011.

www.intel.com/software/enterprise, (accessed in September, 2011).

[16] Intel_ Core™ Microarchitecture. 2011.

www.intel.com/Multi-Core, (accessed in September, 2011).

[17] Bryan O'Sullivan, Don Stewart, and John Goerzen; “Real World Haskell”. 2011.

 http://book.realworldhaskell.org/read/concurrent-and-multicore-programming.html.

[18] “An Effective Approach for Multicast on Multi-core Architecture “Yuxin Wang; Liye

Yuan; He Guo; XinzhongHui; Yuansheng Yang; Scalable Computing and

Communications; Eighth International Conference on Embedded Computing, 2009.

SCALCOM-EMBEDDEDCOM'09, page(s): 37 – 41. doi: 10.1109/EmbeddedCom-

ScalCom.2009.17.2009.

[19] Phi-Hung Pham; Phuong Mau; Chulwoo Kim; “A 64-PE Folded-Torus Intra-chip

Communication Fabric for Guaranteed Throughput in Network-on-Chip Based

Applications “ , Custom Integrated Circuits Conference, 2009. CICC '09. IEEE

doi:10.1109/CICC.2009.5280748, page(s): 645 – 648. 2009.

[20] K. C. Chang, J. S. Shen and T. F. Chen, ”Evaluation and Design Trade-offs between

Circuit-Switched and Packet-Switched NOCs for Application-Specific SOCs”, Design

Automation Conference, pp. 143-148,July 2006.

[21] Prototype Design of Hybrid Multi-Core Architecture for Real-Time Application

Computer Engineering and Technology (ICCET), 2010 2nd International Conference on

,Vol: 1 doi: 10.1109/ICCET.2010.5486080, page(s): V1-404 - V1-408. 2010.

[22] Yaghini, P.M.; Eghbal, A.; Pedram, H.; Zarandi, H.R.; Parallel, “Asynchronous NOC

Router Design” Distributed and Network-Based Processing (PDP), 2010 18th Euromicro

International Conference on, doi: 10.1109/PDP.2010.21, page(s): 540 – 545. 2010.

[23] Rodrigo, S.; Medardoni, S.; Flich, J.; Bertozzi, D.; Duato, J.; “Efficient implementation

of distributed routing algorithms for NoCs Computers & Digital Techniques, IET

Volume: 3, Issue: 5, doi: 10.1049/iet-cdt.2008.0092, page(s): 460-475.2009.

55

[24] Raw Architecture Workstation. 2011.

http://groups.csail.mit.edu/cag/raw/purpose, (accessed in April, 2011).

[25] Michael B. Taylor, Walter Lee, et al.; “Tiled Multicore Processors”; Springer

Science+Business Media, LLC.doi: 10.1007/978-1-4419-0263-4, pp.1-34.2009.

[26] Michael Bedford TaylorA.B., “Design Decisions in the Implementation of a Raw

Architecture Workstation”, Dartmouth College 1996.Masters in science, Massachusets

Institute Of Technology. 2011.

[27] Haroon-Ur-Rashid; Shi Feng; JiWeixing; “Triplet Based Multi-core Interconnection

Network and its Computational Efficiency”, Computer and Information Science, 2009.

ICIS 2009. Eighth IEEE/ACIS International Conference on, doi: 10.1109/ICIS.2009.137,

page(s): 516 – 521.2009.

[28] Abu Asaduzzaman, et al.; “On the Design of Low-Power Cache Memories for

Homogeneous Multi-Core Processors”; IEEE 22nd International Conference on

Microelectronics (ICM'10), page(s) 387-390.2010.

[29] Abu Asaduzzaman, et al.; “Modeling Multicore Distributed Systems and Simulation of

Performance, Power, and Predictability using VisualSim”; Huntsville Simulation

Conference (HSC-2008) sponsored by SCS and hosted by AMSC, Huntsville, Alabama,

USA. 2008.

[30] Stephen W. Keckler, KunleOlukotun, and H. Peter Hofstee; “Multicore Processors and

Systems”; Springer Science+Business Media, LLC. 2009.

DOI:10.1007/978-1-4419-0263-4

