RACCET

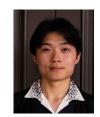
designed by VECTR Aerospace

Meet the Team

lan Buhman-Wiggs Location: Wichita, KS

- Structural Lead, Payload Design, Team Leader
- Lab Technician at NIAR Crash Dynamics Lab
- Specialization in Nastran/FEA Structural Analysis

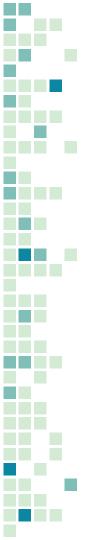
Contact: ianbuhman@gmail.com



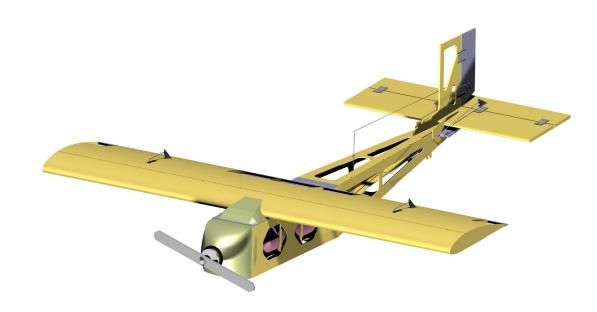
Danial Imran Salmaan Hussain Location: Kuala Lumpur, MY

- Stability and Control Lead
- Former Avionics Flight Test Engineering Intern at Bombardier
- Commercial Pilot
- Specialization in Flight Simulation

Contact: dsalmaanhussain@gmail.com Contact: hockchinlow@gmail.com


Hock Chin Low Location: Kuala Lumpur, MY

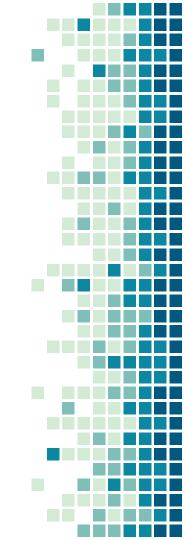
- Aerodynamics Lead
- Aerospace Engineering Student



Ian McMurtry Location: Columbia,MO

- Licensed VFR Pilot
- Aerospace Engineering Student
- Masters of Science of Aviation Finance (Starting Fall 2020)

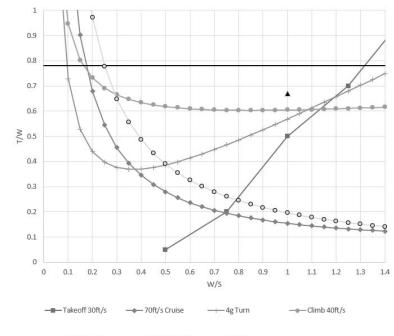
Rapid Assembly Climb Cruise Ejection Touchdown


A Storable Semi-Autonomous Emergency Supply Aircraft

from The Bronze Propeller Competition by WSU Aerospace Engineering Dept. & The Boeing Company

Mission Performance:

- Modular design that allows the entirety of the aircraft to fit in a 11x7x36 in storage box and quick assembly right out of the box
- Optimized for hand launch
- Features an autonomous payload release system
- Minimizes crash damage from hard landings and multiple flights



Thrust-to-Weight and Wingloading Determination

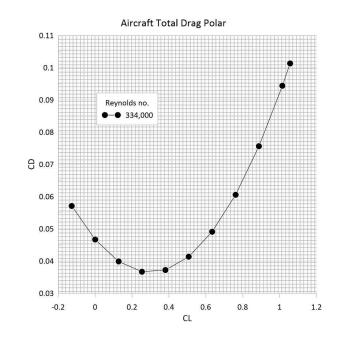
- Target values for all phases of the flight were considered
- Designed for tight turns and fast lap times

Revised W/S and T/W Calculations for the RACCET

▲ Target Value — Maximum T/W — O – 7g Turn

Aerodynamics

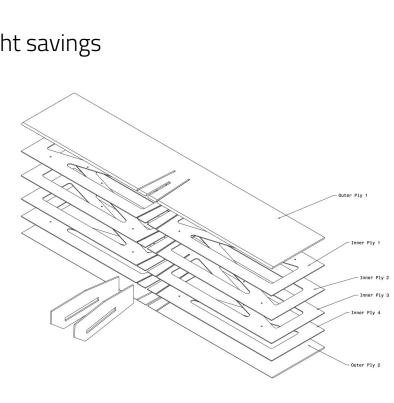
Raccet aerodynamic design has been carefully calculated to be performing well within the design point.


- The main straight wing of the aircraft features the NACA 4415 airfoil
- The horizontal and vertical tail has a flat plate design with negative incidence angle to improve in stall characteristics
- VSPAero was used to obtain an estimation of the aircraft lift curve slope and validating with Matlab's program

Aerodynamics

The streamline design minimizes the drag count produced in order for the aircraft to achieve the desired performance

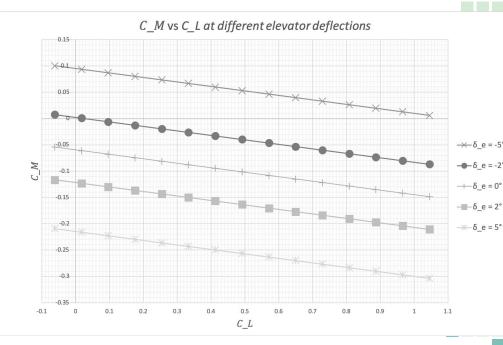
- The nacelle/nose cone design helps the flow to remain attached
- Aft tail that tapers down remains at a low drag count



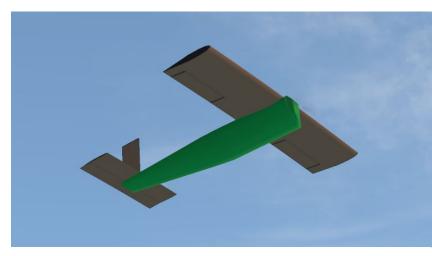
Structures

- Semi-monocoque wing is both light and stiff
- Robust fuselage can take repeated impacts
- Designed to withstand loading and fatigue

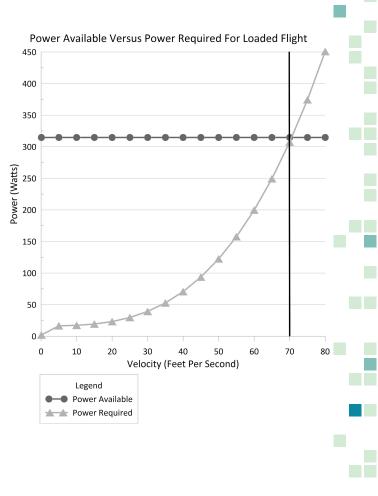
Structures


- Laminated tail for critical weight savings
- Double-interlock for secure assembly onsite

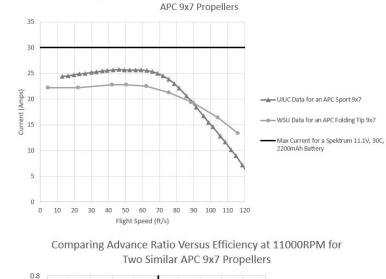
Stability and Control

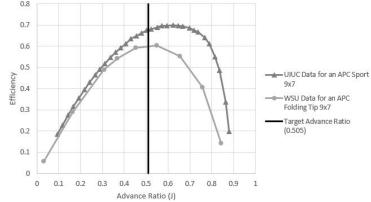

- Calculations performed in MATLAB and validated using OpenVSP software
- Primary goal is to ensure RACCET is statically stable and maneuverable by the pilot.
- Secondary goal is to ensure dynamic stability.

Stability and Control


- Further validation and analysis performed using X-Plane 11 software.
 - Utilizes blade element theory to model the aircraft.
 - Gives an accurate representation of the handling qualities of RACCET.

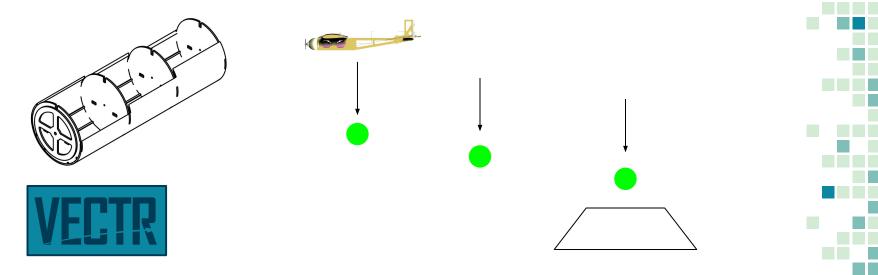
Propulsion


- Battery: Spektrum 11.1V, 30C, 2200mAh
- Motor: Rimfire 0.15 35-36-1200 Brushless
- ESC: Spektrum Avian 45 Amp Brushless Smart ESC
- Analysis of propulsion systems showed that the chosen battery, ESC, and motor would achieve the targeted top speed


Propulsion

Propeller Data was analyzed from both University of Illinois-Champaign/Urbana and Wichita State University databases

- Data was measured and plotted against expected target values and max battery performance values


Comparing Current Versus Flight Speed at 11000RPM for Two Similar

Payload Release

- Competition conditions are uncertain, so system must be error tolerant
- At least one ball must hit for run to be scored
- Twisting tube allows for staggered release pattern
- □ Extremely high hit probability

Design Data Table			
Wing Area	288 sqinches	Propeller Diameter	9.0 inches
<u>Wing Span</u>	35 inches	Total Propulsion System Weight (motor, battery pack, wires, connectors, fuse, prop, etc.)	1.3 Jb
C _{D,0}	0.0366	Battery Pack (nominal volts, # of cells, & mAhr)	11.1 V, 3 cells, 2200 mAhr
C _{L max}	1.056	Endurance	270 seconds
(L/ <u>D)max</u>	13	Stall Speed	31 ft/s
Aerodynamic Center Location	9.17 inches	Max Speed	95 ft/s
C _{M,0}	-0.0859	Corner Speed (V*)	90 ft/s
CM-alpha	-0.360	Minimum Turn Radius	36 ft
Static Margin	9.90 %	Empty Weight (ready to fly, no payload)	1.49 lb
Required Elevator Deflection for Trim at <u>Vcruise</u>	-2.05 deg	Maximum Payload	0.5 Jb
Required Elevator Deflection for Trim at 1.2V _{Stall}	-4.52 deg	CG Location	8.09 inches
Required Elevator Deflection for Trim at Maneuver Point	-11.7 deg	Wing Tip Deflection at V*	.128 inches
Max Power Available	130 W	+/- ŋ _{max}	+19 g, -19 g

•