

Christopher Basic¹, Daniel Bohnenkamper², Tyler Couser³, Jacob Jameson⁴, Michael Moore⁵

- 1. cmbasic@shockers.wichita.edu
- 2. dwbohnenkamper@shockers.wichita.edu
- 3. tylercouser@gmail.com
- 4. jsjameson97@gmail.com
- 5. mamoore3@shockers.wichita.edu

Mission

- To design and construct an airplane that will be able to cruise over a designated target zone for five laps, autonomously drop a payload over the 20 x 20 foot target zone after the second lap, then land successfully.
- Project: Bronze Propeller competition sponsored by Boeing.
- Team Goals: To Build an aircraft the team can take pride in and performs the mission successfully. To achieve top 3 at the competition.
- Payload will be dropped autonomously when an onboard computer senses that certain parameters are met during the flight

Requirements and Constraints

- Technical Requirements and Constraints
 - Plane has to fit into a 11x7x36-inch storage box
 - Must be made out of wood as well as simple metal and plastic parts
 - Must be bonded by Cyanoacrylate, wood glue, or spray adhesive
 - Aircraft range must be greater than 4000 ft
 - Payload will be dropped autonomously at designated height
 - Take into account varying critical loads through different maneuvers of flight

- Non-technical requirements and constraints
 - Airplane will have to be assembled, have the payload installed, pass a structural test, and launch within 5 minutes after removal from storage box
 - Airplane successfully executes a hand launch and belly landing without incurring significant damage
 - Payload will remain secure until dropped
 - Airplane fuselage will have permanent cavity for payload build into it
 - Airplane remains within a flight area for the duration of the flight

Concept Selection

- Ten design concepts initially
- Screening process used six criteria to determine strengths and weaknesses of each
 - \circ ~ Four concepts that failed to have enough strengths were eliminated
- Scoring process used five criteria to determine which concept would be selected
- Cargo tanker concept was chosen because of its simple design, ease of loading, and aerodynamic properties when compared to other concepts

Airplane Sizing

- Wing Loading: 0.72 lb/ft^2
- Thrust-to-Weight Ratio: 0.61
- Performance Parameters Considered:
 - Stall
 - Takeoff
 - Climb
 - Cruise
 - \circ Maneuvering

Image from : http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/c.%20Schaefer/aero6.htm Image from: https://www.grc.nasa.gov/www/k-12/airplane/cruise.html

Image from: https://www.quora.com/In-a-NACA-2415-airfoil-what-do-o-o2-camber-o-o4-chord-and-o-15-thickness-mean image from : https://www.hooked-on-rc-airplanes.com/how-airplanes-fly.html

Aerodynamics cont.

- Wing
 - Airfoil: NACA 4412
 - Span: 35 in.
 - \circ Chord: 9 in.
 - 1 Piece Design
 - 1 in. Max Thickness
 - 2 deg inclination
 - Two 12 x 3 in. Ailerons
- Horizontal Stabilizer (Tail)
 - Airfoil: NACA 4412
 - Span: 16 in.
 - Chord: 5
 - 16 x 2.5 in. Elevator

Aerodynamics cont.

- Vertical Stabilizer (Tail)
 - Airfoil: NACA 0009
 - Span: 8 in.
 - Chord: 5 in.
 - 7.5 x 2.5 in. Rudder
- Performance
 - Max lift coefficient 1.2 @ 12 deg angle of attack
 - Min drag coefficient .038
 - Max Lift: 10 lbs
 - \circ $\,$ Lifting surfaces configured to cruise at 17 L/D ratio $\,$
 - Capable of take-off at 20-23 mph

Comparison of Lift Coefficient & Angle of Attack Generated by VSP AERO Analysis

Comparison of Lift & Drag Coefficients for Aircraft with Laminar and Turbulent Airflow without Flow Separation

Comparison of Lift/Drag Ratio to Angle of Attack using Turbulent Airflow

Structures

• Wing

- Had to withstand a 3.934g turn
- Withstand a 30 ft/s gust.
- Total wing deflection: .281 inches
- Composition
 - Balsa wood skin
 - 10 Basswood stringers
 - Two spars
 - 20 ribs to prevent buckling
- Horizontal and Vertical Tail
 - Similar structural arrangement
 - Horizontal tail
 - No stringers
 - One frontal spar
 - Rear dowel for turning rudder

Structures cont.

• Fuselage

- Semi-monocoque
- Skin surrounding frame
 - Flat shapes for easy construction
- All materials are balsa wood
- Will withstand gusts against the fuselage
- Bulkheads in the rear fuselage
 - Accommodates servos and tail assembly
- Bulkheads in cargo bay
 - Where payload is located
- Nose
 - 3d printed to accommodate the motor

Propulsion

- Propeller Diameter: 11 in
- Propeller RPM: 8,000
- Maximum Climb Velocity of 60 ft/s at AOA of 8°
 - Power Required: 101.5 W
 - Current Required: 22.98 A
- Maximum Cruise Velocity of 70 ft/s at AOA of -2°
 - Power Required: 29.99 W
 - Current Required: 6.79 A
- Battery Pack: E-flite 2,200mAh 3S 11.1V 30C LiPo 13AWG EC3
 - Current Output: 66 A
 - Weight: 6.1 oz

Propulsion cont.

- Motor: E-flite Power 10 Brushless Outrunner Motor 1,100 K_V
 - Motor Power of 375 W
 - Maximum Continuous Current: 30 A
 - RPM to Velocity ratio (K_V): 1,100
 - Weight: 4.3 oz
- Propeller: 11x8 APC Thin Electric
 - Current Required at Cruise Velocity: 16.8 A
 - Motor Power Required at Cruise Velocity: 169.7 W
 - \circ Weight: ~1.41 oz

11x8 APC Thin Electric Propeller			
V (ft/s)	P _A (W)	P _M (W)	I _M (A)
46.04	161.2	187.5	18.57
48.51	165.8	187.5	18.57
51.23	170.1	186.5	18.46
53.82	173.8	185.8	18.39
56.54	175.9	183.97	18.22
59.13	177.0	181.8	18.00
61.85	177.9	179.7	17.79
64.44	174.7	174.7	17.30
67.40	172.2	169.7	16.80

Stability and Control

• Location of the Aerodynamic Center, Center of gravity and static margin with respect to the chord:

X _{AC} (%c)	47
Х _{СG} (%с)	33
Static Margin (%c)	15

• Trim deflections needed for various flight conditions throughout the mission:

Condition	Airspeed (ft/s)	Alpha_trim (°)	Elevator_trim (°)
Cruise	70	-1.7	-2.5
1.2*Stall	36	+7.1	-7.1
Level Turn	70	+8.1	-11.7

Stability and Control cont.

• Rudder deflection required to trim in sideslip perturbation created by a crosswind:

Sideslip angle(°)	5	10
Rudder deflection(°)	-6.5	-13.1

• Expected hinge moment on the control surface using a flat plate equivalent method. The torque generated by each servo will have to be greater in order to displace the control surface

Rudder	21 oz-in
Elevator	32 oz-in
Aileron (each)	74 oz-in

Payload Release Mechanism

- Payload was tennis balls
 - Eight tennis balls would be carried in order to increase Bronze Propeller score
- Held in place during flight by two parallel rods
- Rods will move apart to drop payload autonomously
- Trigger for payload drop: airplane descending in altitude shortly before landing
- Altimeter will determine when balls are dropped

