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Motivation

• Optimal thermal management systems are crucial to

many applications in manufacturing, electronics,

automotive, aerospace, and energy systems.

• Thermal energy flow often needs to be controlled in

direction for the desired flow control.

Challenges

• Thermal flow control systems are rare.

• They have poor steady state performance, slow transient

response, and difficult manufacturing process.

Objectives

• Achieving adsorption-controlled thermal rectification in

a gas-filled nanogap with heterogeneous solid-gas

interactions as a new class of fast and efficient thermal

diodes.

• Avanessian, T. and G. Hwang. Adsorption-Based Thermal
Rectifier. in ASME 2015 13th International Conference
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American Society of Mechanical Engineers.
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• Maruyama, S. and T. Kimura, A study on thermal
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• In this study, the adsorption-controlled thermal diode is

examined using Ar gas-filled nanogap with

heterogeneous solid-gas interactions.

• A maximum degree of rectification, Rmax ~ 10, is found

at T = 80 K which results from the significant

adsorption-controlled thermal accommodation

coefficient (TAC).

• The predicted results using the modeled surfaces (ε* =

0.5 and 0.1) can be achievable using real materials. For

instance, a ε* = 0.5 represents Pb as the weak, and Pt as

the strong surface to construct the nanogap.

Inter-atomic Interaction:

Ar – Ar and Ar - surface particles:
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Thermal Accommodation Coefficient (TAC)
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aT → 0: fluid particle retains its temperature after 

reflection (no interaction)

aT → 1: fluid particle has the wall temperature after 

reflection (large interaction)

Degree of Rectification
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Thermal rectification 

is achieved when:

<q+> >> <q->

Interacting Atoms 𝜀𝑖𝑗 (kcal/mol) 𝜎𝑖𝑗 (Å )

Ar - Ar 0.2403 3.405

Ar – Pt (strong surface) ε1 = 0.1573 3.09

Ar – weak surface ε2 = ε*×ε1 3.09

Upper fix layerUpper Pt layers

Ar atoms

Lower Pt

layers

Lower fix layer

Lennard-Jones potential parameters for the interacting atoms

solid – solid interaction:

𝜑𝑖𝑗 = 𝑘 𝑟𝑖𝑗 − 𝑟0
2

k = 67.360 kcal/mol-Å 2

r0 = 2.77 Å

ε* = 0.1 or 0.5 (in this study)
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Figure 5. Distribution of the particles through the nanogap,

ε* = 0.5

Figure 3. Nanogap pressure in positive and negative 

directions for ε* = 0.1, 0.5, and 1.0

Figure 1. Heat flux through the nanogap in positive and 

negative directions for ε* = 0.1, 0.5, and 1.0 Figure 2. The degree of rectification (R) for ε* = 0.1, 

0.5, and 1.0

• For εsf
* = 1, no significant difference between <q+> and <q->

is found due to the symmetric surface interaction (Figure 1)

• For εsf
* = 0.1 and 0.5, the heat flux in the favorable direction

is much higher than that in reverse direction, due to the

asymmetric surface interaction, i.e., adsorption-controlled

TAC (Figure 1).

• For εsf
* = 1.0, the R ~ 0 as predicted, i.e., no thermal diode

effect and symmetric heat flux (Figure 2).

• For εsf
* = 0.1 and 0.5, significant thermal diode effect is

shown, especially for low temperatures, i.e., Rmax ~ 6 (Figure

2).

• The stronger solid-gas interaction surface (bottom surface)

results in more adsorbed gas particles even when it has

higher temperature compared to the weak surface (Figure 5)
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