Wind Generation Systems –Use of Life Cycle Information

Michael Overcash, Evan Griffing,
Jan Twomey, and Devi Kalla
Wichita State University
February 26, 2009

Objectives

- Serve the entire wind generator manufacturing complex (materials, components, subassemblies, and generators
- Discrete lci gate-to-gate reports
- High transparency, quality
- Begin with most used elements cluster approach
- Support decision-making for improvement
- Expand to include maintenance, replacement, and end-of-life
- Establish a group of corporations to utilize these data and to direct the priorities in generating the lci

LCI Database Strategy

- Begin development with materials and chemicals
- Create the transformation lci to obtain components
- Establish component plant lci for subassemblies
- Aggregate into wind generators
- Create user friendly means to use database to improve wind generation systems
- Develop more powerful tools for product manufacturing through the concept of unit process life cycle inventory

Scope of wind farm / turbine LCI

Architecture

Material, metric tons	Vestas, 3 MW on-shore^1	LG&E 0.34 MW
Iron and Steel	235	26.1
Glass refinforced plastic	40	6.8
Copper	unspecified*	0.073
Concrete	1200	136
Aluminum	unspecified*	unspecified
Neodymium	unspeficied	0.02 -0.10

liquid steel	calcium monoxide	calcium carbonate	limastana/untraat	۱۱ م				
1,000			limestone(untreate	108				
1 1		calcium monoxide	calcium carbonate		l:t/t	-11		
	iron 842			90.9	limestone(untreate	90.9		
	042			90.9		90.9		
		coal 92.6	unmined coal	02.6				
				92.6]	
		coke, metallurgical	coal	260	unmined coal	200		
		316		368	16	368		
			sulfuric acid		sulfur trioxide		oxygen from air	air (untreated)
				1.64		1.33		
							sulfur	oil (in ground)
							0.575	
							water (untreated)	water (untreated)
							0.0502	0.0502
					water for rxn		water (untreated)	
						0.334	0.334	
		iron pellets, 65 Fe, at		, at				
		mill, US	mine, US		calcium carbonate		limestone(untreated)	
		1,358	1	1,358		103	111	
					iron ore (in ground)			
						3,509		
			natural gas					
		natural gas	(unprocessed)					
		33.7		34.3				
		oxygen	air (untreated)					
		107		148				
		oxygen from air	air (untreated)					
		572		572				
	oxygen	air (untreated)						
	77.5	107						
	steel scrap	steel, at collection						
	250	250						

Methodology for unit process life cycle inventory model

In order to assess a manufacturing process efficiently in terms of environmental impact, the concept of a unit operation is applied. The unit process lci consists of

- Input materials
- Energy required
- Losses of materials (that may be subsequently recycled or declared waste)
- Major machine and material variables relating inputs to outputs
- Resulting characteristics of the output product that often enters the next unit process.

Input-Output Diagram of a Drilling Process

DRILLING PROCESS

Figure LCI data for Drilling process

Figure. System boundary of the Drilling process

MANUFACTURING PROCESSES

		Mechanical Reducing			
	Mass Reducing	Thermal Reducing			
		Chemical Reducing			
Shaping		Consolidation			
	Mass Conserving]			
		Deformation			
		Mechanical Joining			
	Joining	Thermal Joining			
		Chemical Joining			
		Annealing			
	Heat Treatment	Hardening			
Nan Chanin a		Other			
Nonsuaping					
		Surface Preparation			
	Surface Finishing	Surface Coating			
		Surface Modification			
		Shaping Mass Reducing Mass Conserving Joining Heat Treatment NonShaping			

Conclusions

- Life cycle inventory data are critical to improvement and communication of wind generator manufacturing
- 2. The standard for lci are now require much more transparency, scientific quality, and usability
- 3. A new set of tools necessary for life cycle information in relation to product manufacturing plants