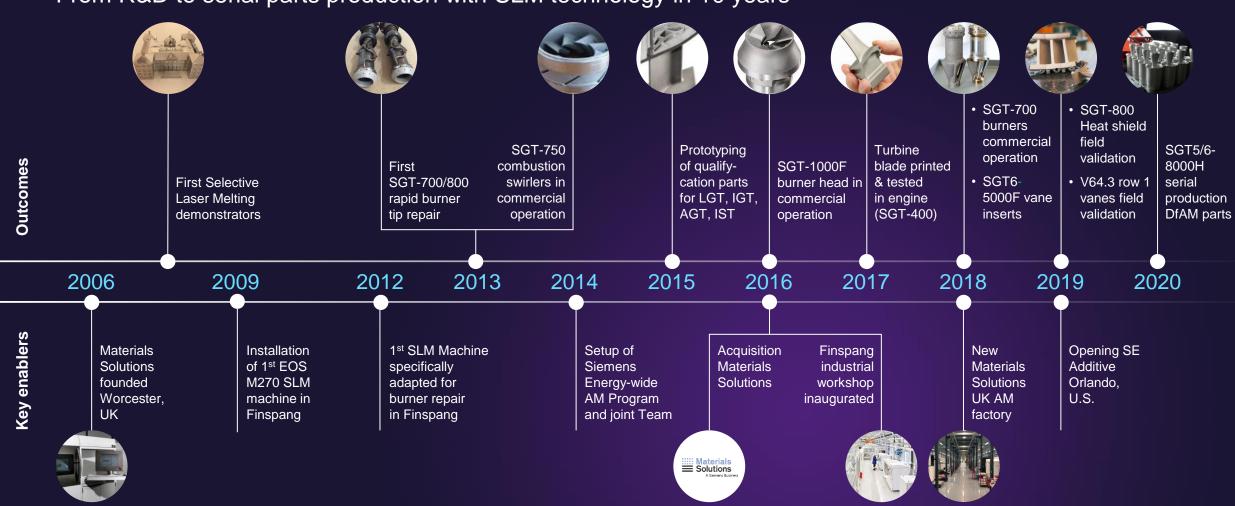


Siemens Energy Additive Manufacturing Overview

Tad Steinberg

Every Siemens Energy Gas Turbine has AM designed hardware



Siemens was an early adopter of SLM AM technology and have successfully scaled its production

From R&D to serial parts production with SLM technology in 10 years

Siemens Energy Global Production Overview

~175 LPBF components

Qualified for serial production

~12,000 LPBF components produced in FY23

Delivered to SE production engines

+2,000,000
Equivalent Operating Hours

Across new unit and repair services

9 Materials Qualified

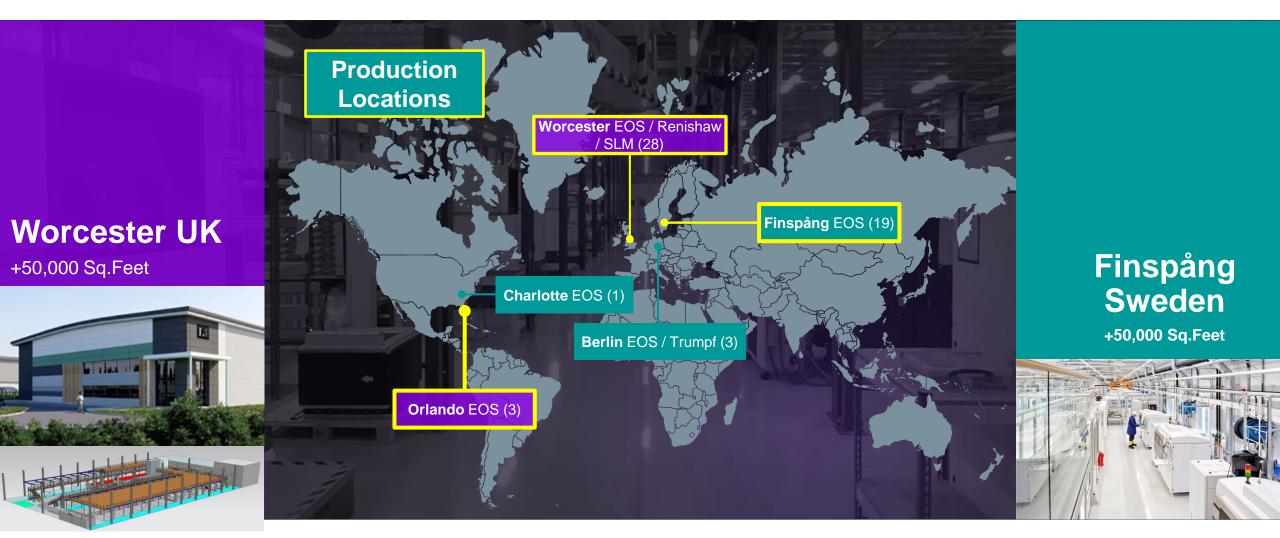
Qualified for serial production

51 LPBF Printers Globally

with factory space for up to 100 printers

+200 people

dedicated to AM (globally)


User Provider

~2000 external production components delivered

Delivered to external customers

LPBF Manufacturing Footprint

Siemens Energy Additive Manufacturing – Sectors Serviced

- Leading user of metal AM components for **Siemens Energy power generation assets**
- Reliable supply chain partner for prototype and serial production of metal **AM** components in adjacent industries
- Engineering and manufacturing AM services tailored to customer needs

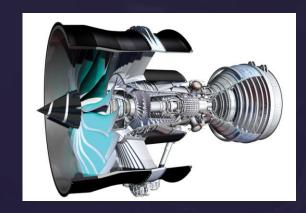
Siemens Energy

Aero / Space

Autosport

DOD

Aviation / Space


Service Provider:

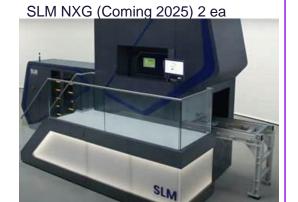
- OEM's
- Tier 1 Suppliers

R&D, Development & Production

- Airframe
 - Control systems
 - Example Titanium high pressure hydraulic manifold
- Aerospace Propulsion
 - Combustion
 - Engine ancillaries
- Space
 - Propulsion

Siemens Energy Production Capability

EOS M290: 7 ea


EOS M400-4: 13 ea

Multi-laser 400W systems; 12 Ni & 1 Ti

EOS M 290

Single laser 400W system; 6 Ni, 1 Al

Multi-laser 1KW system Ni alloys

Renishaw 500Q: 2 ea

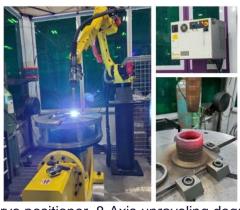
Multi-laser 500W system dedicated to Ni alloys

SLM500: 1 ea

Multi-laser 700W system dedicated to Al alloys

EOS M270: 4 ea

Systems due to be retired in FY24


-WAAM Production Systems-

Fronius Overlay Welding (FOW) System 2 ea

8-Axis - TPS 5000-CMT system

Robotic WAAM - Fanuc ARC Mate 100iC/7L 3 ea

Servo positioner, 8-Axis unraveling degrees of freedom

Siemens Energy AM Production Capability

Post Processing Capability Examples

Powder conditioning

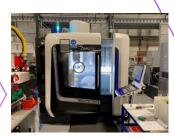
8x powder sieving, mixing & vacuum conveying

Depowdering

10+ dry depowdering units
Alloy family dedicated

ng

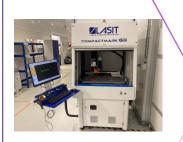
6+ Bandsaws


Bandsaws

Wire EDM

Multiple EDM's

5 axis CNC


DMG, HAAS etc.

Abrasive blasting

Multiple blast cabinets

Laser part marking

laser part markers

Light Inspection

GOM / Creaform etc.

CMM Inspection

Various types / sizes

FPI testing

SE approved FPI

Airflow testing

Suction & pressure fed airflow rig

Laboratory testing

Microstructure, Oxygen & PSD analysis

9

Materials Processed

Qualified print process

Nickel **Superalloys**

- CM 247 LC
- In 738 LC
- C1023
- MAR M002
- Haynes 230

Aluminum

- A20X
- AlSi10Mg
- Scalmalloy

Ti6Al4V

Ferrous alloys

- SS 17-4
- SS 15-5
- SS 304
- SS 316L
- Titanium alloys : Maraging Steel M300

Cobalt alloys

- CoCrMo
- MAR M509

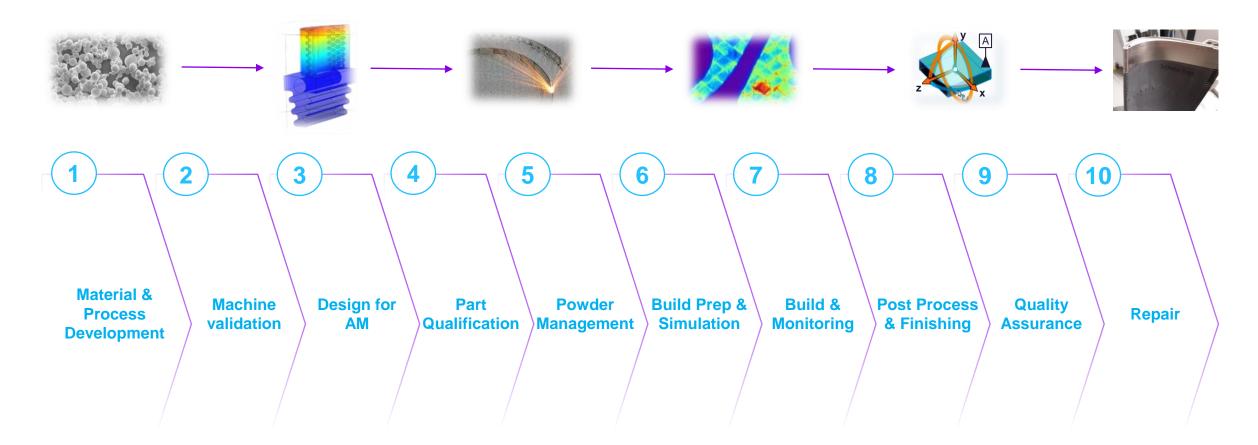
Fully qualified with design data

Nickel Superalloys :

- Hastelloy X
- C 263
- In 625
- In 718
- In 939
- Haynes 282

Cobalt

Merl 72

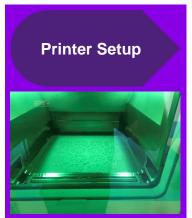

Machines at Siemens Energy are designated by alloy type, e.g. Nickel & steel, Titanium, Aluminum. From within the Siemens Energy AM network we currently have the following machines operational:

- 10+ EOS M400-4 designated to Nickel alloys
- 2+ A30EOS M400-1 designated to Nickel alloys
- 5+ EOS M290 designated to Nickel alloys & Steels
- 2 Renishaw 500Q designated to Inconel 625
- 7 EOS M270 designated to Nickel alloys & Steels
- 1 EOS M280 designated to Titanium
- 1 EOS M400-4 designated to Titanium
- 1 EOS M290 designated to Aluminium
- 1 SLM 500 designated to Aluminum
- 2 SLM NXG designated to Nickel Alloys (2025)

Siemens Energy Additive Manufacturing

Lessons Learned

- Have the component design engineer sit next to AM Application engineer and let the magic happen
- Training for design engineering get away from traditional manufacturing mindset very difficult for seasoned Design Engineers
- Ensure to look at the system affected in its entirety "V Diagram" systems engineering
- Initial design considerations must include:
 - Build orientation, Datums, Post processing, Access, Depowdering, Surface finish, AM capabilities, etc. etc. (AM Design Manual)
- Acceptance of metal AM can be a major barrier to those unfamiliar. Be ready to "Prove" or "Sell" the technology.
- Risk class / Use case / Business case analysis for components is key Ensure AM is the right fit
- For existing / replacement parts, printing typically only gets you halfway there
- Don't look at AM to be the only solution. AM may only be part of a solution, along with traditional manufacturing.



Experience in a Production Environment...

AM Serial Production requires full control of the entire Production Process Chain

Every process step is optimized and released independently

Multiple Engines - AM Vane Performance to Date

Component	Material	TIT	ЕОН	Starts	Remarks
V64.3 TV1 Phase I	IN939	1390°C	27,000	72	Copy of conventional design, Dresden GT12, 8 rainbow parts, First Fire 07/2019
SGT-700B TV2	IN939	1190°C (at stage)	19,000	34	In-wall cooling design, E.ON Hattorf, set of 58 parts, First Fire 08/2020
V64.3 TV1 Phase II	IN939	1380°C	12,000	86	In-wall cooling design, Dresden GT11, set of 90 pcs., First Fire 08/2021
SGT-800B3 HS1	Alloy247	1260°C	10,600	29	In-wall cooling design, 15 rainbow parts, Thailand, First Fire 01/2019
SGT6-9000HL TV1	IN939	>1600°C	610	267	Endurance run 2022, 3 rainbow parts, serial production for HL2 on-going

Tad Steinberg

Additive Manufacturing
External Business Development

12501 Research Parkway Orlando, FL 32826

Mobile: +1 740 398 7802

tad.steinberg@siemens-energy.com

Siemens Additive Link

Siemens AM: www.youtube.com/watch?v=8j86P2GKPvM

