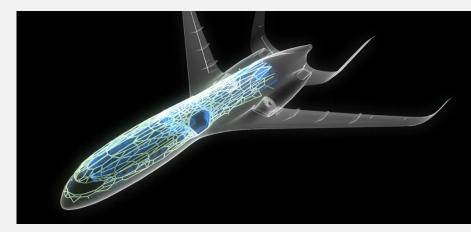


Elevating Commercial Aviation Manufacturing: Lessons from the Defense Industry

Christina J. Kurth September 18, 2024

COMMERCIAL & EXEC AEROSPACE ADVANCED DESIGN BACKGROUND

- ✓ Bombardier Aerospace, Toronto, Ontario
- ✓ Advanced Design Department: Next Generation of Aircraft
 - o Airbus A220 (C Series)
 - Lear 85
 - Global 7500
 - Clean sheet designs
- ✓ Aircraft designs have remained largely unchanged for the past half century
- ✓ Similar engineering challenges often lead to similar solutions
- ✓ Likewise, similar manufacturing methods frequently result in comparable solutions



ADVANCED COMPONENT MANUFACTURING CRITICAL TO FUTURE GENERATION AIRCRAFT

- ✓ Unique aircraft designs continue to be limited
 - The Lear 85 never entered service, mainly due to challenges with its composite structure
 - Blended wing body design (Bombardier EcoJet, Airbus ZEROe) still remain 'paper' designs
- ✓ To meet future marketing objectives and requirements, including sustainability and competitive cost targets, the OEM industry must begin designing and manufacturing flight components with a focus on topology optimized, monolithic components
- ✓ Enabled by Advanced Manufacturing technologies such as LPBF (Laser Powder Bed Fusion)

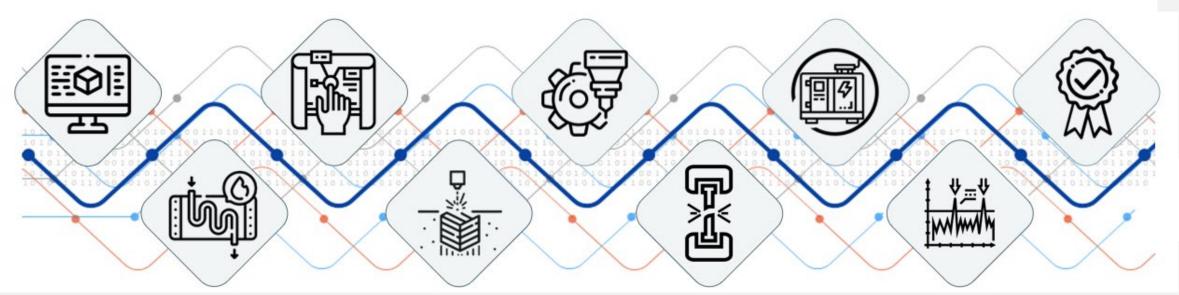
SINTAVIA, LLC

- ✓ World's first all-digital aerospace component manufacturer
- ✓ Leading additive technology supplier to Aerospace & Defense Lead Systems Integrators
- ✓ Founded in 2015; 106 employees (47 engineers)
- ✓ Owned 80/20 between Brian Neff and Lockheed Martin Corporation
- ✓ Three product demand drivers:
 - 1. Heat exchangers for military aircraft
 - 2. Pump/valve systems for Naval Nuclear Propulsion Program
 - 3. Propulsion components for next generation missile programs

OUTLINE

- 1. Vertical Integration of AM Production Capabilities
- 2. Vertical integration of AM Software Processes
- 3. Key Customer Verticals
- 4. Production Programs Supported
- 5. Commercial Aviation OEM History
- 6. Commercial Aviation Production Case Studies

- 7. Lessons Learned
- Lessons Learned Compared to Successful Defense Counterparts
- Industry Standards Benchmarks and Needs
- 10. Leverage Expertise
- 11. There is a Path Forward!


1. VERTICAL INTEGRATION OF AM PRODUCTION CAPABILITIES...

- \checkmark We are differentiated by the vertical integration of the design, manufacturing, testing, and certification of our components
- ✓ By performing most processes in-house, we are able to rapidly iterate designs and

2. VERTICAL INTEGRATION OF AM SOFTWARE PROCESSES

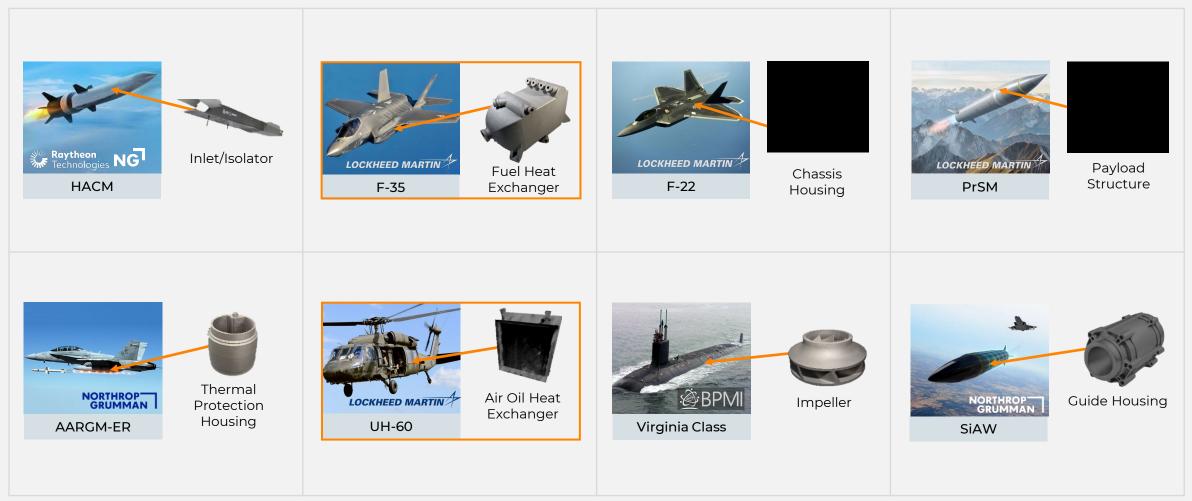
Digital Design

FEA/CFD Simulation Digital Manufacturing Plan

Additive Manufacturing Post-Processing Metallurgical & Mechanical Testing

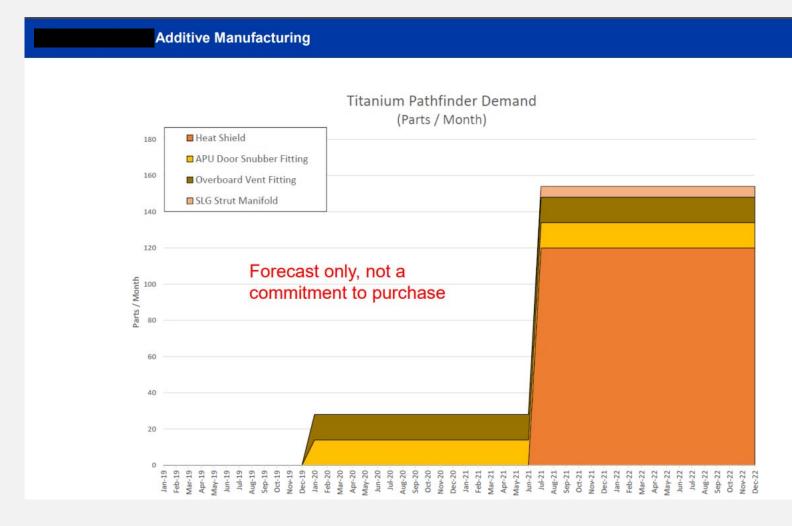
NDT Inspection

Performance Testing Certification & Release



4. PRODUCTION PROGRAMS SUPPORTED'

¹Orange box denotes engineered products. Representative parts shown.



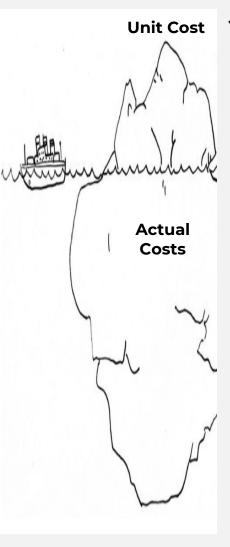
The demand is strong, and both designers and production suppliers are ready and capable - so why is commercial aviation lagging so far behind its defense counterparts?

5. COMMERCIAL AVIATION OEM HISTORY

- ✓ Airbus Group
 - First and last PO received in 2019
- √ Honeywell
 - o First PO pre-2018
 - o Top-ten customer in 2019-2021
 - o Top customer in 2020
 - Last PO received in 2020
- ✓ The Boeing Company
 - First PO in 2018
 - Top-ten customer in 2019-2020
 - Last PO received in 2021

6. COMMERCIAL AVIATION PRODUCTION CASE STUDIES

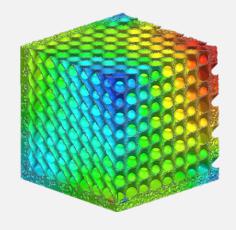
- ✓ Raytheon (Collins Rohr Aerostructures)
 - o EBM Ti64
 - o Pre-production
 - o Production PO in 2021
 - Total 120 jet cascades delivered
 - QTY 10 Dassault 6X in flight with Sintavia components
- ✓ Honeywell
 - o LPBF IN 718
 - o Pre-production
 - QTY 3 limited production components
 - o Buffer, tube, surge duct and three-way duct
 - o Two of these parts LTC on 2022

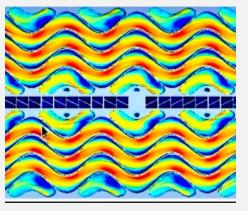


7. LESSONS LEARNED

- ✓ Commercial Production Case Studies Commonalities
 - 1. **Design** Traditional components replaced like-for-like by additive manufacturing
 - 2. Business Case Competing against traditional unit prices, while designs not were bringing any added value or benefits
 - 3. Business Case Not quantifying the larger picture of weight optimized designs
 - Long-term weight savings
 - Sustainability metrics
 - **4. Business Case** Not quantifying the cost of poor quality for supply 'problem parts'
 - **5. Specifications** OEM or Tier One self-governed specifications
 - **6. Specifications** Inspections and qualifications based on methods for traditional and current processes
 - o CT, In-Situ Monitoring, etc.

8. LESSONS LEARNED COMPARED TO SUCCESSFUL DEFENSE APPLICATIONS


Commercial Aviation Business Cases Successful Defense Programs


Design	 Traditional components replaced directly by and AM version 	 Integrate value-added inner channels & larger monolithic designs Sintavia designing from the ground up to meet PBS, Manufacturing and Testing
Business Case	 Competing against traditional unit prices Not quantifying weight & sustainability metrics Not quantifying CoPQ 	 Unit Price & NRE are rationalized against improved performance and shorter lead times CoPQ evaluated in price comparisons
Specifications	 OEM or Tier-One self-governed specifications Inspections and Qualifications adding more criteria 	 Some programs are still self-governed Many (including flight components) are using industry standards such as AWS D20.1 and NAVSEA S9074-AR-GIB-010-278

9. LEVERAGE EXISTING EXPERTISE

- ✓ Designing from the ground up to meet PBS (Performance Based Specs), Manufacturing and Testing has been successful
- ✓ Example: Heat Exchangers
- ✓ Sintavia has designed and developed air to fluid heat exchangers that exceed incumbent designs in weight reduction and heat transfer
- **1. Design -** Sophisticated modeling techniques and simulation allow for optimized features
- **2. Manufacturing -** Sintavia operates some of the largest metal 3D printers in North America, with boundary conditions increasing
- **3. Test** operational thermodynamic testing capabilities to ensure that its components meet customer requirements

10. INDUSTRY STANDARDS BENCHMARKS AND NEEDS

Machine Qualification

- ✓ Industry standards such as AWS D20.1 and NAVSEA S9074-AR-GIB-010-278 have been successful
- ✓ Machine and Procedure (Part) Qualifications fairly well understood
- ✓ Customers typically call out the key specification
 - o AWS D20.1
 - NAVSEA SPEC S9074-AR-GIB-010-278
 - WSU Common Qualification Plan Metal AM OQ Acceptance Test (Draft)

Procedure Qualification

Delta Qualification

- ✓ Customers then typically have part-specific requirements (based on part criticality, etc) in AOR (Additional Order Requirements) document
- ✓ Needs: Delta Qualifications, Communications Channels, New Aircraft Designs conducive for Advanced Manufacturing

11. THERE IS A PATH FORWARD!

- ✓ It's not too late for future Aircraft such as the X-66 and ZeroE
- ✓ What will this take?
 - OEMs and Tier-One suppliers need to be increasingly open to collaborating with experts, such as Sintavia, to offer input or even design solutions from the ground up
 - Continued education for designers, supply chain and Quality Engineers
 - Communication
 - Share success stories
- ✓ By applying lessons learned from the defense sector, we can ensure the future of commercial aviation is not only safe and successful but also a source of pride

