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FAA Sponsored Project 
Information

• Principal Investigators & Researchers
– Dirk Heider (PI) - Solange Amouroux
– John W. Gillespie, Jr. (Co-PI) - “C” Josiah Hughes

• FAA Technical Monitor
– Curtis Davies

• Industry Participation
– Gore (Munich, Germany)

• Provided membrane materials, access to instrumentation and technical input
– Donaldson Membranes (Warminster, PA)

• Provided membrane materials
– Hexcel (Seguin, Texas)

• Provided resin and fabric material and technical input
– Cytec (Anaheim, CA)

• Provided resin and fabric material and technical input
– EADS (Augsburg, Germany)

• Provided technical and financial input
– Boeing (Philadelphia, PA)

• Provided technical input
– Embraer (São José dos Campos, Brazil)

• Provided technical input
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A400M CFC Cargo Door

AEROSPACE VARTM’D 
COMPONENTS

Flap tracks for the A380
CH-47 Chinook Forward 

Pylon

Pressure Dome

Other BOEING Components
•LAIRCOM panels
•Leading edge 787
•Rear Bulkhead 787

C-17 Main Landing 
Gear Door
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• VARTM process: +/-
– Main advantages: low cost, high fiber volume fraction, large scale parts
– Still some limitations

• High variability compared to autoclave process
– From part to part
– In the same part

• Following conditions have to be met to make VARTM viable for 
high-performance aerospace applications:

MOTIVATION

VARTM
Autoclave
VARTM
Autoclave

Repeatability

Cost

Actual

Goal

Repeatability

Cost

Actual

Goal

A lower variation (higher 
repeatability) in properties 

improves the allowable design

Cost

Property
Weight

Property
Weight

Actual
Actual

1) Process as 
repeatable as 
autoclave (reference)

2) Slightly lower 
properties but for a 
much lower cost
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APPROACH

• Three VARTM processes will be evaluated on process 
repeatability, part quality, and mechanical performance

• Establish the fundamental understanding of the VAP 
process

• Establish an elevated temperature VARTM workcell for 
toughened epoxies
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VARTM Process Variations

1. Seemans Resin Infusion Molding Process (SCRIMP)
Use of Distribution Media
Patent held by TPI Inc.

2. Vacuum-Assisted Processing (VAP)
Use of an additional membrane
Patents held by EADS
Reduces Void Content, Improves Process robustness

3. Controlled Atmospheric Resin Infusion Process (CAPRI)
Reduced pressure differential
Patent held by the Boeing Co.
Reduces thickness gradient, improves fiber volume fraction variation
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Process Variations:
The CAPRI Process

• Controlled Atmospheric Pressure Resin Infusion
• Adds vacuum debulking and reduce pressure 

differential to setup

 
Lay-up of the reinforcement

Vacuum Debulking
of the Preform

Infusion
Full Pressure 

Gradient
Partial Pressure 

Gradient

Cure

CAPRI

CAPRI

Advantages
• Increased Fiber Volume Fraction
• Reduced Gradients

• Pressure
• Thickness 
• Fiber Volume Fraction

Disadvantages
• Decrease in fabric permeability
• Increase in flow times
• Increase in lead length

CAPRI Patent held by Boeing
Woods, J., Modin, A. E., Hawkins, R. D., Hanks, D. J., “Controlled Atmospheric Pressure Infusion 
Process”, International Patent WO 03/101708 A1.
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Thickness Behavior Comparison 
between CAPRI and SCRIMP

• Debulking can 
greatly increase 
final fiber volume 
fraction

• The thickness 
gradient is reduced 
when the CAPRI 
pressure is applied 
(insignificant for 
the debulked case)
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MEMBRANE-BASED VARTM 
PROCESSING (VAP)

• Utilize membrane cover to 
allow continues degassing 
and uniform vacuum 
pressure during VARTM 
processing
– Reduces void content
– Improves uniformity (fiber 

volume fraction, thickness)
– Eliminates dry-spots

ToolTool

Membrane

VAP Processing Reduces Final Void Content
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•Desirable Characteristics for a membrane used in VARTM:
– Gas permeable material

• OR High air permeability through the thickness
– Resin-proof material

• OR Low liquid/resin permeability through the thickness

•Compatibility with resin
– Compatible: The resin does not go through the

membrane and is forced into the part
– Incompatible: The resin penetrates the membrane

Low liquid 
permeability

High air 
permeability

www.gore-tex.co.uk
Air and volatiles can travel through the membrane

Resin is infused in the part

Resin cannot go through the membrane

Resin is forced to remain in the part

MAIN REQUIREMENTS OF
THE MEMBRANE
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• Optical microscope
– The membrane is mounted on 

a support

Membrane (from W. L. Gore & 
Associates, GmbH)

Support

Membrane

• SEM of the membrane
– Top surface

– Cross-section
1 μm

• SEM of the support
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• Geometry: thin, straight and cylindrical pores, called
capillaries

• Forces acting on the system
– Vacuum applied during the VARTM process (≤105 Pa)
– Capillary effect
– Gravity force

• Goal
– Predict the impregnation time of the membrane by the resin to make 

sure that: timpregnation ≥ tgel

Modeling of Resin Transport
Through Membrane

2r
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Building blocks the model
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: Flow front velocity (m/s)
ξ : Position of the flow front in the pore (m)
η : Viscosity of the liquid/resin 

(Pa.s)
ΔP* : pressure gradient (Pa)
K : membrane permeability (m2)

ξ
•

ε : Porosity of the membrane (%)
k : Kozeny’s constant, originally 

stated at 5.0
τ : Tortuosity of the pores

τ = pore real length/membrane thickness
For a straight capillary: τ=1.0

S* : Specific surface area
For a cylindrical capillary: S*=2/r

ε : Porosity of the membrane (%)
k : Kozeny’s constant, originally 

stated at 5.0
τ : Tortuosity of the pores

τ = pore real length/membrane thickness
For a straight capillary: τ=1.0

S* : Specific surface area
For a cylindrical capillary: S*=2/r

P0 : pressure below the membrane, 
created by a pump (Pa)
Pg : pressure due to the gravity effect
acting on the fluid in the pore (Pa)
P1* : pressure in the fluid below the 
meniscus (Pa)
P1 : pressure above the meniscus (Pa)
Pc : capillary pressure (Pa)γ : Resin surface tension (N/m)
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Materials’ Characterization

- Membrane’s pore size distribution by Porometry
- Fluids’ surface tension with the DCA
- Contact angle between fluids and the membrane using a 

sessile drop method

Fluids Density
(kg/m3)

Viscosity
(cP)

Surface tension
(N/m)

Contact angle
(°)

HPLC 1000 1 7.2x10-2 ± 0.7x10-4 θ = 118° ± 5°
Vinyl-ester resin 

system 1024 115 ± 15 3.3x10-2 ± 0.7x10-4 θ = 83º ± 8°

Epoxy resin system 1198 360 ± 7 3.6x10-2 ± 1x10-4 θ = 98º ± 7°
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Contact Angle Measurements

• Set-up
– High-speed camera
– Speed: 30 frames/s
– Resolution: 1500x1100 pixels

• 3 systems
– HPLC water (1)
– Epoxy SC15 (2)
– VE411-350 (3)

Acquisition 
System

Membrane

Syringe

High-speed 
camera

Drop

θ

1 2 3
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Capillary Porometry

• Provides semi-quantitative data, difficult to obtain by optical means
– Pore size distribution
– Maximum pore size, mean flow pore size, minimum detectable pore size

• Measurements performed at W. L. Gore & Associates (Elkton, MD)

• Principle: the air flow is recorded as a function of pressure

Low P
Medium PHigh P

flowmeter

mem
bra

ne
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General characteristics

Thickness Bubble point Mean Flow Pore

μm Pore size
(diam) (nm)

Pore size
(diam) (nm)Material of the 

membrane
Approximation average std dev average std dev

W1 ePTFE 50 247 6 130 6
WA ePTFE 75 606 10 255 3
WB ePTFE 30 469 4 221 6
WC ePTFE 7 337 13 188 8

D6501 ePTFE 230 351 15 150 1.1
D6504 ePTFE 200 219 13 101 2.4
D1302 ePTFE 250? 566 19 256 10

Support of the 
Donaldson 
membrane

Support of the 
membrane by W. 

L. Gore and 
Associates

• Three membranes from Gore
• Two membranes from Donaldson
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Pore size distribution

• The pore size distributions of the different membranes seem to match a 3-
parameters lognormal fit; this finding will be used at the end of the project 
to provide membrane’s users with guidelines, which correlate porometry 
data with membrane performance

• Examples with D1302 and WA
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Membrane Flow and Permeability 
Simulation

Pore size 
distribution Capillary 

pressure vs. 
Pore size

Permeability of 
the membrane 
at different 
pressures

Porometry 
data

(1)Number of pores of each size
(2)Hagen Poiseuille in all pores
(3)Correction factor for air flow
(4)Calculation of flow with fluid 

of interest and correction 
factor

(5)Calculation of permeability 
using Darcy’s law

Resin properties
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• Example with SC15 (the results show, again, that there is no agreement 
between all membranes)

• For water, the plots would be similar but would present lower permeabilities 
at similar pressures

Permeability of W and D
membranes and SC15-epoxy
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Autoclave experiments 

Motivation
Prove that the impregnation is driven by the capillary pressure of 
the largest pore. 

Principle
Model:

ΔP is the pressure applied during the process (vacuum for VARTM)

From the model:
Considering a non-wetting resin (Pcapillary< 0)
If ІΔPІ > ІPcapillaryІ ⇒ Impregnation of the membrane by the resin
If we apply a positive pressure to force impregnation

⇒ This critical value should be equal to the capillary pressure of 
the membrane’s largest pore

[ ]capillary
23

2

PPr
h10t

+Δε
η

=
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Autoclave Setup

Pass-through for 
sensors’ cables
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-Water: kΩ range

ground
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Box #1

vent
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Sample placement

Setup
Sensors in the mold to measure resin’s resistivity
The signal goes up when the resin goes through the membrane

to
p 

vi
ew

Bagging film Tacky tape
Membrane Resin
Breather cloth      Sensors

side view
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Autoclave: HPLC
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Good correlation between the theoretical capillary pressure measured for the bubble 
point and the experimental results.

Ongoing work includes the experimental evaluation of the capillary pressure of the 
membranes WC, D6501, D6502 and D6504.
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Autoclave: SC15
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The experimental results are not conclusive since they do not match neither the capillary pressure 
with the mean flow pore or the bubble point.

Potential explanation: the SC15 epoxy is a multi-component resin system which could allow 
penetration of it constituents at different pressure levels.
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On-Going Work
Draping Investigations

EADS experienced membrane failure for parts with 
complex draping requirements. To address this issue, basic 
characterization and a study of biaxial stretching of the 
membrane are performed.

• Basic characterization of the membrane was conducted to obtain its Young’s 
modulus, strain at break…

• Because the membrane is made of PTFE, we suspected that its mechanical 
behavior was strain rate dependent, which was confirmed. Therefore, it 
appeared crucial to choose the right strain rate to conduct our study.

• In order to address the behavior of the membrane and determine whether 
the membrane deforms mainly elastically or plastically, cycling was 
performed on the material.

• Finally, to simulate more closely the deformation that the membrane can 
encounter while being used in VARTM, a biaxial stretching setup was 
created.
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Illustration of the membrane 
stretching
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Stretching Behavior During 
Vacuum Application
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• A model was introduced to predict the impregnation time of the 
membrane by different resins
– There is a good match between experiments and theory, given 

that the input parameters present variations
• An experimental procedure was developed to investigate the driving 

force responsible for the success/breakdown of the membrane using 
the autoclave
– The tests with water seem to be convincing, although it is not the 

case for the epoxy SC15
• Mechanical testing of the membrane was conducted to address the 

deformation encountered by the membrane while being used during 
manufacturing
– Basic characterization and a strain rate dependency study give 

the basis of this study
– A unique setup was built to promote biaxial stretching and 

evaluate its impact on membrane’s performances

Conclusions and Future Work
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Aerospace VARTM Requires 
Elevated Temperature Processing

TRANSITIONED FOR R&D 
AND PRODUCTION AT 

DASAULT AVIATION (Paris, 
France)

Sensor Based Infusion Technology
Robust System Construction
Re-Configurable Infusion Schemes
Improved Resin Mixing System
Statistical Data Sampling During Infusion & Stag0
Electronic Work Instruction
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CONSIDER TWO AEROSPACE 
TOUGHENED EPOXY SYSTEMS

• Cytec Epoxy Cycom 977-20
– Viscosity = 120 cps @ 167°F
– Ramp with 4°F/min to 355 cure for 3 hours, cool to 140°F @ 

5°F/min
– Cured Resin Density = 1.31g/cm2

– Tg = 212°C
• Hexcel Epoxy RTM 6

– Viscosity = 180 cps @ 177°F / 40 cps @ 248°F
– Ramp with 5°F/min to 320 °F, cure for 75 minutes
– Cured Density = 1.14g/cm2

– Tg = 183°C (Hexcel Datasheet)
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Develop Property Database

1. Unnotched Tensile D-5766
2. Unnotched Compression D6484
3. Open hole compression D-6484
4. Filled Hole Compression D-6742-02
5. Pin Bearing D-5961
6. Short Beam Shear D-2344
7. Drop weight Impact D 7136
8. Compression after Impact (CAI) D-7137
9. Interlaminar Tension (D-5415)

ALL Tests will be conducted at room temperature 
and 180F/80% hot/wet conditions
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NAVAIR P3NAVAIR P3--OrionOrion
Replacement ProjectReplacement Project

•Leverage FAA and ONR funded design, process, materials, and 
prototyping technologies to develop flight worthy replacement 
article(s) for the P3 surveillance aircraft. 

– Exploit / Develop Composite Design & Analysis Capabilities
– Develop Elevated Temperature VARTM  (ETV) Process
– Produce test article for flight testing of trailing edge panel
–– Lay groundwork for certification of composite part for P3 replacLay groundwork for certification of composite part for P3 replacementement

•Develop a modelmodel program to establish a parts replacements 
initiative to reduce maintenance/part  costs for P3 and other 
aircraft.
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A Look Forward

• Benefit to Aviation
– Improved fundamental understanding of VARTM processing to 

understand benefits and disadvantages of various process 
variations

– Reduce part-to-part variations / improve allowables
– Automated VARTM will allow QA/QC of part production reducing 

costs and improve quality while maintaining traceability
– Open-access database of structural properties

• Future needs
– Work close with VARTM manufacturers to transition technology
– Improve VARTM to achieve autoclave-level fiber volume fraction
– Investigate more complex geometries / unitized structures
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Pin Bearing Test
ASTM D 5961

Sample Numbered and Drilled

C-scan of hole to identify 
drilling damage or local 
impurities.

Post testing 
hole damage.
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P3 Trailing Edge Flap

•802753 Trailing Edge Panel
•E10-09971 is the NADEP Jax Bead Cross Section

Air Control Pan

Main Wing Box

Ribs

Hat Section Stiffeners
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Bearing Test Results

• Typical reduction for elevated temperature wet conditions (180F, 80% 
wet) are observed

• Cycom 977-20 pin bearing strength is slightly better than RTM6 system

Room Temperature v. Elevated Wet Temperature
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Development Team

Oversee Trailing Edge Design
• P3 – Design & Manufacture

Trailing Edge Design
• Part Design and Analysis
• Process Development
• Prototype Fabrication
• Materials Selection / Testing

NAVAIR Structures Group
• Provide Structural Requirements
• Define Requirements for Structural 
Certification
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Full Design and Analysis for Carbon
Replacement Part 

Rivet Loads from Concentrated Force (3x200lb)

• Critical load case is the thermal expansion difference between the new 
carbon replacement panel and the aluminum rib structure
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