

Certification by Analysis

Gerardo Olivares

July 10th, 2007

Certification by Analysis

Motivation and Key Issues

JMS

 Aircraft manufacturers are under strong pressure to reduce costs and development cycles in a highly competitive market. The development of aircraft interiors is driven by individualized customer demands, increasingly complex products and ever shorter innovation cycles. To cope with these challenges, a company must be able to deliver in a timely manner high quality customized interiors that meet their customers specifications and the applicable certification requirements. To remain competitive in today's market, aircraft manufacturers must conduct research in the development of state-of-the-art computational tools and processes in order to reduce the amount of physical testing, certification costs and product development cycles.

The Joint Advanced Materials and Structures Center of Excellence

- Objective
 - Provide an overview of best practices so that Industry and FAA personnel can gain an understanding of the fundamental modeling methods, a feeling for the comparative usefulness of different numerical approaches, develop an appreciation of the modeling problem areas, and limitations of current numerical models.

- Validation criteria:
 - Validation metrics methods: review and evaluation
 - Identify data channels required, and tolerance levels for model validation
- Phase II: Aerospace Seat Material Database:
 - Literature review: Material data, testing protocols
 - Survey of materials used in aerospace seating applications
 - Review of material data required for numerical analysis:
 - Material Models: Structural components, cushions, and webbing
 - Strain rate definition for typical structural components
 - Material Database:
 - Physical testing
 - Validation material models: Physical Testing vs. Simulation

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - G.Olivares PhD, PI
 - K. S. Raju PhD, (High Strain Rate Material Testing)
 - J. Guarddon, S. Patrick
- FAA Technical Monitor
 - Allan Abramowitz
- Other FAA Personnel Involved
 - Rick Dewesse (CAMI)
 - David Moorcroft (CAMI)
- Industry Participation
 - B/E Aerospace, Contour Seating, Weber Aircraft, Zodiac, Schroth Safety Products, AMSAFE, TASS/TNO-MADYMO, Altair-Radioss, FTSS, ESI-Pamcrash, ETA, MSC, Cessna, Airbus, Hawker/Beechcraft, SAE Seat Committee

AC 20-146 - Scope

- This document defines the acceptable applications, limitations, validation processes, and minimum documentation requirements involved when substantiation by computer modeling is used to support a seat certification program.
- Computer modeling analytical techniques may be used to do the following, provided all pass/fail criteria identified in §§ 23.562, 25.562, 27.562, or 29.562 are satisfied:
 - Establish the critical seat installation/configuration in preparation for dynamic testing.
 - Demonstrate compliance to §§ 23.562, 25.562, 27.562, or 29.562 for changes to a baseline seat design, where the baseline seat design has demonstrated compliance to these rules by dynamic tests. Changes may include geometric or material changes to primary and non-primary structure.

FAR §§ **.562: Emergency Landing Conditions

06165	DYNAMIC	PART 23	PART 25	PART 27
	TEST REQUIREMENTS			
	TEST 1			
	Test Velocity - ft/sec	31 (9.5 m/sec)	35 (10.7 m/sec)	30 (9.2 m/sec)
	Seat Pitch Angle - Degrees	60	60	60
	Seat Yaw Angle - Degrees	0	0	0
	Peak Deceleration - G's	19/15	14	30
	Time To Peak - sec	0.05/0.06	0.08	0.031
	Floor Deformation - Degrees	None	None	10 Pitch/10 Roll
	TEST 2			
	Test Velocity - ft/sec	42 (12.8 m/sec)	44 (13.4 m/sec)	42 (12.8 m/sec)
2	Seat Pitch Angle - Degrees	0	0	0
	Seat Yaw Angle - Degrees	±10	±10	±10
	Peak Deceleration - G's	26/21	16	18.4
	Time To Peak - sec	0.05/0.06	0.09	0.071
	Floor Deformation - Degrees	10 Pitch/10 Roll	10 Pitch/10 Roll	10 Pitch/10 Roll
	COMPLIANCE			
	CRITERIA			
	HIC	1000	1000	1000
	Lumbar Load - 1b	1500 (6675 N)	1500 (6675 N)	1500 (6675 N)
	Strap Loads - 1b	1750 ¹ /2000 ²	1750 ¹ /2000 ²	1750 ¹ /2000 ²
		(7787N ¹ /8900N ²)	(7787N ¹ /8900N ²)	(7787N ¹ /8900N ²)
	Femur Loads - 1b	N/A	2250	N/A
	¹ - passenger ² - pilot			

JMS HII and HIII FAA 50th Percentile Anthropometric Test Dummies

Validation Metrics

- Computable measures are needed that can quantitatively compare experimental and computational results over a series of parameters to objectively assess computational accuracy over the traditional qualitative graphical comparison
- Applications:
 - Quantify repeatability of test results (Establish physical test variability corridors)
 - Numerical model quality evaluation
- Four validation metrics methods currently under evaluation:
 - Sprague & Geers validation metric
 - Weighted Integration Factor validation metric
 - Quick Rating from MADPost Software (includes 3 different metric evaluations)
 - Mod Eval Software (includes 4 different metric evaluations)

Sled Test Matrix

		BELT	TEST ANGLE		SEAT		
TEST NUMBER	ATD Serial#	TYPE	(deg)	LOADING	TYPE	BELT MATERIAL	CRASH PULSE
06165-1	FAA HYB III 290	2	0	16g	Rigid	100% Polyester	25.562
06165-2	FAA HYB III 290	2	0	16g	Rigid	100% Polyester	25.562
06165-3	HYB II 698	2	0	16g	Rigid	100% Polyester	25.562
06165-4	HYB II 698	2	0	16g	Rigid	100% Polyester	25.562
06165-5	HYB II 698	2	60	14g	Rigid	100% Polyester	25.562
06165-6	HYB II 698	2	60	14g	Rigid	100% Polyester	25.562
06165-7	FAA HYB III 289	2	60	14g	Rigid	100% Polyester	25.562
06165-8	FAA HYB III 289	2	60	14g	Rigid	100% Polyester	25.562
06165-9	EMPTY	-	0	16g	Rigid	-	25.562
06165-10	HYB II 656	3	0	16g	Rigid	100% Polyester	25.562
06165-11	HYB II 656	3	0	16g	Rigid	100% Polyester	25.562
06165-12	FAA HYB III 289	3	0	16g	Rigid	100% Polyester	25.562
06165-13	FAA HYB III 289	3	0	16g	Rigid	100% Polyester	25.562
06165-14	FAA HYB III 289	4	0	16g	Rigid	100% Polyester	25.562
06165-15	FAA HYB III 289	4	0	16g	Rigid	100% Polyester	25.562
06165-16	EMPTY	-	0	16g	Rigid	-	25.562
06165-17	HYB II 656	4	0	16g	Rigid	100% Polyester	25.562
06165-18	HYB II 656	4	0	16g	Rigid	100% Polyester	25.562
06165-19*	HYB II 655	2	60	14g	Cushioned	100% Polyester	25.562
06165-20	HYB II 655	2	60	14g	Cushioned	100% Polyester	25.562
06165-21	FAA HYB III 289	2	60	14g	Cushioned	100% Polyester	25.562
06165-22	FAA HYB III 289	2	60	14g	Cushioned	100% Polyester	25.562
06165-23**	FAA HYB III 290	2	60	14g	Cushioned	100% Polvester	25.562

Overview Test Configurations HII 50th percentile ATD

Overview Test Configurations HIII FAA 50th percentile ATD

JMS Test Data Channels and Polarities Overview (per SAE J211-1)

A Center of Excellence

Channel Description	Channel Units	Hybrid II	Hybrid III
Sled acceleration	G's vs Sec		
Head X acceleration	G's vs Sec		
Head Y acceleration	G's vs Sec		
Head Z acceleration	G's vs Sec		
Upper neck force X direction	Lbf vs Sec		
Upper neck force Y direction	Lbf vs Sec		
Upper neck force Z direction	Lbf vs Sec		
Upper neck moment about X axis	In-lbf vs Sec		
Upper neck moment about Y axis	In-lbf vs Sec		
Upper neck moment about Z axis	In-lbf vs Sec		
Torso X acceleration	G's vs Sec		
Torso Y acceleration	G's vs Sec		
Torso Z acceleration	G's vs Sec		
Lumbar load X direction	Lbf vs Sec		
Lumbar load Z direction	Lbf vs Sec		
Lumbar moment about Y axis	In-lbf vs Sec		
Pelvis X acceleration	G's vs Sec		
Pelvis Y acceleration	G's vs Sec		
Pelvis Z acceleration	G's vs Sec		
Left femur compression load	Lbf vs Sec		
Right femur compression load	Lbf vs Sec		
Lap strap left side tension load	Lbf vs Sec		
Lap strap right side tension load	Lbf vs Sec		
Shoulder left strap tension load	Lbf vs Sec		
Shoulder right strap tension load	Lbf vs Sec		
Joint shoulder straps tension load	Lbf vs Sec		
Seat back X reaction force	Lbf vs Sec		
Seat back Y reaction force	Lbf vs Sec		
Seat back Z reaction force	Lbf vs Sec		
Seat pan X reaction force	Lbf vs Sec		
Seat pan Y reaction force	Lbf vs Sec		
Seat pan Z reaction force	Lbf vs Sec		
Seat pan X reaction moment	In-lbf vs Sec		
Seat pan Y reaction moment	In-lbf vs Sec		
Seat pan Z reaction moment	In-lbf vs Sec		
Head trajectory in the X-Z plane	Inch vs Inch		
Chest trajectory in the X-Z plane	Inch vs Inch		
Torso trajectory in the X-Z plane	Inch vs Inch		
Knee trajectory in the X-Z plane	Inch vs Inch		V

Validation Example: HIII FAA Test Type 1 FAR 25.562

Validation Example: Pre-Test Measurements

Side View of ATD Targets

A Center of Excellence

Advanced N

Transport Aircraft Structures

CECAM

JMS Validation Example: Sled Pulse Repeatability

Head CG X - Acceleration

70

55

Head CG Resultant - Acceleration - H3 2point 06165-7 H3 2point 06165-7 70 70 - H3 2point 06165-8 - H3 2point 06165-8 Magnitude Error = 6% 55 · 55 Phase Error = 10% H3 2point Simulation H3 2point Simulation Comprehensive Error = 12% 40 40 က် 25 ပြ ං^ග 25 ෆ් 4.0 Acceleration -5 0; Acceleration --35 Magnitude Error = 4% -35 Phase Error = 8% Comprehensive Error = 9% -50 -50 -65 -651 -80+ -80+ 50 250 50 100 100 150 200 300 150 200 250 300 Time - ms Time - ms

70

55 ·

40

ං^ග 25

Acceleration -0; c, 01

-35

-50

-65

-80+

Magnitude Error = -65% Phase Error = 52%

50

omprehensive Error = 83%

100

Head CG Y - Acceleration

150

Time - ms

200

250

300

- H3 2point 06165-7

- H3 2point 06165-8

H3 2point Simulation

The Joint Advanced Materials and Structures Center of Excellence

A Center of Excellence

Advanced Materials in

Transport Aircraft Structures

FLAM

Seat Pan Y - Force

Validation Example: Validation Metric (Sprague and Geers)

CHANNEL	Т	EST CONDITION	MAGNITUDE ERROR	PHASE ERROR	COMBINED
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	5%	4%	6%
HEAD RESULTANT ACCELERATION	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	4%	8%	9%
SEAT DAN DEACTION FORCE Y	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	5%	2%	5%
	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	6%	6%	8%
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	-5%	22%	22%
SEAT PAN REACTION FORCE Y	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	-55%	45%	71%
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	-1.35%	1.01%	1.69%
SEAT FAN REACTION FORCE Z	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	26%	20%	33%
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	-0.90%	1.00%	1.34%
SEAT FAN REACTIONT OKCE RESULIANT	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	6%	7%	9%
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	5%	2%	6%
LAP BELT REACTION FORCE LEFT	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	118%	22%	120%
	TEST vs. TEST	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 60° (06165-8)	0.55%	1.27%	1.38%
LUMBAR LOAD	TEST vs. Simulation	2 POINT BELT, 60° (06165-7) 2 POINT BELT, 0° (SIMULATION)	1%	21%	21%

The Joint Advanced Materials and Structures Center of Excellence

A Center of Excellence

Transport Aircraft Structure

Validation Example: Occupant Kinematics

JMS

JMS Validation Example: Occupant Kinematics

JMS Validation Example: Occupant Kinematics

Validation Example: Occupant Kinematics

JMS

JMS Validation Example: Occupant Kinematics

The John Auvanced Materials and Structures Center of Excellence

30

Validation Example: Occupant Kinematics

JMS

JMS Testing Variability Summary: 2 -Point Belt – Type 1 FAR25.562

CHANNEL		TEST CONDITION	MAGNITUDE ERROR	PHASE ERROR	RESULTANT
		2 POINT BELT, 60° (06165-5)	C 0/	8%	10.0/
HEAD DESULTANT ACCELEDATION	INTORID Z	2 POINT BELT, 60° (06165-6)	070		1076
HEAD RESOLIANT ACCELERATION	ב מומפעע	2 POINT BELT, 60° (06165-7)	E0/	10/	G04
	INTORID 3	2 POINT BELT, 60° (06165-8)	370	4 70	0.70
	ב חוספעו	2 POINT BELT, 60° (06165-5)	16%	E%	17%
	ITTORIO 2	2 POINT BELT, 60° (06165-6)	-1076	0.0	17.70
LAP BEET REACTION FORCE LEFT	ב סוספעע	2 POINT BELT, 60° (06165-7)	E0/	70/	G04
	INTORID 3	2 POINT BELT, 60° (06165-8)	370	2 70	070
	ב מוספעו	2 POINT BELT, 60° (06165-5)	10/	J 0/	20/
SEAT DAN DEACTION FORCE Y	IN TORID Z	2 POINT BELT, 60° (06165-6)	-170	2 70	2 70
SEAT PAN REACTION FORCE A	ב מומפעע	2 POINT BELT, 60° (06165-7)	E0/	70/	E0(
	INTORID 3	2 POINT BELT, 60° (06165-8)] 5%	2 /0	570
	HYBRID 2	2 POINT BELT, 60° (06165-5)	-5%	770/	220/
SEAT DAN DEACTION FORCE V		2 POINT BELT, 60° (06165-6)		22.70	22.70
SEAT PAN REACTION FORCE T	HYBRID 3	2 POINT BELT, 60° (06165-7)	-22%	44%	40.04
		2 POINT BELT, 60° (06165-8)			4970
	HYBRID 2	2 POINT BELT, 60° (06165-5)	5%	J 0/	E 0/.
SEAT DAN DEACTION FORCE 7		2 POINT BELT, 60° (06165-6)		2%	576
SEAT PAN REACTION FORCE Z	ב סוספעע	2 POINT BELT, 60° (06165-7)	10/	10/	204
	INTORID 3	2 POINT BELT, 60° (06165-8)	-1%	170	2 70
	ר חוספעו	2 POINT BELT, 60° (06165-5)	10/	J 0/	E0/
SEAT DAN DEACTION FORCE DESULTANT	ITTORIO 2	2 POINT BELT, 60° (06165-6)	4 /0	270	576
SEAT PAN REACTION FORCE RESULTANT	ב סוספעע	2 POINT BELT, 60° (06165-7)	10/	10/	10/
	INTORID 3	2 POINT BELT, 60° (06165-8)	-170	170	1 70
	ב מוספעו	2 POINT BELT, 60° (06165-5)	00/	10/	90/
	ITTORIO 2	2 POINT BELT, 60° (06165-6)	0/0	4 /0	0.%
LONDAR LOAD		2 POINT BELT, 60° (06165-7)	10/	1.0/	1.0/
	ILLIRER O 3	2 POINT BELT, 60° (06165-8)	170	170	170

JMS Testing Variability Summary: 2-Point Belt – Type 2 FAR25.562

CHANNEL		TEST CONDITION	MAGNITUDE ERROR	PHASE ERROR	RESULTANT
	ר חוספעו	2 POINT BELT, 0° (06165-3)	10%	6%	10%
HEAD DECLIFTANT ACCELEDATION		2 POINT BELT, 0° (06165-4)	1 10 /0		1270
	ב מומסעו	2 POINT BELT, 0° (06165-1)	20/	4.07	4.07
	I T DRIU S	2 POINT BELT, 0° (06165-2)	-270	4 70	4 70
	ב חוספעו	2 POINT BELT, 0° (06165-3)	10/	10/	194
LAD BELT DEACTION FORCE LEFT		2 POINT BELT, 0° (06165-4)	1/0	4 /0	4 /0
DAF BEET REACTION FORCE LEFT		2 POINT BELT, 0° (06165-1)	10/	J 0/	204
	INTORIU S	2 POINT BELT, 0° (06165-2)	170	∠ 70	∠ 70
	ר חוספעו	2 POINT BELT, 0° (06165-3)	10%	1.40/	19%
SEAT DAN DEACTION FORCE Y	TT DRID Z	2 POINT BELT, 0° (06165-4)	-1076	14 /0	10 /0
		2 POINT BELT, 0° (06165-1)	3%	8%	Q%
	ITTORID J	2 POINT BELT, 0° (06165-2)			570
	HYBRID 2	2 POINT BELT, 0° (06165-3)	60%	19%	63%
SEAT PAN REACTION FORCE V		2 POINT BELT, 0° (06165-4)		1370	00.70
	HYBRID 3	2 POINT BELT, 0° (06165-1)	-28%	20%	35%
		2 POINT BELT, 0° (06165-2)			5570
	HYBRID 2	2 POINT BELT, 0° (06165-3)	-16%	11%	19%
SEAT PAN REACTION FORCE 7		2 POINT BELT, 0° (06165-4)			
		2 POINT BELT, 0° (06165-1)	19%	E%.	10%
	ITTURIU J	2 POINT BELT, 0° (06165-2)	1070	070	1570
	HVBRID 2	2 POINT BELT, 0° (06165-3)	-14%	11%	17%
SEAT PAN REACTION FORCE RESULTANT		2 POINT BELT, 0° (06165-4)	-1470	1170	17.70
	HVBRID 3	2 POINT BELT, 0° (06165-1)	11%	6%	13%
	III DIGD 3	2 POINT BELT, 0° (06165-2)	1170	070	1370
		2 POINT BELT, 0° (06165-3)	8%	5%	10%
		2 POINT BELT, 0° (06165-4)	0,0	570	10 //
		2 POINT BELT, 0° (06165-1)	_1%	7%	2%
		2 POINT BELT, 0° (06165-2)	-170	270	270

JMS Testing Variability Summary: 3 -Point Belt – Type 2 FAR25.562

CHANNEL	TEST CONDITION		MAGNITUDE ERROR	PHASE ERROR	RESULTANT
	ב חוספעו	3 POINT BELT, 0° (06165-10)	27%	17%	A194
HEAD DESULTANT ACCELEDATION	ITTURIU Z	3 POINT BELT, 0° (06165-11)	-57 %		4170
HEAD RESOLIANT ACCELERATION	HABDID 3	3 POINT BELT, 0° (06165-12)	104	204	E%.
	ITT DRID 3	3 POINT BELT, 0° (06165-13)	4 /0	270	576
	HVBDID 2	3 POINT BELT, 0° (06165-10)	6%	1%	6%
LAP BELT REACTION FORCE LEFT		3 POINT BELT, 0° (06165-11)	070	170	070
EAF BEET REACTION FORCE EEFT	HVBDID 3	3 POINT BELT, 0° (06165-12)	n%	2%	2%
		3 POINT BELT, 0° (06165-13)	070	270	270
		3 POINT BELT, 0° (06165-10)	2%	2%	3%
		3 POINT BELT, 0° (06165-11)	270	2 /0	570
		3 POINT BELT, 0° (06165-12)		1.0/	1%
		3 POINT BELT, 0° (06165-13)	0,0	170	
		3 POINT BELT, 0° (06165-10))	7%	7%
SEAT PAN REACTION FORCE X		3 POINT BELT, 0° (06165-11)		770	7.70
	HYBRID 3	3 POINT BELT, 0° (06165-12))) 1%	2%	3%
		3 POINT BELT, 0° (06165-13)		2,0	5,0
	HYBRID 2	3 POINT BELT, 0° (06165-10))) -6%	16%	17%
SEAT PAN REACTION FORCE V		3 POINT BELT, 0° (06165-11)		10%	
		3 POINT BELT, 0° (06165-12)))	11%	13%
	III BIGD S	3 POINT BELT, 0° (06165-13)		1170	1376
	HVBDID 2	3 POINT BELT, 0° (06165-10)	-12%	10%	16%
SEAT PAN REACTION FORCE 7		3 POINT BELT, 0° (06165-11)	-1270	1070	10,0
		3 POINT BELT, 0° (06165-12)	-1%	4%	5%
		3 POINT BELT, 0° (06165-13)	-170	470	5,0
		3 POINT BELT, 0° (06165-10)	-27%	24%	36%
SEAT PAN REACTION FORCE RESULTANT		3 POINT BELT, 0° (06165-11)	-2170	2470	30%
		3 POINT BELT, 0° (06165-12)	0%	3%	3%
		3 POINT BELT, 0° (06165-13)	0,0	570	5,0
		3 POINT BELT, 0° (06165-10)	-3%	16%	16%
		3 POINT BELT, 0° (06165-11)	-570	10 %	10 //
		3 POINT BELT, 0° (06165-12)	15%	8%	16%
	phone of	3 POINT BELT, 0° (06165-13)	15%	6%	10 /0

JMS Testing Variability Summary: 4 -Point Belt – Type 2 FAR25.562

CHANNEL		TEST CONDITION	MAGNITUDE ERROR	PHASE ERROR	RESULTANT
	HYBRID 2	4 POINT BELT, 0° (06165-17)	2%	7%	7%
HEAD RESULTANT ACCELERATION		4 POINT BELT, 0° (06165-18)			
	HYBRID 3	4 POINT BELT, 0° (06165-14)	<u>4)</u> 5%	2%	5%
		4 POINT BELT, 0° (06165-15)		2.00	
	HVBRID 2	4 POINT BELT, 0° (06165-17)	1%	5%	5%
LAP BELT REACTION FORCE LEFT		4 POINT BELT, 0° (06165-18))	5,0	5,0
		4 POINT BELT, 0° (06165-14)	_2%	1%	3%
		4 POINT BELT, 0° (06165-15)	-2.70	170	3,0
		4 POINT BELT, 0° (06165-17)		1%	1%
SHOULDERS STRAP FORCE		4 POINT BELT, 0° (06165-18)	070	470	4 /0
		4 POINT BELT, 0° (06165-14)	204	204	3%
	ITTORIO J	4 POINT BELT, 0° (06165-15)	-2 /0	570	
SEAT PAN REACTION FORCE X	ר מוספעע	4 POINT BELT, 0° (06165-17))) -1%	E0/	E0/.
	INTORIO 2	4 POINT BELT, 0° (06165-18)		J 70	J 70
	HYBRID 3	4 POINT BELT, 0° (06165-14))) 1%	20/	-10/
		4 POINT BELT, 0° (06165-15)		Z 70	270
	HYBRID 2	4 POINT BELT, 0° (06165-17)))	EC 9/	C 49/
SEAT DAN DEACTION FORCE Y		4 POINT BELT, 0° (06165-18)		0/06	04 70
SEAT PAN REACTION FORCE T		4 POINT BELT, 0° (06165-14)	102%	210/	107%
	IN TORID 3	4 POINT BELT, 0° (06165-15)		31%	
		4 POINT BELT, 0° (06165-17)	EOI	00/	10%
SEAT DAN DEACTION FORCE 7	INTORIO 2	4 POINT BELT, 0° (06165-18)	-370	0 %	10.70
SEAT PAN REACTION FORCE Z		4 POINT BELT, 0° (06165-14)	EQ	E 0/	70/
	IN TORID 3	4 POINT BELT, 0° (06165-15)] 370	D 70	7 70
		4 POINT BELT, 0° (06165-17)	20/	C 9/	70/
SEAT DAN DEACTION FORCE DESULTANT	IN TORIU Z	4 POINT BELT, 0° (06165-18)	-3%	070	/ 70
SEAT PAN REACTION FORCE RESULTANT		4 POINT BELT, 0° (06165-14)	20/	20/	E 0/
	INTERIU 3	4 POINT BELT, 0° (06165-15)]	J 70	J 70
		4 POINT BELT, 0° (06165-17)	20/	1.4.0/	1.40/
	IN TORID 2	4 POINT BELT, 0° (06165-18)	-2%	14%	14%
LUMDAR LUAD		4 POINT BELT, 0° (06165-14)	70/	44.07	400/
	ורזטאסזחן	4 POINT BELT 09 (06165-15)	1 -/ %	11%	13%

JMS Testing Variability Summary: 2 - Point Belt- Cushion – Type 1 FAR25.562

CHANNEL		TEST CONDITION	MAGNITUDE ERROR	PHASE ERROR	RESULTANT
	ר מוחסעע	2 PT, 60°, CUSHIONED (06165-19A)	10/	6%	C of
HEAD DESULTANT ACCELEDATION	INTORID Z	2 PT, 60°, CUSHIONED (06165-20)	170		070
HEAD RESOLIANT ACCELERATION	HVBDID 3	2 PT, 60°, CUSHIONED (06165-21)	10/	104	E%
	ITT DRID J	2 PT, 60°, CUSHIONED (06165-22)	4 /0	4 70	070
		2 PT, 60°, CUSHIONED (06165-19A)		3%	23%
LAP BELT REACTION FORCE LEFT		2 PT, 60°, CUSHIONED (06165-20)	-2370	570	2370
		2 PT, 60°, CUSHIONED (06165-21)	_2%	3%	3%
		2 PT, 60°, CUSHIONED (06165-22)	-2 /0	570	570
		2 PT, 60°, CUSHIONED (06165-19A)	C F	CE	C.F.
SEAT PAN REACTION FORCE X		2 PT, 60°, CUSHIONED (06165-20)	0.1.	0.1.	
		2 PT, 60°, CUSHIONED (06165-21)	7%	4%	8%
		2 PT, 60°, CUSHIONED (06165-22)	?)		
	HYBRID 2	2 PT, 60°, CUSHIONED (06165-19A))) 41%	27%	49%
SEAT PAN REACTION FORCE V		2 PT, 60°, CUSHIONED (06165-20)		27.70	4070
	HYBRID 3	2 PT, 60°, CUSHIONED (06165-21)	<u>)</u> -12%	59%	60%
		2 PT, 60°, CUSHIONED (06165-22)			
		2 PT, 60°, CUSHIONED (06165-19A)	<u>)</u> -1%	2%	3%
SEAT PAN REACTION FORCE 7		2 PT, 60°, CUSHIONED (06165-20)		2 /0	J /0
		2 PT, 60°, CUSHIONED (06165-21)		10/	10/
		2 PT, 60°, CUSHIONED (06165-22)	0.0	170	170
		2 PT, 60°, CUSHIONED (06165-19A)	5%	3%	6%
SEAT DAN DEACTION FORCE DESULTANT		2 PT, 60°, CUSHIONED (06165-20)	576	576	070
SEAT FAN REACTION TORCE RESULTANT		2 PT, 60°, CUSHIONED (06165-21)	1%	1%	2%
		2 PT, 60°, CUSHIONED (06165-22)	170	170	270
	HVBDID 2	2 PT, 60°, CUSHIONED (06165-19A)	10/	3%	1%
		2 PT, 60°, CUSHIONED (06165-20)	170	370	4 /0
		2 PT, 60°, CUSHIONED (06165-21)	E0/	2%	E0/
	ILLI RID 3	2 PT, 60°, CUSHIONED (06165-22)	570	² %	570

Material Database Development Process

Strain Rate Testing

CECAM

• There are three types of testing systems required for crashworthiness applications:

JMS

- Mechanical or Servo-Hydraulic: Quasi-static condition and strain rates bellow 0.1/s.
- Servo-Hydraulic: Strain rate range 0.1 to 500/s.
- Bar System: Strain rate range 100 to 1000/s, and higher
- According to preliminary data analysis strain rates increments 1,10,100 /s are sufficient for describing the material strain rate sensitivity

JMS Strain Rate Testing Materials

ALUMINUM						
Material Designation	Material Form	Material Specification				
7075 T6	Sheet	AMS-4045				
		AMS-QQ-A-250/12				
	Rolled/Drawn Bar	AMS-QQ-A 225/9				
	Extrusion Bar	AMS-QQ-A 200/11				
7075 T651	Plate	AMS-4045				
2024 T3	Sheet	AMS-4037				
		AMS-QQ-A-250/4				
	Rolled/Drawn Bar	AMS-4086				
		AMS-QQ-A-225/6				
	Extrusion Bar	AMS-QQ-A-200/3				
2024 T351	Rolled/Drawn Bar	AMS-4120				
	Plate	AMS-4037				
2024 T3511	Extrusion Bar	AMS-4165				
2014 T6	Sheet	AMS-4029				
	Bar	AMS-4121				
2014 T651	Plate	AMS-4029				
6061 T6	Rolled/Drawn Bar	AMS-4117				
6061 T6511	Extrusion Bar	AMS-QQ-A-200/8				
6082 T6	Sheet	BS EN 1386				
6082 T6	Plate	BS EN 1386				
7020 T6	Extrusion Tube	BS EN 755-2				
L114 T6	Tube	BS L114(1971)				
L168 T6	Bar	BS L168(1978)				
5251 H22	Sheet	BS EN 485-2				

Strain Rate Testing Materials

JMS Baseline Testing Objectives

Advanced Materials in transport Aircraft Structures

A Center of Evcellen

- Generation of medium strain rate data for 7075-T6 Aluminum under tension
- Comparison of load measurement methods
 - Piezoelectric load cell
 - Strain gage based load cell
 - Extended tab gage
- Generation of Transfer functions to correct the load-cell data for modulations

Test Matrix

1								
TEST SPEED	LOAD MEASUREM	LOAD MEASUREMENT METHOD						
(IN/S)	PIEZO LOAD	STRAIN GAUGE	TAB STRAIN	STRAIN GAUGES				
	CELL	LOAD CELL	GAUGE	IN GAUGE				
				REGION				
QUASI-STATIC	x3	X3	USED IN ALL	STRAIN GAUGES				
(0.001)			TESTS	USED IN ALL				
0.1	x3	x3		TESTS				
1.0	x3	x3		- TO MEASURE				
10	x3	x3		STRAIN				
50	x3	x3		- TO MEASURE				
100	x3	x3		STRAIN RATE				

A Center of Excellence

Note: For additional information on Aircraft Seat Cushion Component Testing refer to DOT/FAA/AR-05/5

JMS Conclusions and Future Work

- Release report phase I: ATD Validation Data and Procedures – September 2007
- Continue to support numerical ATD developers
- Continue FE seat modeling efforts (strain rate range definition):
 - Continue data analysis and sled validation of available FE models
 - Build FE models of commercial passenger seats to study the strain rates of various components
- Material testing methods and database development
- Continue training graduate students and industry in CBA methods

A Look Forward

- Benefit to Aviation:
 - Reduce certification costs
 - Reduce development cycles
 - Improve product design
 - Provide data for ongoing SAE Aerospace Recommended Practice ARP 5765 on CBA
 - Provide a simulation industry standard
- Future needs:
 - Typical joints and fittings modeling guidelines:
 - Component Testing, Failure Models, Modeling Techniques
 - System level computational Stochastic and DOE analyses:
 - Eliminate deterministic models and designs hence improving the "robustness" of the designs
 - Research additional applications such as row-to-row, bulkhead, HUD and OHU installations, and side facing seats
 - Develop Virtual Certification protocols

