Composite Safety and Certification Initiatives

Larry Ilcewicz
CS&TA

Federal Aviation Administration July 10, 2007

- Background
 - Objectives
 - Recent Accomplishments
 - Support from JAMS
- Challenges for JAMS
 - Future relevance
 - Expand industry involvement
- Safety Management
 - Role of CACRC & CMH-17
 - New WSU project

Ongoing Composite Safety & Certification Initiatives*

Objectives

- 1) Work with industry, other government agencies, and academia to ensure safe and efficient deployment of composite technologies used in existing and future aircraft
- Update policies, advisory circulars, training, and detailed background used to support standardized composite practices

* Efforts started in 1999 to address issues associated with increasing composite applications

Technical Thrust Areas

Advancements depend on close integration between areas

Material Control, Standardization and Shared Databases

Structural Substantiation

- Advances in analysis& test building blocks
- Statistical significance
- Environmental effects
- Manufacturing integration

Bonded Joint Processing Issues

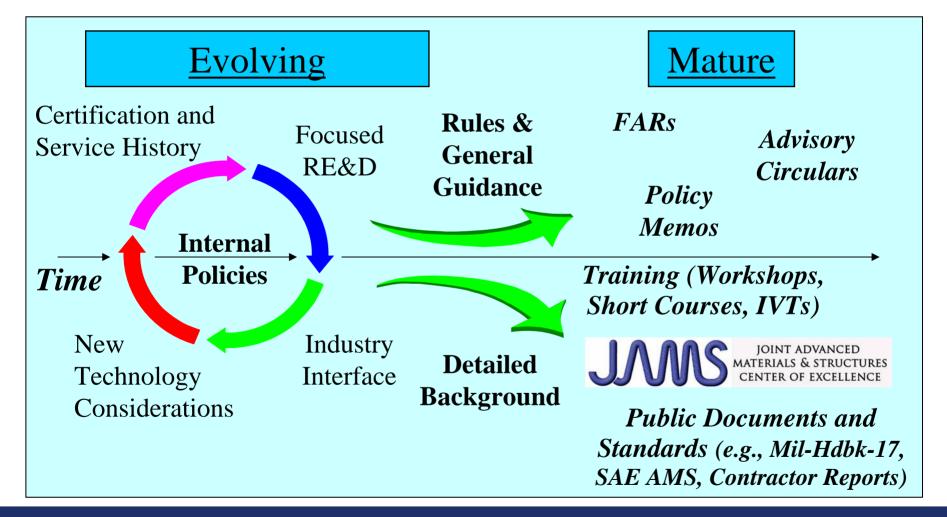
FAA and NASA R&D is currently active in most of these areas

NASA

Advanced Material
Forms and
Processes

Damage Tolerance and Maintenance Practices

- Critical defects (impact & mfg.)
- Bonded structure & repair issues
- Fatigue & damage considerations
- Life assessment (tests & analyses)
- Accelerated testing
- NDI damage metrics/service POD
- Equivalent levels of safety
- Training standards


Flammability & Crashworthiness

Support to cabin safety research groups

Significant progress, which has relevance to all aircraft products, has been gained to date

FAA Approach to Composite Safety and Certification Initiatives

FAA Composite Team Members

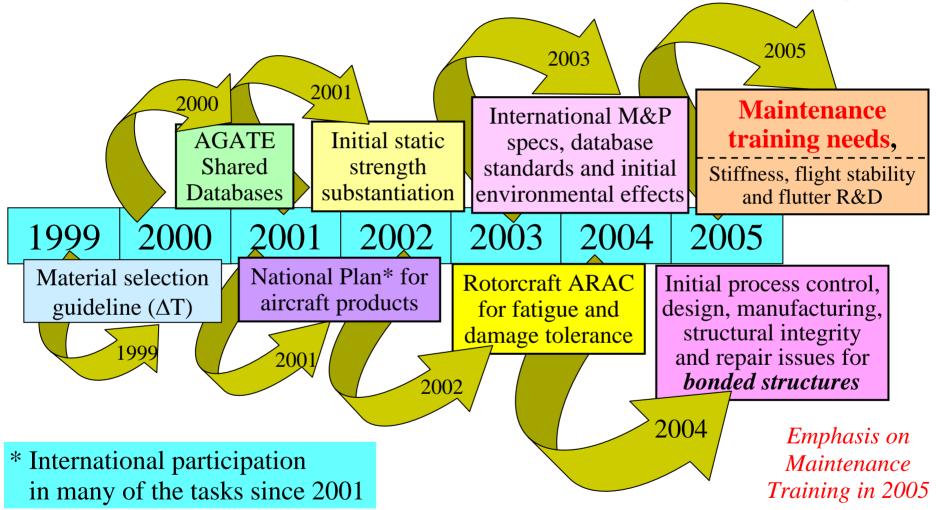
Represented Group	Team Member Name	FAA Organization Number & Routing
FAA	Curtis Davies	AAR-450 (FAA Technical Center)
Tech. Center	TBD (Peter's replacement)	AAR-450 (FAA Technical Center)
International	John Masters	AEU-100 (Brussels Aircraft Certification Staff)
Directorates	Lester Cheng	ACE-111 (Small Airplane Directorate)
	Bob Stegeman	ACE-111 (Small Airplane Directorate)
	Charles Harrison	ASW-110 (Rotorcraft Directorate)
	Ian Won	ANM-115 (Transport Airplane Directorate)
	Jay Turnberg	ANE-110 (Engine & Propeller Directorate)
DC Certification	James Kabbara	AIR-120 (Aircraft Standards Division)
Flight Standards	Rusty Jones	AFS-309 (Aircraft Maintenance Division)
	Gary Goodwin	ANM-200 (Seattle AEG)
	Roger Caldwell	ANM-100D (Denver ACO)
	Mark Freisthler	ANM-120S (Seattle ACO)
	Ed Garino	ACE-117A (Atlanta ACO)
	Hassan Amini	ACE-117A (Atlanta ACO)
ACOs,	Fred Guerin	ANM-120L (Los Angeles ACO)
MIDOs,	Angie Kostopoulos	ACE-116C (Chicago ACO)
& CMOs	David Ostrodka	ACE-118W (Wichita ACO)
	Richard Noll	ANE-150 (Boston ACO)
	John Harding	ANM-108B (Seattle CMO)
	David Swartz	ACE-115N (Anchorage ACO)
CS&TA	Larry Ilcewicz	ANM-115N (CS&TA, Composites)

Those attending the JAMS Meeting are highlighted in blue italics.

CSTA and STS Advisors: Al Broz, Robert Eastin, John Howford, Terry Khaled, Steve Soltis, Dave Walen, Chip Queitzsch

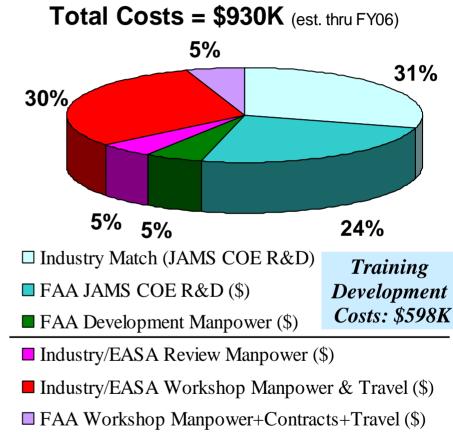
Important Teammates

- NASA has been a leader for composite applications
 - Significant research support since 1970/1980s
 - AA587, A300-600 accident investigation
 - NCAMP support to material standardization


Training CN
Databases
Standardization
Engineering guidelines

- DOD and DARPA research
- EASA and other foreign research/standardization

Past Milestones for Composite Safety & Certification Policy, Guidance & Training



Joint Efforts by Industry & Regulatory Experts to Standardize a Course on Critical Composite Maintenance & Repair Issues

- 2004: Initial workshops to define framework (incl. course objectives on the key areas of awareness for engineers, technicians & inspectors)
- <u>2005</u>: 11 course modules drafted for workshop review
- 2006: Update modules and develop course standards with SAE CACRC

• <u>2007</u>: Coordinated FAA/industry release of course standards

11/04 & 9/05 Workshop Costs: \$332K

Composite Maintenance Training Reports

Import

Key Content

FAA Technical Document

 Unofficial FAA document for informational purposes only

- Written by FAA (L. Cheng & L. Ilcewicz)
- Not a formal reference that is archived

FAA JAMS Technical Report

• FAA document of JAMS R&D used for educational purposes to support course development

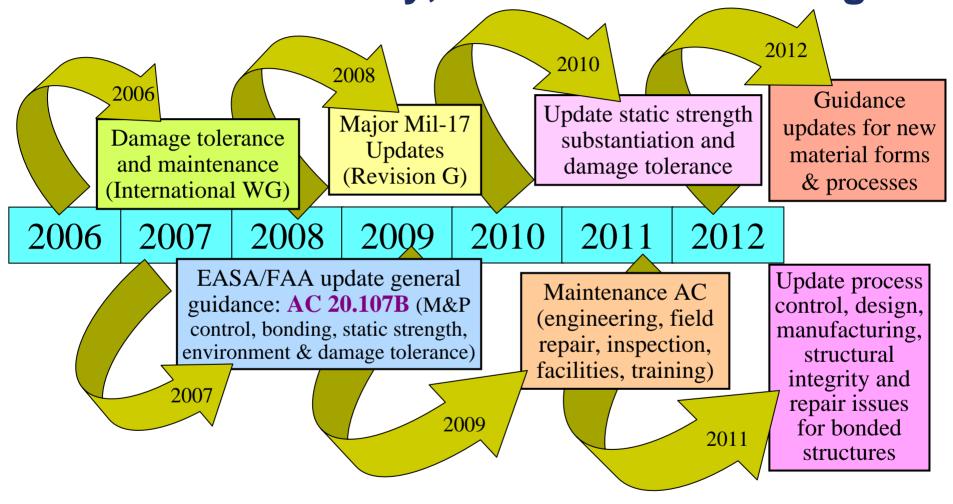
- Written by Edmonds CC. (C. Seaton)
- Formal reference that is archived

SAE CACRC AIR Report

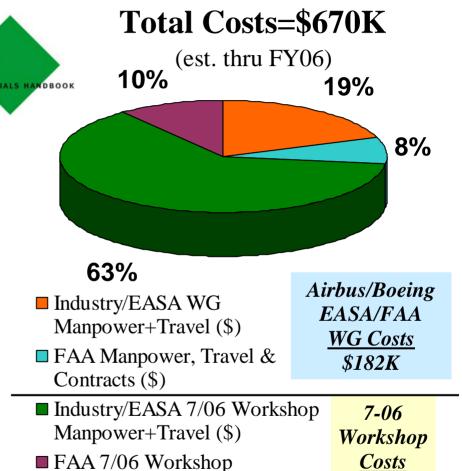
- International standard to describe essential course content
- Drafted & approved by CACRC
- Formal reference that is archived

Industry Interface, CMH-17 Mtgs. and FAA Workshops

- Basis for all reports & documents
- Expert inputs and review of draft reports & course content



- Testimonials, graphics, videos & other teaching aids
- Edmonds CC. Beta courses



Future milestones for Composite Safety & Certification Policy, Guidance & Training

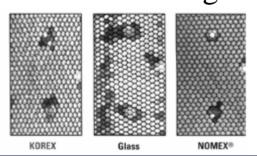
Other FAA/EASA/Industry Working Groups for Damage Tolerance and Maintenance

- Started in 2005
 - New content for CMH-17 chapters on damage tolerance and supportability
 - Efforts initiated with Airbus and Boeing, then expanded to other industry groups in workshops
 - Update OEM source documentation (MPD, SRM, etc.) as appropriate
- 2006 & 2007 Composite Damage Tolerance and Maintenance Workshops

Manpower+Contracts+Travel (\$)

\$488K

Other Examples of JAMS R&D Directly Related to CS&CI in Damage Tolerance & Maintenance


Future composite guidance, policy and training development in areas driven by industry needs

Related research (examples shown below)

Structural Substantiation Protocol

Sandwich Fluid Ingression

Impact Threat Assessment

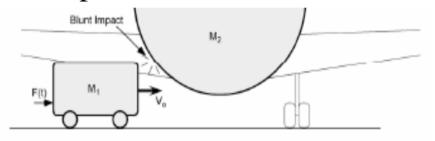


Figure 1. Blunt Impact on Aircraft Fuselage

NDI Standards

FAA Perspectives on JAMS Research & Educational Developments

FAA is primarily interested in studying service incidents and emerging safety threats but will also evaluate new technology being used in product certification

- Primary goal: study "real-world" issues for advanced materials & structures, with emphasis on the factors affecting safety
- Secondary goals: evaluate new technology applied in product certification (e.g., composite fuselage damage tolerance)
 Supporting technologies such as test methods, process controls and analysis methods can also be studied to ID limits & establish protocol for use (pre-requisites: must have relevance to safety and industry is close to using them for certification & airworthiness assessments)
- Deliverables should ultimately lead to guidance, policy, standard training materials and protocol for acceptable industry practices

Challenges for JAMS Future Relevance

- Emphasis must be on safety & certification
 - Experts from industry & regulatory bodies must be active in JAMS research & educational developments such that deliverables have relevance and utility
 - Need an assessment of whether that is happening in a continuous review of our programs throughout the year
- Most FAA research projects are expected to have a near-term focus (results used in the field within 1 to 2 years)
 - Safety & certification R&D with a low risk of failure
- Longer-term projects must retain an emphasis on safety & certification *not developing technology for industry*
 - Payoffs from more demanding R&D (not higher risk of failure)

Ilcewicz Anecdotes for JAMS R&D

The FAA can't afford to go for the home run with limited R&D resources and a high potential for strikeouts that don't mitigate the risk of aircraft accidents.

Silver bullets, The Holy Grail and a Pot of Gold at the End of the Rainbow only seem to work in the movies

Links with Mil-17 (CMH-17), SAE CACRC and Safety Management

- Mil-17 (Composite Materials Handbooks, CMH-17)
 - − ~ 100 industry engineers meet every 8 months
 - FAA/EASA/Industry WG deliverables to update CMH-17, Vol. 3
 Chapters on Damage Tolerance & Supportability for Rev. G
 - New CMH-17 Safety Management WG has been initiated
 - FAA strategy: use CMH-17 as a forum to develop guidance and establish educational services to offset costs

- SAE CACRC (Commercial Aircraft Composite Repair Committee)
 - ~ 50-75 industry engineers meet every 6 months (~7 WG)
 - Airlines have dropped out of CACRC over time, requiring more OEM and MRO leadership for organization to survive
 - New CACRC Safety Management WG has been initiated
 - FAA strategy: use CACRC as a forum to develop guidance and support industry composite maintenance standards & training efforts

New Wichita State Univ. Project

Development and Safety Management of Composite Certification Guidance

- Engage industry on technical matters of relevance in mitigating the risk of accidents, incidents and emerging safety threats
- Facilitate the development of strategies for CMH-17 and CACRC
- Support workshops, industry meetings and web-based forum
- FY07/FY08 tasks supporting the following initiatives
 - Joint CACRC/CMH-17 Safety Management WG Mtg. (Wichita, 11/07)
 - CMH-17/NCAMP strategies for data review and dissemination
 - New CMH-17 Tutorial (V3/C3:Aircraft Structure Certification & Compliance)
 - Updates to main composite advisory circular (AC 20-107B)
- Future tasks to facilitate more complete and continuous industry review of individual JAMS R&D programs
- Principles of safety management and industry standards groups (CMH-17 & CACRC) will be used

