

1

CMC Data Review Working Group Meeting

CMH-17 1st Joint Coordination Meeting

Apr. 25, 2024

Rajiv Naik, University of Connecticut (<u>rajiv.naik@uconn.edu</u>) Matthew Opliger, NIAR (<u>matthew.opliger@idp.wichita.edu</u>)

CMC Data Review WG

Agenda

- Introductions
- Vision and Goals
- Overview of CMH-17 Data Review process
- Overview of CMC Data Review Sections 16-18 in the Handbook
- Guest speaker Mr. Matthew Opliger, NIAR, WSU.
 - "Axiom CMC test methods and test data insights".
- Guest speaker Mr. Jorge Chavez-Salas, NIAR, WSU.
 - "Statistical Analysis of Axiom CMC test data"
- Discussion and next steps

Vision

• To be the primary and authoritative source for data documentation, data archival and data analysis methods for CMC design data.

Goals

- Formulate guidelines and requirements for data submission, data documentation, statistical data analysis, and data review for CMC data submitted to CMH-17.
- Perform technical review of the data and check for completeness, quality, consistency and pedigree.
- Develop and document statistical methods for CMC data analysis.
- Develop formats for presentation of data in the handbook.
- Work closely with CMC Testing WG and CMH-17 Statistics WG to develop and update test data documentation and data analysis methods for CMC data.

CMH-17 Data Review Process

CMC Data Review Sections 16-18

Vol. 5, Part D, Sections 16-18

- Section 16 Data submission, format and requirements
- Section 17 Statistical methods
- Section 18 CMC property data

Section 16

16 DATA SUBMISSION, FORMAT AND REQUIREMENTS

- **16.1 Introduction**
- **16.2 Data Submission Requirements**
 - **16.2.1 Material and process specification requirements**

16.2.2 Sampling requirements

- 16.2.2.1 Additional requirements for The Fully Approved data class
- 16.2.2.2 Data pooling

16.2.3 Test method requirements

- **16.2.4 Data documentation requirements**
- 16.3 Format and Units
- 16.4 Design properties

Proposed Section 16.5 Mechanical properties of CMC materials

CMC Data Review - Section 17

Vol. 5, Part D, Section 17

17 STATISTICAL METHODS

17.1 Introduction

17.2 Background

17.2.1 Statistically-based design allowables

17.2.2 Basis values for unstructured data

17.2.3 Basis values in the presence of batch-to-batch variability (structured data)

17.2.4 Computer Software

17.3 Calculation of Statistically-based Material Properties

17.3.1 Guide to computational procedures for data from multiple batches and environments

17.3.2 Guide to computational procedures using the Single-Point method

17.3.3 Material property variability over long periods of time

17.4 Statistical Methods for Material Equivalence and Material Acceptance

17.4.1 Tests for determining equivalency between an existing database and a new data set for the same material

17.4.2 Statistical procedures for process control

17.4.2.1 Basics of control charts

17.4.2.1.1 Purpose of control charts

17.4.2.1.2 Two charts are better than one

17.4.2.1.3 Types of control charts

17.4.2.1.4 Rules for flagging results as being 'out-of-control'

Vol. 5, Part D, Section 18

18 CMC PROPERTY DATA 18.1 INTRODUCTION 18.1.1 Organization of data in the handbook 18.1.2 Presentation of data 18.1.2.1 Properties and definitions 18.1.2.1.1 Sign convention 18.1.2.2 Table formats 18.2 CMC Systems – Property Data 18.3 CMC Systems - Legacy data 18.3.1 9/99 EPM SiC/SiC 18.3.2 Enhanced SiC/SiC 18.3.3 Carbon/SiC 18.3.4 Hi-Nicalon/Mi SiC 18.3.5 AS-N720-1 18.3.6 Sylramic S-200

• Axiom Ox-Ox CMC data is currently being developed at NIAR and should be available to the CMC Data Review WG for review this year.

- Balloted and revised Chapters 16-18 in 2023
 - Submitted the chapters for publication of Rev B
- Planned work for 2024
 - Add new Section 16.5 to briefly cover mechanical and thermal properties of CMCs and reference CMC test methods in Chapters 9 and 13 related to CMC testing.
 - Provide technical review of Axiom Ox-Ox CMC data possibly later this year.
 - Add content to Chapter 17 on Statistical methods to clarify the process for the analysis of data from multiple batches and multiple processing cycles.

CMC Data Review Participation

- Your participation is critical to the quality and relevancy of the content in the handbook.
- Ways to participate:
 - Write, edit and review handbook sections
 - Provide your expertise in the areas of CMC materials, testing, data analysis
 - Attend monthly telecons and contribute to our ongoing discussions on CMC data documentation, data archival and data analysis
- Next telecon will be on Wednesday, May 8 at 9 am. (Eastern time)
- If you are interested in joining this Working Group, please contact us:

Rajiv Naik, rajiv.naik@uconn.edu

Secretariat – info@cmh17.org

Questions?

STATISTICAL ANALYSIS AXIOM CMC TEST DATA JORGE CHAVEZ-SALAS, M.SC. NIAR-WICHITA STATE UNIVERSITY JORGE.CHAVEZ-SALAS@IDP.WICHITA.EDU

AGENDA

- I SIMULATED DATA
- II AXIOM CMC DATA

		CASE 1	CASE 2	CASE 3	CASE 4	CASE 5
	ANOVA F	0	1.625	0	6.117647059	13.76470588
	ANOVA CRITICAL F	4.225201273	4.225201273	4.225201273	4.225201273	4.225201273
	ANOVA RATIO	0	0.384597063	0	1.447894825	3.257763357
	ANOVA RESULT	PASS	PASS	PASS	FAILS	FAILS
	ADK	0	4.096	0	10.143	17.425
BATCH ONLY	AD CRITICAL	2.94	2.94	2.94	2.94	2.94
	ADK RATIO	0	1.393197279	0	3.45	5.926870748
	ADK RESULT	PASS	FAILS	PASS	FAILS	FAILS
	METHOD	NORMAL	ANOVA	WEIBULL	ANOVA	ANOVA
	B-BASIS	9.337139427	5.743	9.49	-9.676	-24.898
	A-BASIS	6.69411189	-0.211	5.85	-28.878	-56.761
	ANOVA F	0	0.5	4.5	2.5	5
	ANOVA CRITICAL F	3.00878657	3.00878657	3.00878657	3.00878657	3.00878657
	ANOVA RATIO	0	0.166179949	1.495619545	0.830899747	1.661799494
	ANOVA RESULT	PASS	PASS	FAILS	PASS	FAILS
	ADK	0	1.365	6.277	4.297	6.569
BATCH-PANEL	AD CRITICAL	1.987	1.987	1.987	1.987	1.987
COMBINATION	ADK RATIO	0	0.686965274	3.159033719	2.162556618	3.305988928
	ADK RESULT	PASS	PASS	FAILS	FAILS	FAILS
	METHOD	NORMAL	weibull	ANOVA	ANOVA	ANOVA
	B-BASIS	9.337139427	9.34	6.997	8.774	7.117
	A-BASIS	6.69411189	6.123	1.739	4.731	1.6
UNIT OF ANALYSIS		ВАТСН	BATCH-PANEL	BATCH	BATCH-PANEL	BATCH-PANEL

B-basis depending on variability between batches

B-basis depending on number of batches

	STAT	STICS		Anova method					Normal	method					
BATCHE	n	MEAN	stdev	MSB	MSE	F RATIO	nprime	k0	k1	S	W	Т	B-basis	k	B-basis
2	28	15	2.3	28	4	7	2	1.8	20.581	3	0.93541	16.4396	-34.32	1.798429	10.86
3	28	15	2.3	28	4	7	2	1.8	6.157	3	0.93541	5.19624	-0.589	1.798429	10.86
4	28	15	2.3	28	4	7	2	1.8	4.163	3	0.93541	3.64194	4.074	1.798429	10.86
5	28	15	2.3	28	4	7	2	1.8	3.4183	3	0.93541	3.06145	5.816	1.798429	10.86
6	28	15	2.3	28	4	7	2	1.8	3.0126	3	0.93541	2.74521	6.764	1.798429	10.86
7	28	15	2.3	28	4	7	2	1.8	2.7594	3	0.93541	2.54784	7.356	1.798429	10.86
8	28	15	2.3	28	4	7	2	1.8	2.5846	3	0.93541	2.41159	7.765	1.798429	10.86
9	28	15	2.3	28	4	7	2	1.8	2.4558	3	0.93541	2.31119	8.066	1.798429	10.86

B-basis depending on number of batches

Descriptive Rules (Observations) that follow from the results table:

Observation I: If ADK ratio > I then the data fails ADK test (we use ANOVA method). Observation 2: In general, there is a correlation between ANOVA ratio and ADK ratio. Observation 3: If ADK passes for batch and fails for batch-cycle then the allowables would be more conservative in the second method.

Observation 4: If ADK fails for batch and passed for batch-cycle then the allowables would be greater in the second method.

Observation 5: If ADK fails for batch and we use this method then the allowables may be negative.

Observation 6: When using ANOVA method, ADK ratio is inversely proportional to the allowables.

General recommendation: Compute or estimate the total number of all properties and environments in the dataset that fail ADK test. If it is a significant proportion of the total then we should use Batch-Cycle combination for statistical analysis.

AXIOM CMC DATA ADK TEST RESULTS

		BY BATCH				BY BATCH-CYCLE			
		NORM	ALIZED	AS-MEASURED		NORMALIZED		AS-MEASURED	
METHOD	PROPERTY	RTD	ETD	RTD	ETD	RTD	ETD	RTD	ETD
DNS	Strength	NA	NA	Fail	Fail	NA	NA	Pass	Fail
UNT1	Strength	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail
OHT1	Strength	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail
FHT1	Strength	Pass	Fail	Pass	Fail	Fail	Pass	Fail	Fail
WT	Strength	Pass	Fail	Pass	Fail	Fail	Fail	Fail	Fail
FT	Strength	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail
45T	0.2% Offset Strength	NA	NA	Fail	Fail	NA	NA	Fail	Fail
45T	Maximum Strength	NA	NA	Fail	Fail	NA	NA	Fail	Fail
VNS	0.2% Offset Strength	NA	NA	Fail	NA	NA	NA	Fail	NA
VNS	Maximum Strength	NA	NA	Fail	NA	NA	NA	Fail	NA
OHC1	Strength	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail
SSB1	2% offset strength	Pass	NA	Pass	NA	Pass	NA	Pass	NA
SSB1	Ultimate strength	Fail	NA	Pass	NA	Fail	NA	Pass	NA
TOTAL PASSES BY COLUMN		3	0	4	0	1	1	3	0
TOTAL PASSES		7			5				
TOTAL FAILS BY COLUMN		5	6	9	9	7	5	10	9
	TOTAL FAILS	29			31				
TOTAL		36				36			

I.I DOUBLE NOTCH SHEAR (DNS)

I.I DOUBLE NOTCH SHEAR (DNS)

I.I DOUBLE NOTCH SHEAR (DNS)

BY BATCHES

Double-Notch Shear Properties (DNS) Strength Statistics					
	As-mea	sured			
Env	RTD (70 F)	ETD (1650 F)			
Mean	1.618	1.595			
Stdev	0.3808	0.4312			
CV	23.53	27.03			
Modified CV	23.53	27.03			
Min	0.8723	0.8976			
Max	2.251	2.319			
No. Batches	4	4			
No.Spec.	24	23			
Basis Values Estimates					
B-estimate	0.3528	0.0851			
A-Estimate	0.0000	0.0000			
Method ANOVA ANOVA					

BY BATCH-CYCLE

Double-Notch Shear (DNS)					
Basis V	alues and S	tatistics			
	Strength as	s measured			
Env	RTD(75)	ETD(180)			
Mean	1.618	1.595			
Stdev	0.3808	0.4312			
CV	23.53	27.03			
Mod CV	23.53	27.03			
Min	0.8723	0.8976			
Max	2.251	2.319			
No. Batches	4	4			
No. Cycles	7	7			
No. Spec.	24	23			
Basis Values and Estimates					
B-Basis	0.9129	0.5485			
A-Estimate	0.4072 0.0000				
Method	Method Normal ANOVA				

I.2 UNNOTCHED TENSION I (UNTI)

I.2 UNNOTCHED TENSION I (UNTI)

I.2 UNNOTCHED TENSION I (UNTI)

BY BATCHES

Unnotched Tension (UNT1) Strength Basis Values and Statistics							
	Normalized As-measured						
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	RTD (70° F)			
Mean	29.93	26.03	29.37	25.76			
Stdev	2.756	2.673	2.767	3.267			
с٧	9.206	10.27	9.421	12.68			
Modified CV	9.206	10.27	9.421	12.68			
Min	26.89	21.38	25.33	19.89			
Max	35.09	29.45	35.34	30.20			
No. Batches	4	4	4	4			
No. Spec.	21	22	21	22			
Basis Values Estimates							
B-Estimate	17.98	18.13	18.08	13.58			
A-Estimate	9.702	12.60	10.25	5.107			
Method	ANOVA	ANOVA	ANOVA	ANOVA			

BY BATCH-CYCLE

Values and StatisticsStrengthmalizedEnvRTD(75)ETD(180)Mean29.9326.03Stdev2.7562.673CV9.20610.27Mod CV9.20610.27Mod CV9.20610.27Min26.8921.38Max35.0929.45No. Batches44No. Cycles77No. Spec.2122B-Basis21.9618.60A-Estimate16.5013.50MethodANOVAANOVA							
Strength	Values and Statistics						
EnvRTD(75)ETD(180)Mean29.9326.03Stdev2.7562.673CV9.20610.27Mod CV9.20610.27Mod CV9.20621.38Max35.0929.45No. Batches44No. Cycles77No. Spec.2122Basis21.9618.60A-Estimate16.5013.50MethodANOVAANOVA		Strength r	ormalized				
Mean 29.93 26.03 Stdev 2.756 2.673 CV 9.206 10.27 Mod CV 9.206 10.27 Min 26.89 21.38 Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis Values and Estimates 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Env	RTD(75)	ETD(180)				
Stdev 2.756 2.673 CV 9.206 10.27 Mod CV 9.206 10.27 Min 26.89 21.38 Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Mean	29.93	26.03				
CV 9.206 10.27 Mod CV 9.206 10.27 Min 26.89 21.38 Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 B-Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Stdev	2.756	2.673				
Mod CV 9.206 10.27 Min 26.89 21.38 Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	CV	9.206	10.27				
Min 26.89 21.38 Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Mod CV	9.206	10.27				
Max 35.09 29.45 No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis Values and Estimates 8.60 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Min	26.89	21.38				
No. Batches 4 4 No. Cycles 7 7 No. Spec. 21 22 Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Max	35.09	29.45				
No. Cycles 7 No. Spec. 21 22 Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	No. Batches	4	4				
No. Spec.2122Basis Values and EstimatesB-Basis21.9618.60A-Estimate16.5013.50MethodANOVAANOVA	No. Cycles	7	7				
Basis Values and EstimatesB-Basis21.9618.60A-Estimate16.5013.50MethodANOVAANOVA	No. Spec.	21	22				
B-Basis 21.96 18.60 A-Estimate 16.50 13.50 Method ANOVA ANOVA	Basis Values and Estimates						
A-Estimate16.5013.50MethodANOVAANOVA	B-Basis	21.96	18.60				
Method ANOVA ANOVA	A-Estimate	16.50	13.50				
	Method	ANOVA	ANOVA				

Unnotched Tension 1 Basis

Unnotched Tension 1 Basis							
Value	Values and Statistics						
Strength as measured							
Env	RTD(75) ETD(180)						
Mean	29.37	25.76					
Stdev	2.767	3.267					
CV	9.421	12.68					
Mod CV	9.421	12.68					
Min	25.33	19.89					
Max	35.34	30.20					
No. Batches	4	4					
No. Cycles	7	7					
No. Spec.	21	22					
Basis Values and Estimates							
B-Basis	21.39	16.50					
A-Estimate	15.93	10.15					
Method	ANOVA	ANOVA					

I.3 OPEN-HOLE TENSION I (OHTI)

I.3 OPEN-HOLE TENSION I (OHTI)

I.3 OPEN-HOLE TENSION I (OHTI)

BY BATCHES

Open Hole Tension (OHT1) Strength Basis Values and Statistics						
Normalized As-measured						
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)		
Mean	24.68	17.75	24.36	17.52		
Stdev	1.971	1.412	2.585	2.038		
CV	7.987	7.951	10.61	11.63		
Modified CV	7.993	7.976	10.61	11.63		
Min	21.76	15.37	20.69	14.02		
Max	27.58	20.56	28.09	20.99		
No. Batches	4	4	4	4		
No. Spec.	20	21	20	21		
Basis Values Estimates						
B-Estimate	17.18	12.08	14.46	8.68		
A-Estimate	11.97	8.147	7.590	2.562		
Method	ANOVA	ANOVA	ANOVA	ANOVA		

BY BATCH-CYCLE

Open-Hole Tension 1 Basis							
Value	es and Stat	istics					
	Strength r	Strength normalized					
Env	RTD(75)	ETD(180)					
Mean	24.68	17.75					
Stdev	1.971	1.412					
CV	7.987	7.951					
Mod CV	7.993	7.976					
Min	21.76	15.37					
Max	27.58	20.56					
No. Batches	4	4					
No. Cycles	8	8					
No. Spec.	20	21					
Basis V	alues and Es	timates					
B-Basis	19.46	13.99					
A-Estimate	15.87	11.41					
Method	ANOVA	ANOVA					

Open-Hole Tension 1 Basis						
Value	es and Stat	istics				
	Strength as measured					
Env	RTD(75)	ETD(180)				
Mean	24.36	17.52				
Stdev	2.585	2.038				
CV	10.61	11.63				
Mod CV	10.61	11.63				
Min	20.69	14.02				
Max	28.09	20.99				
No. Batches	4	4				
No. Cycles	8	8				
No. Spec.	20	21				
Basis Values and Estimates						
B-Basis	17.40	12.07				
A-Estimate	12.63	8.33				
Method	ANOVA	ANOVA				

I.4 FILLED-HOLE TENSION I (FHTI)

I.4 FILLED-HOLE TENSION I (FHTI)

I.4 FILLED-HOLE TENSION I (FHTI)

BY BATCHES

Filled Hole	Tension (FHT	Filled Hole Tension (FHT1) Strength Basis Values and Statistics						
	Norma	alized	As-measured					
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)				
Mean	27.06	19.26	27.24	19.46				
Stdev	1.487	0.9800	1.993	1.519				
CV	5.497	5.089	7.317	7.809				
Modified CV	6.749	6.544	7.658	7.905				
Min	24.40	17.01	24.61	16.31				
Max	29.11	20.35	31.41	21.56				
No. Batches	4	4	4	4				
No. Spec.	21	21	21	21				
	Basis \	/alues and Es	stimates					
B-Basis	24.00		23.44					
B - estimate		15.74		14.98				
A-Estimate	20.88	13.30	20.73	11.84				
Method	Weibull	ANOVA	Normal	ANOVA				
	Modified CV Basis Values and Estimates							
B-Basis	23.58	16.86	23.99	16.21				
A-Estimate	21.10	15.15	21.75	13.97				
Method	Normal	Normal	Pooled	Pooled				

Filled-Ho	ole Tension	1 Basis		
Values and Statistics				
	Strength normalized			
Env	RTD(75)	ETD(180)		
Mean	27.06	19.26		
Stdev	1.487	0.9800		
CV	5.497	5.089		
Mod CV	6.749	6.544		
Min	24.40	17.01		
Max	29.11	20.35		
No. Batches	4	4		
No. Cycles	7	7		
No. Cycles No. Spec.	7 21	7 21		
No. Cycles No. Spec. Basis V	7 21 Values and Es	7 21 timates		
No. Cycles No. Spec. Basis V B-Basis	7 21 /alues and Es 22.95	7 21 timates		
No. Cycles No. Spec. Basis V B-Basis B-Estimate	7 21 /alues and Es 22.95	7 21 timates 17.52		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate	7 21 /alues and Es 22.95 20.13	7 21 timates 17.52 15.68		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate Method	7 21 /alues and Es 22.95 20.13 ANOVA	7 21 timates 17.52 15.68 Weibull		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate Method Modified	7 21 /alues and Es 22.95 20.13 ANOVA I CV Basis Va	7 21 timates 17.52 15.68 Weibull Iues and		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate Method Modified	7 21 /alues and Es 22.95 20.13 ANOVA I CV Basis Va Estimates	7 21 timates 17.52 15.68 Weibull Iues and		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate Method Modified B-Basis	7 21 /alues and Es 22.95 20.13 20.13 ANOVA I CV Basis Va Estimates 24.27	7 21 timates 17.52 15.68 Weibull Iues and 16.47		
No. Cycles No. Spec. Basis V B-Basis B-Estimate A-Estimate Method Modified B-Basis A-Estimate	7 21 /alues and Es 22.95 20.13 ANOVA I CV Basis Va Estimates 24.27 22.36	7 21 timates 17.52 15.68 Weibull lues and 16.47 14.56		

BY BATCH-CYCLE

Filled-Hole Tension 1 Basis					
Values and Statistics					
	Strength as measured				
Env	RTD(75)	ETD(180)			
Mean	27.24	19.46			
Stdev	1.993	1.519			
CV	7.317	7.809			
Mod CV	7.658	7.905			
Min	24.61	16.31			
Max	31.41	21.56			
No.Batches	4	4			
No. Cycles	7	7			
No. Spec.	21	21			
Basis V	alues and Es	timates			
B-Basis	21.61	15.14			
A-Estimate	17.75	12.17			
Method	ANOVA	ANOVA			
Modified CV Basis Values and					
Estimates					
B-Basis					
B-Estimate					
A-Basis	NA	NA			
A-Estimate	-				
Method					

I.5 WARP TENSION (WT)

I.5 WARP TENSION (WT)

I.5 WARP TENSION (WT)

BY BATCHES

Warp Tension Strength Basis Values and Statistics				
	Normalized		As-measured	
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)
Mean	50.24	34.94	49.28	34.21
Stdev	2.646	6.200	2.937	6.185
C۷	5.267	17.75	5.960	18.08
Mod CV	6.634	17.75	6.980	18.08
Min	44.35	23.54	44.38	22.42
Max	54.30	45.33	53.92	43.29
No. Batches	4	4	4	4
No. Spec.	25	24	25	24
	Basis	Values and E	stimates	
B-Basis	45.37		43.04	
B-Estimate		11.24		10.83
A-Estimate	41.88	0.0	36.76	0.0
Method	Normal	ANOVA	Weibull	ANOVA
Modified CV Basis Value and Estimates				
B-Basis	44.11	NA	NA	NA
A-Estimate	39.72	NA	NA	NA
Method	Normal	NA	NA	NA

BY BATCH-CYCLE

Warp Tension Basis Values				
and Statistics				
	Strength normalized			
Env	RTD(75)	ETD(180)		
Mean	50.24	34.94		
Stdev	2.646	6.200		
cv	5.267	17.75		
Mod CV	6.634	17.75		
Min	44.35	23.54		
Max	54.30	45.33		
No. Batches	4	4		
No. Cycles	8	8		
No. Spec.	25	24		
Basis Values and Estimates				
B-Basis	43.75	18.49		
A-Estimate	39.26	7.194		
Method	ANOVA	ANOVA		
Modified CV Basis Values and				
Estimates				
B-Basis	44.11			
A-Estimate	39.71	NA		

Warp Tension Basis Values				
and Statistics				
	Strength as measured			
Env	RTD(75) ETD(180)			
Mean	49.28	34.21		
Stdev	2.937	6.185		
C۷	5.960	18.08		
Mod CV	6.980	18.08		
Min	44.38	22.42		
Max	53.92	43.29		
No. Batches	4	4		
No. Cycles	8	8		
No. Spec.	25	24		
Basis Values and Estimates				
B-Basis	41.89	17.81		
A-Estimate	36.78	6.547		
Method	ANOVA	ANOVA		
Modified CV Basis Values and				
Estimates				
B-Basis	42.96			
A-Estimate	38.42	NA		
Method	Normal			

I.6 FILL TENSION (FT)

I.6 FILL TENSION (FT)

I.6 FILL TENSION (FT)

BY BATCHES

Fill Tension Strength Basis Values and Statistics				
	Norm	alized	As-me	asured
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)
Mean	45.38	32.44	44.17	31.97
Stdev	3.087	4.592	3.518	5.107
cv	6.802	14.15	7.964	15.98
Mod CV	7.401	14.15	7.982	15.98
Min	40.18	24.64	38.43	24.51
Max	50.99	38.20	51.10	39.16
No. Batches	4	4	4	4
No. Spec.	21	21	21	21
Basis Values Estimates				
B-Estimate	34.54	12.84	30.69	11.30
A-Estimate	27.00	0.00	21.33	0.00
Method	ANOVA	ANOVA	ANOVA	ANOVA

BY BATCH-CYCLE

Fill Tension Basis Values and		Fill Tensi	on Basis Va	alues and	
Statistics				Statistics	
	Strength r	ormalized		Strength as	s measured
Env	RTD(75)	ETD(180)	Env	RTD(75)	ETD(180)
Mean	45.38	32.44	Mean	44.17	31.97
Stdev	3.087	4.592	Stdev	3.518	5.107
CV	6.802	14.15	CV	7.964	15.98
Mod CV	7.401	14.15	Mod CV	7.982	15.98
Min	40.18	24.64	Min	38.43	24.51
Max	50.99	38.20	Max	51.10	39.16
No. Batches	4	4	No. Batches	4	4
No. Cycles	7	7	No. Cycles	7	7
No. Spec.	21	21	No. Spec.	21	21
Basis Values and Estimates Basis Values and		alues and Es	timates		
B-Basis	36.84	19.29	B-Basis	34.42	17.30
A-Estimate	30.96	10.28	A-Estimate	27.72	7.245
Method	ANOVA	ANOVA	Method	ANOVA	ANOVA
Modified CV Basis Values and		lues and	Modified	d CV Basis Va	luesand
	Estimates		Estimates		
B-Basis			B-Basis		
A-Basis	NA	NA	A-Basis	NA	NA
Method			Method		

I.7 IN-PLANE SHEAR BY 45/-45 TENSION (45T)

I.7 IN-PLANE SHEAR BY 45/-45 TENSION (45T)

1.7 IN-PLANE SHEAR BY 45/-45 TENSION (45T)

BY BATCHES

In-Plane Shear by 45/-45 Tension (45T) Strength Basis Values and Statistics				
	As measured			
Property	0.2% Offse	0.2% Offset Strength Maximum Strength		
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)
Mean	5.058	5.504	5.184	6.145
Stdev	0.7474	0.7647	0.7666	0.9246
CV	14.78	13.89	14.79	15.05
Modified CV	14.78	13.89	14.79	15.05
Min	3.947	4.224	4.127	4.618
Max	6.526	6.502	6.646	7.666
No. Batches	4	4	4	4
No. Spec.	21	17	21	21
Basis Values Estimates				
B-Estimate	2.252	2.524	2.267	2.277
A-Estimate	0.3025	0.4564	0.2401	0.000
Method	ANOVA	ANOVA	ANOVA	ANOVA

BY BATCH-CYCLE

In-Plane Shear Properties by 45				
Tensior	n Basis Val	ues and		
	Statistics			
	0.2% Offse	et Strength		
Env	RTD(75)	ETD(180)		
Mean	5.058	5.504		
Stdev	0.7474	0.7647		
CV	14.78	13.89		
Mod CV	14.78	13.89		
Min	3.947	4.224		
Max	6.526	6.502		
No. Batches	4	4		
No. Cycles	7	6		
No. Spec.	21	17		
Basis V	/alues and Es	timates		
B-Estimate	2.914	3.068		
A-Estimate	1.446	1.403		
Method	ANOVA	ANOVA		
Modified CV Basis Values and				
Estimates				
B-Basis				
A-Basis	NA	NA		
Method				

In-Plane Shear Properties by 45				
Tensior	n Basis Val	ues and		
	Statistics			
	Maximum	n Strength		
Env	RTD(75)	ETD(180)		
Mean	5.184	6.145		
Stdev	0.7666	0.9246		
CV	14.79	15.05		
Mod CV	14.79	15.05		
Min	4.127	4.618		
Max	6.646 7.666			
No. Batches	4	4		
No. Cycles	7	7		
No. Spec.	21	21		
Basis V	alues and Es	timates		
B-Basis	2.983	3.502		
A-Estimate	1.475	1.692		
Method	ANOVA	ANOVA		
Modified CV Basis Values and				
Estimates				
B-Basis				
A-Basis	NA	NA		

Method

I.8 IN-PLANE SHEAR PROPERTIES BY V-NOTCH SHEAR (VNS)

I.8 IN-PLANE SHEAR PROPERTIES BY V-NOTCH SHEAR (VNS)

I.8 IN-PLANE SHEAR PROPERTIES BY V-NOTCH SHEAR (VNS)

BY BATCHES

In-Plane Shear by V-Notch Shear (VNS) Strength Basis Values and Statistics				
	As mea	asured		
Property	0.2% Offset Strength	Maximum Strength		
Env	RTD (70° F)	RTD (70° F)		
Mean	6.020	6.254		
Stdev	1.465	1.510		
CV	24.33	24.15		
Modified CV	24.33	24.15		
Min	2.973	3.043		
Max	8.129	8.378		
No. Batches	4	4		
No. Spec.	21	22		
Basis Values and Estimates				
B-Basis	0.0	0.0		
A-Estimate	0.0	0.0		
Method	ANOVA	ANOVA		

BY BATCH-CYCLE

In-Plane She	In-Plane Shear Properties		
by V-Notch	Shear Basis		
Values an	d Statistics		
0.2% Offs	et Strength		
Env	RTD(75)		
Mean	6.020		
Stdev	1.465		
CV	24.33		
Mod CV	24.33		
Min	2.973		
Max 8.129			
No. Batches	4		
No. Cycles	7		
No. Spec.	21		
Basis Values	and Estimates		
B-Basis	1.779		
A-Estimate	0.000		
Method	ANOVA		
Modified CV B	asis Values and		
Estimates			
B-Basis			
A-Basis NA			
Method			

In-Plane Shear Properties by V-Notch Shear Basis Values and Statistics

Maximum Strength			
Env	RTD(75)		
Mean	6.254		
Stdev	1.510		
CV	24.15		
Mod CV	24.15		
Min	3.043		
Max	8.378		
No. Batches	4		
No. Cycles	7		
No. Spec.	22		
Basis Values and Estimates			
B-Basis	1.864		
A-Estimate	0.000		
Method	ANOVA		
Modified CV E	Basis Values and		
Estimates			
B-Basis			
A-Basis	NA		
Method			

I.9 LAMINATE OPEN-HOLE COMPRESSION I (OHCI)

I.9 LAMINATE OPEN-HOLE COMPRESSION I (OHCI)

I.9 LAMINATE OPEN-HOLE COMPRESSION I (OHCI)

BY BATCHES

Open Hole Compression (OHC1) Strength				
	Basis V	/alues and St	atistics	
	Norm	alized	As-me	asured
Env	RTD (70 F)	ETD (1650 F)	RTD (70 F)	ETD (1650 F)
Mean	24.53	27.59	24.10	26.73
Stdev	5.291	3.993	4.519	3.118
с٧	21.57	14.47	18.75	11.67
Modified CV	21.57	14.47	18.75	11.67
Min	15.14	22.30	15.81	23.31
Max	34.77	35.42	32.69	33.54
No. Batches	4	3	4	3
No. Spec.	21	18	21	18
Basis Values Estimates				
B-Estimate	0.8377	1.517	4.404	8.174
A-Estimate	0.00	0.00	0.00	0.00
Method	ANOVA	ANOVA	ANOVA	ANOVA

BY BATCH-CYCLE

Open-Hole Compression 1				
Basis Values and Statistics				
	Strength r	normalized		
Env	RTD(75)	ETD(180)		
Mean	24.53	27.59		
Stdev	5.291	3.993		
CV	21.57	14.47		
Mod CV	21.57	14.47		
Min	15.14	22.30		
Max	34.77	35.42		
No. Batches	4	3		
No. Cycles	7	6		
No. Spec.	21	18		
Basis V	alues and Es	timates		
B-Basis	9.205	15.00		
A-Estimate	0.000	6.389		
Method	ANOVA	ANOVA		
Modified	I CV Basis Va	lues and		
Estimates				
B-Basis				
A-Basis	NA	NA		
Method				

Open-Hole Compression 1					
Basis Values and Statistics					
	Strength as	Strength as-measured			
Env	RTD(75)	ETD(180)			
Mean	24.10	26.73			
Stdev	4.519	3.118			
C۷	18.75	11.67			
Mod CV	18.75	11.67			
Min	15.81	23.31			
Max	32.69	33.54			
No. Batches	4	3			
No. Cycles	7	6			
No. Spec.	21	18			
Basis V	alues and Es	timates			
B-Basis	11.02	17.01			
A-Estimate	2.063	10.36			
Method	ANOVA	ANOVA			
Modified CV Basis Values and					
Estimates					
B-Basis					
A-Basis NA		NA			

I.II SINGLE-SHEAR BEARING I (SSBI)

I.II SINGLE-SHEAR BEARING I (SSBI)

I.II SINGLE-SHEAR BEARING I (SSBI)

BY BATCHES

Single Shear Bearing 1 (SSB1) Strength Basis Values and Statistics			
	Norm	alized	
Property	2% Offset Strength	Ultimate Strength	
Env	RTD (70° F)	RTD (70° F)	
Mean	68.10	75.37	
Stdev	2.772	6.866	
CV	4.071	9.110	
Modified CV	6.036	9.110	
Min	64.39	67.21	
Max	72.15 88.78		
No. Batches	3	3	
No. Spec.	8	12	
Bas	is Values Estin	nates	
B-Estimate	60.89	31.39	
A-Estimate	55.85	0.04488	
Method Normal		ANOVA	
Modified CV Basis Values Estimates			
B-estimate	57.47	NA	
A-Estimate	50.18	NA	
Method Normal NA			

Single Shear Bearing (SSB1) Strength Basis Values and Statistics					
	As-me	asured			
Property	2% Offset Strength	Ultimate Strength			
Env	RTD (70° F)	RTD (70° F)			
Mean	67.78	75.82			
Stdev	3.920	3.744			
CV	5.784	4.938			
Modified CV	6.892	6.469			
Min	61.85	71.34			
Max	74.86	84.67			
No. Batches	3	3			
No. Batches No. Spec.	3	3 12			
No. Batches No. Spec. Basi	3 8 s Values Estim	3 12 nates			
No. Batches No. Spec. Basi B-Estimate	3 8 s Values Estim 57.59	3 12 nates 67.53			
No. Batches No. Spec. Basi B-Estimate A-Estimate	3 8 s Values Estim 57.59 50.46	3 12 nates 67.53 61.72			
No. Batches No. Spec. Basi B-Estimate A-Estimate Method	3 8 s Values Estim 57.59 50.46 Normal	3 12 nates 67.53 61.72 Normal			
No. Batches No. Spec. Basi B-Estimate A-Estimate Method Modified C	3 8 s Values Estim 57.59 50.46 Normal V Basis Value	3 12 ates 67.53 61.72 Normal s Estimates			
No. Batches No. Spec. Basi B-Estimate A-Estimate Method Modified C B-Estimate	3 8 s Values Estim 57.59 50.46 Normal V Basis Value 55.70	3 12 67.53 61.72 Normal s Estimates 64.98			
No. Batches No. Spec. Basi B-Estimate A-Estimate Method Modified C B-Estimate A-Estimate	3 8 s Values Estim 57.59 50.46 Normal V Basis Values 55.70 47.42	3 12 67.53 61.72 Normal s Estimates 64.98 57.44			

Single-Shear Bearing 1 **Basis Values and** Statistics 2% Offset Strength normalized RTD(75) Env 68.10 Mean 2.772 Stdev 4.071 CV Mod CV 6.036 Min 64.39 72.15 Max 3 No. Batches 4 No. Cycles 8 No. Spec. **Basis Values and Estimates** 60.89 **B-Estimate** 55.85 A-Estimate Normal Method Modified CV Basis Values and Estimates 57.47 **B-Estimate** 50.18 A-Estimate Method Normal

BY BATCH-CYCLE

Single-She	Single-Shear Bearing 1							
Basis V	Basis Values and							
Stat	Statistics							
Ultimate Stre	ngth normalized							
Env	RTD(75)							
Mean	75.37							
Stdev	6.866							
CV	9.110							
Mod CV	9.110							
Min	67.21							
Max	88.78							
No. Batches	3							
No. Cycles	4							
No. Spec.	12							
Basis Values	and Estimates							
B-Estimate	46.62							
A-Estimate	26.73							
Method	ANOVA							
Modified CV E	Basis Values and							
Esti	mates							
B-Basis								
A-Basis	NA							
Method								

Axiom CMC Test Methods and Test Data Insights

Matt Opliger 4/25/2024

WWW.NIAR.WICHITA.EDU

Topics

- Background
- Processing (Panel-to-Panel) Variability
- Machining
- Test Methods and Specimen Geometries
- Variability within Test Data
- High Temperature Testing Challenges
- Strain Range Determination for Modulus
- Issues with Determination of Allowables

Background

- Axiom AX-7800-DF11-5HS3000D satin weave ox/ox prepreg was chosen for a material qualification to establish and evaluate a framework for the qualification of CMCs
- A total of four batches of prepreg have been manufactured over a three year period, each containing a different lot of fabric
- More than 100 panels have been fabricated at two different facilities from these four batches over the same period of time
- More than 300 physical, 60 thermophysical, and 700 mechanical tests have been performed

Properties Tested

Composite Physical Properties	Composite Thermophysical Properties	
Cured/Sintered Ply Thickness	Specific Heat	
Fiber Volume	Thermal Conductivity (Diffusivity),	
Matrix Volume	Measured in x, y, and z directions	
Density	Thermal Expansion, Measured in x, y, and	
Porosity	z directions	

	Lamina Med	chanical Proper	ties			
				Number of Batch x No. of Panels No. of Specimer		
				Test Temperature		
Layup	Test Type and Direction	Property	Test Method	RTD	ETD	
[0] ₅₅	Warp Tension	Strength, Modulus, and Poisson's Ratio (RTD Only)	ASTM C1275 (RTD) ASTM C1359 (ETD)	3x2x3	3x2x3	
[90]68	Fill Tension	Strength and Modulus	ASTM C1275 (RTD)	3x2x3	3x2x3	
[0] ₄₁	Warp Compression	Strength and Modulus	ASTM C1358	3x2x3	3x2x3	
[90]48	Fill Compression	Strength and Modulus	ASTM C1358	3x2x3	3x2x3	
[45/-45]21	In-Plane Shear (+45/-45 Tension)	Strength and Modulus (RTD Only)	ASTM D3518	3x2x3	3x2x3	
[0] ₇₅	In-Plane Shear (V-Notch Shear)	Strength and Modulus	ASTM D5379	3x2x3		
[0] ₇₅	Interlaminar Shear (Double Notch Shear)	Strength	ASTM C1292 (RTD)	3x2x3	3x2x3	
(0) ₃₈	Interlaminar Shear (Short-Beam Strength)	Strength	ASTM D2344	3x2x3		

Lan	ninate and Design Gu	idance Mecha	anical Propertie	es	or the set	
				Number of Batches x No. of Panels x No. of Specimens Test Temperature		
Layup	Test Type and Direction	Property	Test Method	RTD	ETD	
(0) ₁₅	Flexure	Strength and Modulus	ASTM C1341	3x2x3		
[0]10	Interlaminar Tension (Trans-Thickness / Flatwise Tension)	Strength	C1468	3x2x3		
[0/90]5	Interlaminar Tension (Trans-Thickness / Flatwise Tension)	Strength	C1468	1x1x6		
[0/90]3+	Interlaminar Shear (Short-Beam Strength)	Strength	ASTM D2344	1x1x6		
[45/0/-45/90/-45/90] ₃	Unnotched Tension	Strength and Modulus	ASTM C1275 (RTD)	3x2x3	3x2x3	
[45/0/-45/90/-45/90]a	Unnotched Compression	Strength and Modulus	ASTM C1358	3x2x3	3x2x3	
[45/0/-45/90]28	Open-Hole Compression	Strength	ASTM D6484	3x2x3	3x2x3	
[45/0/-45/90/-45/90]1	Open-Hole Tension	Strength	ASTM D5766	3x2x3	3x2x3	
[45/0/-45/90/-45/90];	Filled-Hole Tension	Strength	ASTM D6742	3x2x3	3x2x3	
[45/0/-45/90/-45/90] ₁	Single Shear Bearing	Strength	ASTM D5961 (Procedure C)	3x2x3		
[45/0/-45/90/-45/90]3	Double Shear Bearing	Strength	ASTM D5961 (Procedure A)	3x2x3	3x2x3	
[45/0/-45/90/-45/90] ₀	Tension After Impact	Strength	ASTM D7136 ASTM D5766	1x2x3	1x2x3	

RTD = Room Temperature Dry ETD = Elevated Temperature Dry (1650F/900C)

WICHITA STATE

WWW.NIAR.WICHITA.EDU

Specimen Selection Methodology

Processing (Panel-to-Panel) Variability

- Processing (panel-to-panel) variability is more significant than batch-to-batch variability for ox/ox CMCs evaluated and is expected for most CMC materials due to more complex process routes with more processing steps than PMCs
- Porosity, density, and per ply thickness have been found to be well correlated with matrix dominant properties but are not always reliable predictors of mechanical performance

Interlaminar Shear Strength

NIAR

Summary of Linear Regression Analysis

							R ⁷ Value			
Test	Condition	Property	Density (g/cm ¹)	Porosity [% Vol]	Fiber Volume (N vol)	Matrix Volume [N Vol]	Per Ply Thickness [in]	Min Vacuum During AC Cure ["Hg]	Sistering Temperature [77]	Sintering Hold Time (minutes)
	-	Strength	0.43	8.39	0.07	0.00	0.23	10.00	0.06	0.09
	100	Modulus	0.15	0.09	0.76	0.52	0.78	8.30	0.00	6.38
wi	100	Strength	0.06	6.06	6.25	0.13	0.07	0.08	0.40	0.20
	610	Modulus	0.18	6.35	0.31	0.11	HE.6	6.78	0.00	0.00
		Mrength	0.06	8.52	0.18	0.01	0,17	0.28	0.13	0.12
		Modulus	0.08	0.08	0.09	6.00	0.52	0.05	0.26	0.00
۰.	cm	Strength	0.05	1.05	0.66	0.27	0.34	0.03	0.30	0.25
		Modulus	0.15	0.25	0.46	0.09	0.63	8.00	0.03	0.28
		Strength	8.72	4.70	0.15	6.00	0.43	8.00	0.25	6.00
	100	Modulas	0.57	4.15	0.06	0.37	0.67	8.00	0,18	6.29
we	in	Strength	0.11	8.00	0.04	. 0.04	0.13	8.07	0.08	0.05
	610	Modulus	0.25	0.21	0.18	0.30	0.48	8.25	0.00	0.25
	-	Strength	0.29	6.56	0.67	0.52	0.10	0.62	0.17	0.01
		Modulus	0.19	0.18	0.12	0.00	0.14	0.00	0.07	0.17
PC.	- 100 C	Strength	0.13	6.58	0.02	0.58	0.40	0.00	0.00	0.30
	610	Modulus	0.12	4.10	0.30	0.30	0.33	0.08	0.00	0.33
		Strength	0.76	0.80	0.04	0.03	0.12	0.02	0.23	6.17
	Kito .	Modulus	0.27	0.15	0.47	0.13	0.80	8.00	0.17	0.01
451		Mrength	0.69	0.47	1.01	0.18	8.08	8.34	0.13	0.09
	00	Modelas	0.18	6.39	0.40	0.16	0.37	8.41	0.07	8.82
	-	Strength	0.23	0.24	0.01	0.09	0.04	8.12	0.34	0.05
	100	Modulus	8.41	8.29	0.22	0.03	0.80	8.33	0.03	0.25
Parts.		Strength	0.40	6.37	0.39	0.07	0.29	8.03	0.12	0.32
	cito.	Modolas	0.12	0.00	0.17	6.06	0.46	0.42	0.18	6.50
		Strength	0.82	2.75	0.40	0.01	0.43	6.26	0.00	6.01
	100	Modulus	0.35	0.48	0.27	0.01	0.15	0.39	0.05	0.05
	120	Strength	0.00	0.05	0.09	0.36	0.65	0.27	0.05	0.01
	10	Modulus	0.11	6.85	0.05	6.90	0.01	0.30	0.00	0.11
	870	Strength Modulus	1.68	0.04	0.12	0.10	0.34	8.39	0.23	6.00
pert 1	FTD	Strength Modulus	0.09	6-00	0.47	0.50	0.50	0.38	0.17	6.54
	810	Strength Modulus	8.83	4.75	0.80	0.01	0.40	6.28	0.00	141
Desc 1	ETD	Strength Modules	0.02	0.94	0.25	0.47	0.14	8.35	0.00	6.05

			R. Annie								
	Condition	Property	Density (g/cm ¹)	Porosity [76 vol]	Fiber Volume (N vol)	Matrix Volume [N Vol]	Per Ply Thickness [in]	Min Vacuum During AC Cure ["Hg]	Sistering Temperature [1]	Sintering Hold Eimer (minutes)	
	KTD .	Strength Muchalan	0.36	6.49	0.17	0.01	0.38	8.01	0.08	0.31	
1	ETD	Strength Modulus	0.51	6.50	0.77	6.19	0.72	6.61	0.13	6.31	
	RID	Modulus	0.01	6.62	0.00	0.05	5.00	0.34	0.19	0.58	
	ETD	Strength Modulus	0.01	6.04	8.00	0.09	0.00	8.62	6.37	6.04	
	10	Strength Modulus	8.73	6.80	0.29	4.41	0.15	0.29	0.33	6.11	
	ELD	Strength Modulus	0.29	8.29	0.25	0.29	0.46	KOW/SI	* #Div/01	823	
	RED .	Strength Modulus	0.00	8.05	0.13	0.43	0.09	0.38	0.22	0.00	
	ETD	Modulus	0.20	0.30	6.05	0.06	0.03	0.00	0.45	6.54	
	870	Strength Modulus	0.06	0.07	0.10	6,54	0.07	0.02	0.08	0.06	
1	610	Strength Modulus									
	870	Strength Modulus	0.46	6.45	0.38	0.50	0.17	8.00	0.12	0.00	
	etto	Strength Modulus					_				
	10	Monipulus	5.43	8.32	0.33	9.51	0.21	1.08	0.34	0.13	
	ETD	Strength Modulus									
	RD	Modulus	0.13 0.32	6.38	0.28	6.35	8.47 8.00	0.11	0.00	6.29	
	610	Strength Modulus									

all in the

NIAR

Processing

VAR1	Min Vacuum During AC Cure ["Hg]
VAR2	Sintering Temperature (*F)
VAR3	Sintering Hold Time [minutes]
VARA	Time at First Dwell Iminutes
VARS	Time at Initiation of Full Pressure to Final Time of First Dwell [minutes]

These processing parameters had a statistically significant effect (P-value \leq 0.05) on the density, porosity, fiber volume, matrix volume, and per ply thickness

The same physical properties were found to have a statistically significant effect (P-value ≤ 0.05) on most mechanical properties with matrix dominant properties being more significantly affected

VITERARIAN, COLUMN AND

Machining

- Proper machining of test specimens is critical.
- Machining CMC is very challenging because they are:
 - brittle
 - hard
 - fragile (fragility increase with increase porosity)
- Improper machining will not only affect mean values for properties, but it can cause increased variability.

Test Methods and Specimen Geometries

- ASTM methods exist for CMCs for most common properties of interest; however, they
 are less prescriptive than PMC methods.
- Most CMC ASTM methods allow for a number of test specimen geometries because they have been shown to work well, but that does not mean they are equivalent.
- Many CMC ASTM methods also allow for different methods of applying load (e.g., face-gripped loading, pin/face loading, edge/shoulder loading).

NIAR

Test Methods and Specimen Geometries

Some CMC ASTM methods allow for different boundary conditions.

- In some cases, modifications are necessary.
 - For example, the tension specimen geometries shown in the standard are fairly narrow.
 In order to get 2 3 unit cells across the width for most satin weave fabrics (as the standard recommends), the width of the specimen needs to be increased.
 - Equipment constraints for high temperature testing may require modifications, such as extending the length of the specimen so it can be cold gripped.

NIA

Test Methods and Specimen Geometries

Specimen geometries with small gage sections tend to lead to increased variability, especially interlaminar properties, which are more affected by defects in the matrix, such as porosity and process induced cracks.

NOTCH DEPTH IS 1/2 SPECIMEN 6.4 mm THICKNESS (0.25 in.) 0 00 TO 0.20 mm -0.000 TO 0.008 in 11.43 10.1 NOTCH WIDTH 2.54 10 6.60 mm 10.00TO 0.260 m.) 1.02 10 1.65 mm 10.040 TO 0.065 in 12.7 00 (0.50 in) 79.5 m (3.13 in)

ASTM D3846 DNS

0.50" x 0.25" shear area

ASTM C1292 DNS

TABLE 1 Recommended Dimensions for Double-Notched Compression Specimen

Dimension	Description	Value, mm
L	Specimen length	30.00
h	Distance between notches	6.00
W	Specimen width	15.00
d	Notch width	0.50
t	Specimen thickness	

0.59" x 0.24" shear area

NIAR

WWW.NIAR.WICHITA.EDU

Variability within Test Data

RTD 24 Data Points CV = 23.53%

ETD 23 Data Points CV = 27.03%

NIAR

High Temperature Testing Challenges

- Testing in air is generally acceptable for intrinsic material property testing of Ox/Ox and SiC/SiC, but an inert environment is generally desired for other non-oxide CMCs.
- Number of vendors making equipment suitable for high temperature testing of CMCs is limited and the number only a few models exist. As a result, many customize or modify existing equipment to suit their needs.

Strain Range Determination for Modulus

- CMC standards do not generally require or recommend a particular strain range for determining modulus.
- A much lower strain range than what is used for PMCs is typically used for CMCs.

Typical Ox/Ox Tensile Stress-Strain Response

NIAR

- ASTM D3039 (PMC Tension Method) provides some reasonable guidance.
 - Modulus should be determined from 1000 3000 microstrain or over the strain range from 25 50% of the linear portion of the stress-strain curve.
- Designers like having us much information as possible to determine which more closely aligns with the application.
- Strongly recommend that the strain range used be reported so the user of the data can make their best judgment on how to use the property in design.

Grouping by Material Batch

Grouping by Panel (Batch-Cycle)

CMH-17 Volume 1

NIAR

8.2.4 Batches, panels, and confounding

The model described in Equation 8.2.2 and Section 8.3.7 is based on the assumption of at most two sources of variability; these are referred to as 'between-batch variability' and 'within-batch variability'. In the manufacturing of composites, however, there are typically at least three sources of variability. For composites made from prepreg, the additional source is due to the fact that several specimens are typically manufactured together as a 'panel', consequently a third source can be referred to as 'between-panel' variability.

When one has data on a material from several batches, but at only one set of fixed conditions, one cannot estimate batch and panel variabilities separately. Whenever data are obtained from a new batch, that data also comes from a different panel. (In statistical terminology, the batch and panel variances are confounded.) So what we call 'between-batch variability' in such cases is actually the sum of the between-batch and between-panel variances. Unless the between-panel variability is negligible, the be-tween-batch variance will be over-estimated in such cases. This can result in material basis properties that are lower than they should be.

CMH-17 Volume 1

8.2.5.3 Basis values using the ANOVA method

.... It is usually preferable to divide a fixed number of specimens among as many batches as is possible. However, testing a new batch is much more expensive than testing several more specimens within a single batch. It is sometimes the case that the variability between two panels from the same batch, processed and tested separately, is comparable to the variability between two panels from different batches. When this is the case, it is reasonable to substitute multiple panels within a batch for multiple batches.

- 8.3.1 Guide to computational procedures
- 8.3.1.1 Computational flowcharts

However, CMH-17 currently states that at least 5 batches are necessary when using ANOVA to report the allowable as a B-basis value (can only be reported as a B-estimate)

In Figures 8.3.1.1(a) and (b), the circled numbers refer to numbered paragraphs which describe each block in the flowcharts. For purposes of the flowcharts, the term "batch" will be used even though it is sometimes reasonable (as noted in Section 8.2.5.3) to substitute multiple panels within a batch for multiple batches.

CMC Materials & Processes Working Group

April 25, 2024

2024 CMH-17 Joint Coordination Meeting Scottsdale, AZ

Leanne Lehman, Boeing Research & Technology Doug Kiser, NASA Glenn Research Center

Overall WG goal: To document information on the composition, fabrication, and characterization of CMC engineering materials and structures.

Presenter	Торіс	Time
Leanne Lehman	Call to order and introductions	5 min
Doug Kiser	Old Business Review Rev A content Review Rev B updates	20 min
Leanne Lehman	New Business: Plan Rev C content updates and identify authors	20 min
All	Action items	15 min

Materials & Processes WG

Vision:

To be the primary and authoritative source for information on the composition, fabrication, and characterization of CMC engineering materials and structures.

Note: Focus is currently on SiC/SiC and Ox/Ox CMCs (for aircraft engines/exhaust systems)

Goals:

- To provide a comprehensive overview of ceramic matrix composite (CMC) technology, outlining the types of CMCs, commercial aircraft applications, benefits, methods of fabrication, quality control, and supportability.
- To identify the essential information on <u>composition</u>, <u>constituents/structure</u>, <u>and processing of CMCs</u> necessary to support design, selection, fabrication, certification, and utilization of CMC structures.
- To specify the <u>methods</u> and <u>procedures</u> to be used in the <u>characterization of ceramic matrix</u> <u>composites</u>, their coatings, and their constituents. Efforts need to be coordinated with the Testing Working Group.
M&P Section Chapters are Informative and Could be Used by Academia, etc

Materials & Processes Content

Revision A (published 2017)

- (2) Introduction, History and Overview
- (3.1) CMC Systems, Processing, Properties & Applications
- (3.2) Fiber Reinforcement Types and Technology
- (3.3) Interphase / Interface Technology and Approaches
- (3.4) Fabrication and Forming of Fiber Architectures
- (3.5.1) External Protective Coatings for Non-Oxide CMCs
- (3.5.2) External Protective Coatings for Oxide CMCs
- (3.6) Characterization Methods
- (3.7) NDE Methods for CMCs
- (3.8) Machining
- (4) Quality Control of Production Materials and Processes
- (5) Applications, Case Histories, and Lessons Learned

CBL 54 G

Hanne 5, Park A. Hotolocidin and Culaterina

Image: Calaboration of Calaboration of

is expected in production by 2018 (Reference 3.1.4.1(a))

- Significant improvements made in all sections
- Good advocacy from FAA/FAA CLEEN
- Good participation at Cocoa Beach Conf. (which has now become more Hypersonics focused)
- Did not maintain good momentum after Vol 5A published

Rev. B M&P Yellow Page Status

Revision B

• 2.0 Introduction, History, and Overview (updated with 35 additional references)

TOTAL VOTES	9
Affirmative	4
Affirmative with Comment	4
Negative with Comment	0
Abstain	1

- Coordinating with D&A for upcoming yellow pages in Chapter 6
 - Hybrid SiC/SiC Composites (Slurry Cast MI SiC/SiC)
 - CMC to metal attachments

M&P Section Chapters are Informative and Could be Used by Academia, etc

Materials & Processes Content

Future planned updates for rev. B and rev. C

- Need additional help in these areas want to improve those sections
- (3.2) Status of Commercial SiC Fiber Types for High-Temperature CMC Applications (status: GE fiber production in the US)
- (3.3) Interphase/Interface Technology and Approaches (Multilayer fiber coating for Prepreg MI SiC/SiC-patent)
- (3.4)Fiber Architectures: Use of large oxide fiber tows for reducing oxide CMC fabrication costs (Articles to reference and summarize?)
- (3.5.1) External Protective Coatings (coatings for high temperature SiC/SiC and CMAS research) Text and references for recent EBC development/studies will be added - may be able to get into final rev. B YP cycle
- (3.6) Characterization Methods (review existing content) Could be improved—compare with PMC version.
- (3.7) NDE (add info. about NDE of shapes/components and identify most widely used techniques)
- (3.8) Machining (review existing content—list vendors? Create draft list—improve, discuss with testing)

- Volunteers: Get a copy of a specific section from Vol 5, if possible, to review M&P content and look for "gaps" or tell us which section you would like to work on.
- We plan to keep the content "open" (no ITAR or EAR material).
- We would like to incorporate information from organizations outside of the US—descriptions of their SiC/SiC and Ox/Ox materials that are being used for gas turbine engine/exhaust applications. Will start adding a C/C section.
- Consider taking the content you have prepared while updating a section/subsection and using it to prepare a technical conference presentation.

CMC M&P WG Plan for updating content

- Start adding sections on C/C and C/SiC
 - Other material suggestions?
- Approach: outline with placeholders for new section(s) on carbon/carbon, potentially as sections 3.1.5 C/C systems, 3.1.6 C/SiC systems, and 3.2.4 carbon-based fibers
- Distro A C/C reference: "Carbon fiber-reinforced carbon composites for aircraft brakes," R. Gadow and M. Jimenez, Acers Bulletin, Vol 98, No. 6 (Authors: Experts from Institute for Manufacturing Technologies of Ceramic Components and Composites at the University of Stuttgart in Germany)

Individuals interested in contributing to the CMC M&P Working Group should please contact:

Leanne Lehman, *Boeing R&T:* <u>leanne.l.lehman@boeing.com</u> Doug Kiser, *NASA Glenn:* <u>james.d.kiser@nasa.gov</u>

CMC M&P WG

Vol 5A Structure

TITLE	Working Group	
2 CHAPTER 2 INTRODUCTION, HISTORY AND OVERVIEW	Materials & Processes	
2.1 BACKGROUND	Materials & Processes	
2.2 CMC STRUCTURAL FUNDAMENTALS	Materials & Processes	
2.3 HANDBOOK OBJECTIVES	Materials & Processes	
3 Processing, characterization, and manufacturing		
3.1 CMC Systems, Processing, properties, and applications	Materials & Processes	
3.1.1 The Application of SiC/SiC and Ox/Ox CMCs in Aircraft Turbine Engine Hot Section and Exhaust Components	Materials & Processes	
3.1.2 CMC Systems, Processing Methods, and Properties	Materials & Processes	
3.1.3 SiC/SiC CMCs	Materials & Processes	
3.1.3.1 Chemical Vapor Infiltration (CVI) SiC/SiC CMCs	Materials & Processes	
3.1.3.1.1 CVI fabrication technique	Materials & Processes	
3.1.3.1.2 Typical properties for CVI SiC/SiC CMCs	Materials & Processes	
3.1.3.2 Polymer Infiltration & Pyrolysis (PIP) CMCs	Materials & Processes	
3.1.3.2.1 Introduction	Materials & Processes	
3.1.3.2.2 Fabrication Process	Materials & Processes	
3.1.3.3 Melt Infiltrated (MI) SiC/SiC CMCs	Materials & Processes	
3.1.3.3.1 MI SiC/SiC Manufacturing Process	Materials & Processes	
3.1.3.3.2 Aero Engine Applications	Materials & Processes	
3.1.3.3.3 MI SiC/SiC CMC Supply Chain	Materials & Processes	
3.1.3.4 Hybrid SiC/SiC Composites	Materials & Processes	
3.1.3.4.1 Processing Hybrid MI SiC/SiC Composites	Materials & Processes	
3.1.3.4.2 Properties of Hybrid MI SiC/SiC Composites	Materials & Processes	
3.1.3.4.3 Processing and Properties of Other Hybrid SiC/SiC Composites	Materials & Processes	

3.1.4 Oxide/Oxide CMC Systems	Materials & Processes
3.1.4.1 Introduction/Applications	Materials & Processes
3.1.4.2 Interface Control	Materials & Processes
3.1.4.3 Oxide/Oxide Composite Processing	Materials & Processes
3.1.4.3.1 Slurry Infiltration	Materials & Processes
3.1.4.3.2 Sol-gel processing of 3-D structures	Materials & Processes
3.1.4.3.3 Alternative Processing Techniques	Materials & Processes
3.1.4.4 Properties	Materials & Processes
3.2 Fiber Reinforcement Types and Technology	Materials & Processes
3.2.1 Introduction	Materials & Processes
3.2.2 Oxide-Based Ceramic Fibers	Materials & Processes
3.2.2.1 Overview	Materials & Processes
3.2.2.2 Production Processing	Materials & Processes
3.2.2.3 Composition and Microstructure	Materials & Processes
3.2.2.4 Commercial Fibers	Materials & Processes
3.2.2.5 High Temperature Properties of Continuous Ceramic Oxide Fibers	Materials & Processes
3.2.2.6 Future Directions in Oxide Fibers	Materials & Processes
3.2.3 Si-Based Ceramic Fibers	Materials & Processes
3.2.3.1 Overview	Materials & Processes
3.2.3.2 SiC-Based Fiber Property Requirements for High-Temperature Structural CMCs	Materials & Processes
3.2.3.3 Current SiC-based Fiber Types for High-Temperature CMC	Materials & Processes
3.2.3.4 Status of Commercial SiC Fiber Types for High-Temperature CMC Applications	Materials & Processes
3.2.3.5 Future Directions	Materials & Processes

3.3 Interphase/Interface Technology and Approaches	Materials & Processes		
3.3.1 Introduction	Materials & Processes		
3.3.1.1 The roles and requirements for interface coatings	Materials & Processes		
3.3.1.2 Fabrication of fiber interface coatings	Materials & Processes		
3.3.2 Interphase composition	Materials & Processes		
3.3.2.1 Carbon	Materials & Processes		
3.3.2.2 Boron nitride	Materials & Processes		
3.3.2.3 Oxide	Materials & Processes		
3.3.2.3.1 Porous matrices	Materials & Processes		
3.3.2.3.2 Porous Coatings Materials & Proces			
3.3.2.3.3 Fugitive Interfaces	Materials & Processes		
3.3.2.3.4 Layered Oxides	Materials & Processes		
3.3.2.3.5 Monazite	Materials & Processes		
3.3.3 Summary Materials & Processes			

3.4 Fabrication and forming of fiber architectures	Materials & Processes		
3.4.1 Introduction	Materials & Processes		
3.4.2 Fiber Suppliers	Materials & Processes		
3.4.3 Fiber Placement Techniques and Equipment	Materials & Processes		
3.4.3.1 Automated Fiber Placement, Tape Laying and Tension Winding	Materials & Processes		
3.4.4 Fiber Weaving	Materials & Processes		
3.4.5 Fiber Architecture Selection	Materials & Processes		
3.4.5.1 Discontinuous Fiber Preforms	Materials & Processes		
3.4.5.2 Dry Unidirectional Tow, Sizing and Serving	Materials & Processes		
3.4.5.3 Ceramic Prepreg	Materials & Processes		
3.4.5.4 Unidirectional Weaves	Materials & Processes		
3.4.5.5 Two Dimensional (2D) Weaves	Materials & Processes		
3.4.5.6 Plain Weave	Materials & Processes		
3.4.5.7 Satin Weave	Materials & Processes		
3.4.5.8 Twill Weave	Materials & Processes		
3.4.5.9 Polar Weaves	Materials & Processes		
3.4.5.10 Contour Weaves	Materials & Processes		
3.4.5.11 Three Dimensional (3D) Weaves	Materials & Processes		
3.4.5.12 Orthogonal Interlock	Materials & Processes		
3.4.5.13 Ply-to-Ply Interlock	Materials & Processes		
3.4.5.14 Angle Interlock (with & without stuffers)	Materials & Processes		
3.4.5.15 4D, 5D Weaves	Materials & Processes		
3.4.5.16 Specialty – Z-Pinning	Materials & Processes		
3.4.5.17 Braids	Materials & Processes		
3.4.5.17.1 Braiding Introduction and Definition	Materials & Processes		
3.4.5.17.2 Types of Braids	Materials & Processes		
3.4.5.17.3 Biaxial Braid	Materials & Processes		
3.4.5.17.4 Triaxial Braid	Materials & Processes		
3.4.5.17.5 Two-Dimensional (2D) Braiding Machines	Materials & Processes		
3.4.5.17.6 Three-Dimensional (3D) / Multi-Directional Braid	Materials & Processes		
3.4.5.18 Needling	Materials & Processes		
3.4.6 Computer Modeling and Simulation	Materials & Processes		
3.4.7 Fabric Weave and Braid Manufacturers	Materials & Processes		

3.5 External protective Coatings	Materials & Processes
3.5.1 External protective coatings for non-oxide CMCs	Materials & Processes
3.5.1.1 Introduction	Materials & Processes
3.5.1.2 Candidate Non-Oxide CMCs	Materials & Processes
3.5.1.3 Environmental Degradation in Gas Turbine Hot Section	Materials & Processes
3.5.1.4 Early Coatings Development Work for Silicon-based materials	Materials & Processes
3.5.1.5 State-of-the-Art Environmental Barrier Coatings (EBCs) for Gas Turbine Hot Section	Materials & Processes
3.5.1.5.1 First Generation EBCs	Materials & Processes
3.5.1.5.2 Second Generation EBCs	Materials & Processes
3.5.1.6 Degradation of EBC-coated SiC/SiC CMC Components	Materials & Processes
3.5.1.6.1 CMAS Resistance of First-Generation EBC	Materials & Processes
3.5.1.6.2 CMAS Resistance of Second Generation Rare-Earth EBCs	Materials & Processes
3.5.1.7 EBC Field Testing	Materials & Processes
3.5.1.7.1 GE 7FA EBC Coated CMC Inner Shroud Tests	Materials & Processes
3.5.1.7.2 Solar Turbines Incorporated CMC/EBC Field Testing	Materials & Processes
3.5.1.7.3 Degradation of EBC-coated SiC/SiC CMC Components	Materials & Processes
3.5.1.8 Next Generation EBCs for 2700-300°F (1482-164°C)	Materials & Processes
3.5.1.9 Summary of EBC Development and Testing	Materials & Processes
3.5.2 External Protective Coatings for Oxide CMCs	Materials & Processes
3.5.2.1 Overview	Materials & Processes
3.5.2.2 Porous Environmental and Thermal Barriers for Oxide CMCs	Materials & Processes
3.5.2.2.1 Friable Graded Insulation (FGI) for Oxide CMCs	Materials & Processes
3.5.2.2.2 Mullite and Alumina Thermal Barrier Coatings for Oxide CMCs	Materials & Processes
3.5.2.2.3 EBCs/TBCs for WHIPOX [™] and Related Oxide CMCs	Materials & Processes
3.5.2.3 Glass Frit Coatings	Materials & Processes
3.5.2.4 High Emissivity Coatings	Materials & Processes

3.7 Nondestructive Evaluation Methods For CMC (defect characterization)	Materials & Processes
3.7.1 Needs and Requirements	Materials & Processes
3.7.2 NDE Methods	Materials & Processes
3.7.2.1 Infrared Thermography	Materials & Processes
3.7.2.2 Ultrasound	Materials & Processes
3.7.2.2.1 Ultrasonic theory of operation	Materials & Processes
3.7.2.2.2 Inspection Modes and Defect Detection	Materials & Processes
3.7.2.2.3 Calibration	Materials & Processes
3.7.2.2.4 Data interpretation and processing	Materials & Processes
3.7.2.2.5 Implementation Issues	Materials & Processes
3.7.2.2.6 Areas of development	Materials & Processes
3.7.2.3 Radiography	Materials & Processes
3.7.2.3.1 Modes of operation	Materials & Processes
3.7.2.3.2 Calibration	Materials & Processes
3.7.2.3.3 Processing and interpretation	Materials & Processes
3.7.2.3.4 Areas of development	Materials & Processes
3.7.2.4 Microwave	Materials & Processes
3.7.2.5 Other NDE, Emerging NDE, potential NDE methods	Materials & Processes
3.7.2.5.1 Impact acoustic resonance	Materials & Processes
3.7.2.5.2 Guided plate waves	Materials & Processes
3.7.2.5.3 Other methods	Materials & Processes
3.7.3 Material States and Defects	Materials & Processes
3.7.3.1 Density and bulk porosity	Materials & Processes
3.7.3.2 Localized Porosity/Voids and Inclusions	Materials & Processes
3.7.3.3 Delaminations and planar defects	Materials & Processes
3.7.3.4 Thermal Properties (diffusivity/conductivity)	Materials & Processes
3.7.3.5 Missing plies, ply drop off	Materials & Processes
3.7.3.6 Fiber coatings in manufacturing	Materials & Processes
3.7.3.7 In-service NDE	Materials & Processes
3.7.3.8 Repair NDE	Materials & Processes
3.7.4 Transition/implementation Issues	Materials & Processes
3.7.4.1 Costs	Materials & Processes
3.7.4.2 Throughput	Materials & Processes
3.7.4.3 Capability	Materials & Processes
3.7.4.4 Trade-offs	Materials & Processes
3.7.4.5 Calibration Standards	Materials & Processes
3.7.4.6 Procedures and Process standards	Materials & Processes
3.7.4.7 Industry needs	Materials & Processes
3.7.5 Inspection Validation	Materials & Processes

3.6 CHARACTERIZATION METHODS	Materials & Processes		
3.6.1 Introduction	Materials & Processes		
3.6.2 Sample preparation Materials & Proc			
3.6.3 Optical Microscopy	Materials & Processes		
3.6.4 Scanning Electron Microscopy	Materials & Processes		
3.6.5 Microstructural Characterization	Materials & Processes		
3.6.5.1 Area/volume fractions (fibers, tows, matrix, pores)	Materials & Processes		
3.6.5.2 Grain size measurement	Materials & Processes		
3.6.5.3 Fiber size and spacing	Materials & Processes		
3.6.5.4 Pore size and spatial distribution	Materials & Processes		
3.6.5.5 Application of Characterization technique Materials & Proce			
3.6.6 3D Microstructural Evaluation Materials & Process			
3.6.7 Microstructural Characterization Using Microfocus X-ray Computed Tomography	Materials & Processes		

3.8 Machining	Materials & Processes
3.8.1 Introduction	Materials & Processes
3.8.2 Conventional Machining	Materials & Processes
3.8.2.1 Conventional Cutting tools	Materials & Processes
3.8.3 Ultrasonic Machining	Materials & Processes
3.8.3.1 Ultrasonic Machining Cutting tools	Materials & Processes
3.8.4 Waterjet Machining	Materials & Processes
3.8.4.1 Waterjet Machining tools	Materials & Processes
3.8.4.2 Waterjet Machining Results	Materials & Processes
3.8.4.3 Waterjet Machining Benefits for CMCs	Materials & Processes
3.8.5 Abrasive Machining	Materials & Processes
3.8.5.1 Abrasive Machining Cutting tools	Materials & Processes
3.8.6 Laser Machining	Materials & Processes
3.8.6.1 Electric Discharge Machining	Materials & Processes

4 Quality control of PRODUCTION MATERIALS AND PROCESSES	Materials & Processes
4.1 INTRODUCTION	Materials & Processes
4.2 MATERIAL PROCUREMENT QUALITY ASSURANCE PROCEDURES	Materials & Processes
4.2.1 Specifications and documentation	Materials & Processes
4.2.2 Material control at the supplier level	Materials & Processes
4.2.3 Process control documents (PCD)	Materials & Processes
4.2.4 Statistical process control (SPC)	Materials & Processes
4.2.4.1 Lot release testing	Materials & Processes
4.2.5 CMC Material control at the user level	Materials & Processes
4.2.5.1 Lot acceptance/receiving inspection	Materials & Processes
4.2.5.2 Shelf life and out time control	Materials & Processes
4.3 CMC PART FABRICATION VERIFICATION	Materials & Processes
4.3.1 Process verification	Materials & Processes
4.3.2 CMC Nondestructive inspection (NDI)	Materials & Processes
4.3.3 Destructive tests (DT)	Materials & Processes
4.3.3.1 Background	Materials & Processes
4.3.3.2 Usage	Materials & Processes
4.3.3.3 Destructive test approaches	Materials & Processes
4.3.3.4 Implementation guidelines	Materials & Processes
4.3.3.5 Test types	Materials & Processes
4.4 Managing Change in Materials and Processes	Materials & Processes
4.4.1 Introduction	Materials & Processes
4.4.2 Qualification of new materials or processes	Materials & Processes
4.4.2.1 Problem statement	Materials & Processes
4.4.2.2 Business case	Materials & Processes
4.4.2.3 Divergence and risk	Materials & Processes
4.4.2.4 Technical acceptability	Materials & Processes
4.4.2.5 Allowables development and equivalency validation	Materials & Processes
4.4.2.6 Production readiness	Materials & Processes
4.4.2.7 Lessons learned	Materials & Processes
4.4.3 Divergence and risk	Materials & Processes
4.4.3.1 Divergence	Materials & Processes
4.4.3.2 Risk assessment	Materials & Processes
4.4.3.3 Risk analysis	Materials & Processes
4.4.4 Production readiness	Materials & Processes

- Overall WG goal
 - To document information on the composition, fabrication, and characterization of CMC engineering materials and structures
- Progress at meeting
 - Provided overview of CMC M&P WG goals and objectives
 - Reviewed the content that has been approved for rev. B yellow pages so far, and near-term plans
- Next steps
 - Discussed longer term plans for revising content for rev. C and adding additional CMC materials
 - Looking for more volunteers to write and review new/revised content

1

CMH-17 CMC Testing Working Group Meeting

April 24th, 2024

Testing WG Co-chairs Bob Zhou – GE Aviation, <u>yuanxin.zhou@ge.com</u> Matt Opliger – WSU-NIAR, <u>mopliger@niar.wichita.edu</u>

Agenda

- Introductions
- Vision and Goals
- Overview of CMC Testing WG Sections (Volume 5, Part C, Chapters 8-15)
- Review and Discuss:
 - Finished Sections Requiring Changes and/or Balloting
 - Sections Currently being Worked
 - Future Plans

Vision:

To be the primary and authoritative source for recommended/ required methods for testing characterization of CMCs & their constituents

Goals:

- To identify appropriate existing <u>consensus standard test methods</u> (such as ASTM Standards) for CMCs and their constituent materials
- To <u>assist in the identification/development of appropriate standard test methods</u> for CMCs and their constituent materials, where no such standards exist

CMC Testing WG – Overview

COMPOSITE MATERIALS HANDBOOK

Handbook Sections – Part C. Testing:

- Chapter 8 Thermo-Mechanical-Physical Test Methods – Overview (9 pages)
- Chapter 9 Material Testing & Characterization for Submission of Data to CMH-17 (35 pages)
- <u>Chapter 10 Evaluation of Reinforcements</u> (20 pages approved for Rev B)
- Chapter 11 Evaluation of Matrix Materials
- Chapter 12 Evaluation of Interface Material
- <u>Chapter 13 Evaluation of Composites</u> (17 pages currently, have 28 additional pages approved for Rev B)
- Chapter 14 Subcomponent Testing Overview of Problem
- Chapter 15 Machining and Grinding

		Status of Sections				
Chapter	Published (Rev A)	Draft in Progress	Yellow Pages	Reserved for Future Use		
8	18			18		
9	110			6		
10			12			
11		12				
12				1		
13	4	1	3	11		
14				3		
15				4		
		1	5 new sectio	ons		
	for Rev B					

CMC Testing WG – Updates for Rev B

Chapter	Section	New/Revised	Scope	Targeted Yellow Page Ballot	Status	Priority	
	10.1 Introduction	New	New section	Q4 2022	Approved	3	Priority Sca
	10.2 Physical Properties	New	New section	Q4 2022	Approved	3	1 High
	10.2.1 Filament Diameter	New	New section	Q4 2022	Approved	3	2 Mediur
	10.2.2 Density of Fibers	New	New section	Q4 2022	Approved	3	2 Mediur
	10.2.3 Electrical Resistivity	New	New section	Q4 2022	Approved	3	3 Mediur
Chapter 10 – Evaluation of	10.2.4 Coefficient of Thermal Expansion	New	New section	Q4 2022	Approved	3	5 Low
Reinforcements	10.2.5 Thermal Conductivity	New	New section	Q4 2022	Approved	3	
	10.2.6 Specific Heat	New	New section	Q4 2022	Approved	3	
	10.3 Mechanical Testing of Fibers	New	New section	Q4 2022	Approved	3	
	10.3.1 Tensile Properties	New	New section	Q4 2022	Balloted - Needs minor clarification	3	
	10.3.2 Fiber Creep /Creep Rupture Test	New	New section	Q4 2022	Approved	3	
	10.3.3 Fiber Fatigue Test	New	New section	Q4 2022	Approved	3	
	13.2 Fiber Volume Fraction	New	New section	Q3 2022	Approved	1	
Chapter 13 – Evaluation of Composites	13.10 Interlaminar Tension	New	New section	Q4 2022	Approved	1	
	13.11 Notched Testing	Revised	Add new content for OHT, including new ASTM standard for CMCs	Q4 2022	Approved	1	
	13.12 Interlaminar Fracture Toughness	New	New section	Q2 2024	Approved – Submitting New Changes for Ballot	1	

ale

m-High

n

m-Low

*Additionally, will align ASTM version/year referencing throughout the testing sections

CMC Yellow Page Ballot Schedule

- Engine Applications
- Axiom Material Ox/Ox Dataset
- Creep?
- Compression?
- Flexure?

CMC Testing WG – Plans for New Sections

	Section	New/Revised	Scope	Targeted Yellow Page Ballot	Status	Contributors	Priority		
	11.1 Introduction	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno	5	1	
	11.2 Mechanical Properties	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.1 Tensile Properties	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.2 Compressive Properties	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.3 Flexural Properties	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.4 Fracture Toughness	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.5 Creep / Creep Rupture	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.2.6 Fatigue	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno, Gyanender Singh (R)	5	1	
	11.3 Physical Properties	New	New section	Next Revision	In-Progress	Bob Zhou, Jorge Abanto Bueno	5	1	
	11.3.1 Specific Heat	New	New section	Next Revision	In-Progress	Bob Zhou, Ken Kawanishi (R), Lilly Liu (R), Sreeramesh Kalluri (R)	5	1	
	11.3.2 Thermal Expansion	New	New section	Next Revision	In-Progress	Bob Zhou, Ken Kawanishi (R), Lilly Liu (R), Sreeramesh Kalluri (R)	5	1	
	11.3.3 Thermal Diffusivity and Conductivity	New	New section	Next Revision	In-Progress	Bob Zhou, Ken Kawanishi (R), Lilly Liu (R), Sreeramesh Kalluri (R)	5]	
*	13.3 CTE	New	New section	Next Revision	Planned	Matt Opliger, Ken Kawanishi, Merna Salama (R)	2	1	
*	13.4 Thermal Conductivity	New	New section	Next Revision	Planned	Matt Opliger, Ken Kawanishi, Lilly Liu (R), Merna Salama (R)	2	1	
*	13.5 Specific Heat	New	New section	Next Revision	In-Progress	Matt Opliger, Ken Kawanishi, Merna Salama (R)	1	1	
*	13.7 Compression Testing	New	New section	Next Revision	In-Progress	Allison Horner, Lilly Liu (R), Merna Salama (R)	1	Draft in	n review by
*	13.8 Flexure	New	New section	Next Revision	In-Progress	Lilly Liu, Bob Zhou, Allison Horner (R), Merna Salama (R)	1	1	
	13.13 Crack Growth	New	New section	TBD	Not Started	ТВД	5	1	
*	13.14 Creep Testing	New	New section	Next Revision	In-Progress	Bob Zhou, Amber Powell, Lilly Liu (R), Sreeramesh Kalluri (R), Merna Salama (R) Draft reviewed by WG	2]	Priority Scale
	13.15 Fatigue Testing	New	New section	TBD	Not Started	TBD	3	1	High
	13.16 TMF – Thermo-mechanical Fatigue	New	New section	TBD	Not Started	ТВО	5	2	Medium-H
	13.17 Wear Testing	New	New section	Next Revision	Planned	Bob Zhou, Darcy Stone	5	3	Medium
	13.18 Bearing Testing	New	New section	TBD	Not Started	TBD	3	4	Medium-L
	13.19 Biaxial Testing	New	New section	TBD	Not Started	TBD	5	5	Low

review by WG

Medium-High Medium

Medium-Low 7

- Matt's list of standardization/improvements that would be most helpful to CMH-17:
 - Interlaminar Tension: New or improved methodologies for 3D reinforced composites and elevated temperature testing
 - Interlaminar Shear: New or improved methodologies for reduced variability and for 3D reinforced composites (e.g., asymmetric 4-pt bend)
 - Open-Hole Compression: Most use the PMC method with slight modification, additional guidance could be used for brittle, low strain to failure materials such as CMCs and for elevated temperature testing
 - Creep: New standard for other load configurations (e.g., flexure, compression, shear)
 - Bearing: Most use the PMC method with slight modification, additional guidance could be used for brittle, low strain to failure materials such as CMCs and for elevated temperature testing

• Is this a good list? Are there others that should be included?

CMH-17 Restructure

What are your thoughts on restructure of CMH-17?

- WG structure
- Meeting format