

Ceramic Matrix Composite Materials Guidelines for Aircraft Design

John Tomblin Matt Opliger Rachael Andrulonis

FAA Tech Monitor: Ahmet Oztekin FAA Sponsors: Cindy Ashforth & Larry Ilcewicz

Federal Aviation Administration

April 19, 2023

Motivation and Key Issues

- Expanded use of Ceramic Matrix Composites (CMCs) in gas turbine engines and hypersonic applications
- CMCs require their own set of rules separate from more established PMCs
- No "fully approved" data in CMH-17
- Similar complexity to PMCs in terms of anisotropy, fiber architecture, high strength/stiffness fibers, and production process sensitivity and variability, they are also different in many ways such as:
 - Composite constituents
 - Degradation, damage, and failure mechanisms
 - High temperature life predictions
 - High temperature joining challenges
 - None destructive evaluation (NDE) challenges
 - Repairability

Partners and Objectives

Principal Investigators: John Tomblin, Matt Opliger, Rachael Andrulonis

FAA Technical Monitor: Ahmet Oztekin

Other FAA Personnel: Cindy Ashforth

Industry Partners: Axiom Materials (ox/ox prepreg and test panels), AC&A (ox/ox test panels), 3M (ox fiber/fabric), IHI Corporation (SiC/SiC test panels), 20+ steering committee members

Objectives

- Develop a <u>framework for the qualification</u> of CMCs, including guidelines and recommendations for their characterization, testing, design and utilization.
- Develop and execute a test plan to evaluate the durability and long term safety of CMCs.
- Transition the CMC test data and guidelines generated in this program into shared databases, such as CMH-17.
- Coordinate with industry and government organizations, including CMH-17 CMC coordination and working groups and ASTM C28.

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Approach

Wichita State University

- Generate Qualification Documents for CMCs and Perform Material Qualification
 - Material and Process Specifications
 - Test Plan
 - Statistical Analysis Report with B-Basis Allowables
- Generate Equivalency Documents for CMCs and Perform Material Equivalency
 - Test Plan
 - Equivalency Analysis Report
- Evaluate Durability and Long Term Safety of CMCs
 - Generate Test Plan
 - Perform fatigue, long term thermal exposure, and creep testing
- Documentation
 - Document framework development and
 - Develop standard guides supporting Ox/Ox CMC testing for future test method standardization

5

Ox/Ox Qualification Methodology

J

Ox/Ox Qualification Tasks

18 SPECIMENS TOTAL

• A total of 24 specimens were tested per environmental condition and test method.

MIST

JMS

Ox/Ox Qualification – Properties Tested

Composite Physical	Composite Thermophysical
Properties	Properties
Cured/Sintered Ply Thickness	Specific Heat
Fiber Volume	Thermal Conductivity (Diffusivity),
Matrix Volume	Measured in x, y, and z directions
Density	Thermal Expansion, Measured in x, y, and
Porosity	z directions

		Lamina Med	hanical Proper	ties		
					Number o	of Batche
					x No. of	Panels x
					No. of S	pecimens
					Test Ten	nperature
	Layup	Test Type and Direction	Property	Test Method	RTD	ETD
	[0] ₅₈	Warp Tension	Strength,	ASTM C1275	3x2x3	3x2x3
			Modulus, and	(RTD)		
			Poisson's Ratio	ASTM C1359		
			(RTD Only)	(ETD)		
	[90] ₅₈	Fill Tension	Strength and	ASTM C1275	3x2x3	3x2x3
			Modulus	(RTD)		
	[0] ₆₅	Warp Compression	Strength and	ASTM C1358	3x2x3	3x2x3
			Modulus			
	[90]65	Fill Compression	Strength and	ASTM C1358	3x2x3	3x2x3
			Modulus			
	[45/-45]28	In-Plane Shear	Strength and	ASTM D3518	3x2x3	3x2x3
		(+45/-45 Tension)	Modulus (RTD			
			Only)			
	[0] ₇₅	In-Plane Shear	Strength and	ASTM D5379	3x2x3	
		(V-Notch Shear)	Modulus			
	[0]75	Interlaminar Shear	Strength	ASTM C1292	3x2x3	3x2x3
NNNS		(Double Notch Shear)		(RTD)		
	[0]28	Interlaminar Shear	Strength	ASTM D2344	3x2x3	
NTER OF ELECTRONICS	1 120	(Short-Beam Strength)	_			
LECAN	Λ					

Laminate and Design Guidance Mechanical Properties							
	Number of Bat						
				x No. of	Panels x		
				No. of Sp	ecimens		
				Test Ten	perature		
Layup	Test Type and Direction	Property	Test Method	RTD	ETD		
[0] ₇₅	Flexure	Strength and Modulus	ASTM C1341	3x2x3			
[0] ₁₀	Interlaminar Tension (Trans-Thickness / Flatwise Tension)	Strength	C1468	3x2x3			
[0/90]₅	Interlaminar Tension (Trans-Thickness / Flatwise Tension)	Strength	C1468	1x1x6			
[0/90] ₁₄	Interlaminar Shear (Short-Beam Strength)	Strength	ASTM D2344	1x1x6			
[45/0/-45/90/-45/90] _s	Unnotched Tension	Strength and Modulus	ASTM C1275 (RTD)	3x2x3	3x2x3		
[45/0/-45/90/-45/90] _s	Unnotched Compression	Strength and Modulus	ASTM C1358	3x2x3	3x2x3		
[45/0/-45/90] ₂₅	Open-Hole Compression	Strength	ASTM D6484	3x2x3	3x2x3		
[45/0/-45/90/-45/90]s	Open-Hole Tension	Strength	ASTM D5766	3x2x3	3x2x3		
[45/0/-45/90/-45/90]s	Filled-Hole Tension	Strength	ASTM D6742	3x2x3	3x2x3		
[45/0/-45/90/-45/90] _s	Single Shear Bearing	Strength	ASTM D5961 (Procedure C)	3x2x3			
[45/0/-45/90/-45/90] _s	Double Shear Bearing	Strength	ASTM D5961 (Procedure A)	3x2x3	3x2x3		
[45/0/-45/90/-45/90] _S	Tension After Impact	Strength	ASTM D7136 ASTM D5766	1x2x3	1x2x3		

RTD = Room Temperature Dry ETD = Elevated Temperature Dry (1650F/900C)

Example of Panel-to-Panel Variability and the Effects on Material Allowables

CFCAN

	Ctatistical	Ammroochee	Deline	Evelveted	(Circt 2 Detek	
Example of	Statistical	Approaches	веіпд		(First 3 Batche	35)

Unnotched Tension Strength Basis Values and Statistics						
		Normalized		As-me	asured	
	Env	RTD	ETD	RTD	ETD	
	Mean	27.891	25.767	27.690	25.675	
	Stdev	1.793	3.481	2.067	3.974	
	CV	6.427	13.510	7.465	15.478	
	Mod CV	7.214	13.510	7.733	15.478	
Basis Statistics	Min	24.932	20.343	24.969	19.889	
	Max	30.815	29.449	31.459	30.197	
	No. Batches	3	3	3	3	
	No. Panels	6	6	6	6	
	No. Spec.	18	18	18	18	
	Basis Values and Estimates (CMH17 by Batch)					
	B-Basis	24.352	18.111	23.609	17.878	
Grade A	A-Estimate	21.844	11.694	20.717	10.646	
	Method	Normal	Non- Parametric	Normal	Non- Parametric	
	Basis Value Estimates (ANOVA By Panel)					
Grade B	B-Estimate	22.185	14.994	21.115	13.210	
	A-Estimate	18.284	7.617	16.620	4.681	
	Modified CV Basis Values and Estimates					
Grado C	B-Basis	23.919		23.463		
Grade C	A-Estimate	21.109	NA	20.473	NA	
	Method	Normal		Normal		
	Ger	neric Basis	Values and	Estimates	5	
Grade G	B-Basis	21.050	12.921	19.809	10.772	
	A-Estimate	17.966	7.129	16.255	4.053	

Panel-to-panel variability observed within the same material batch for ETD tests

UNT1 Configuration: In-Plane Tension [45/0/-45/90/-45/0/45]s Layup

- Panel-to-panel variability observed within the same material batch for ETD tests
- Coefficient of variation (CV) for ETD normalized data is 13.51%, resulting in a B-basis material allowable (CMH17 by Batch) that is 30% less than the mean

Greater panel-to-panel variability has been observed for other configurations and properties, resulting in very low material allowables

Process-Property Relationships – Linear Regression

- Single parameter regression analysis was performed to evaluate process-property relationships
- Questions we hoped to answer:
 - Does any single or combination of processing variables correlate with any physical or mechanical variables (test properties)?
 - Does any single or combination of physical variables correlate with any mechanical variables (test properties)?

• Variables analyzed

Variables							
Processing	Physical Testing	Mechanical Testing					
Min Vacuum During AC Cure ["Hg]	Density [g/cm3]	All Test Types (e.g., WT, FT, WC, FC, ILS)					
Sintering Temperature [°F]	Porosity [% Vol]	All Properties (i.e., Strength and Modulus)					
Sintering Hold Time [minutes]	Fiber Volume [% Vol]	All Test Temperatures (i.e., RTD and ETD)					
Time at First Dwell [minutes]	Matrix Volume [% Vol]						
Time at Initiation of Full Pressure to Final	Per Ply Thickness [in]						
Time of First Dwell [minutes]							

Note: All processing data were taken from the cure and sintering runs corresponding to multiple panels. All physical test data except per ply thickness were determined on representative specimens from each panel.

ILT: Interlaminar Tension

SBS: Interlaminar Shear (Short-Beam Strength)

Process-Property Relationships – Linear Regression

Linear Regression R² Value Tables for Strength and Modulus at Room Temperature

Strength at RTD Condition							
			R ² Valu	ie			
Test	Density [g/cm³]	Porosity [% Vol]	Fiber Volume [% Vol]	Matrix Volume [% Vol]	Per Ply Thickness [in]		
Warp Tension	0.41	0.39	0.07	0.00	0.23		
Fill Tension	0.06	0.12	0.23	0.04	0.17		
Unnotched Tension 1	0.23	0.16	0.00	0.03	0.04		
Open-Hole Tension 1	0.13	0.15	0.01	0.01	0.08		
Filled-Hole Tension 1	0.56	0.49	0.09	0.03	0.20		
Warp Compression	0.72	0.70	0.18	0.02	0.43		
Fill Compression	0.00	0.00	0.28	0.36	0.10		
Unnotched Compression 1	0.82	0.75	0.44	0.01	0.43		
Open-Hole Compression 1	0.17	0.38	0.07	0.40	0.01		
In-Plane Shear (+/-45 Tension)	0.76	0.60	0.03	0.02	0.32		
In-Plane Shear (V-Notch/Iosipescu)	0.06	0.07	0.15	0.52	0.07		
Interlaminar Shear (Double-Notch)	0.01	0.02	0.00	0.03	0.00		
Interlaminar Shear (Short-Beam)	0.46	0.45	0.29	0.00	0.37		
Interlaminar Tension	0.43	0.37	0.13	0.02	0.21		
Flexure	0.13	0.16	0.06	0.38	0.47		
Single-Shear Bearing	0.73	0.80	0.12	0.08	0.31		
Double-Shear Bearing	0.00	0.03	0.15	0.42	0.09		

Modulus at RTD Condition						
			R ² Valu	le		
Test	Density [g/cm³]	Porosity [% Vol]	Fiber Volume [% Vol]	Matrix Volume [% Vol]	Per Ply Thickness [in]	
Warp Tension	0.15	0.09	0.79	0.54	0.78	
Fill Tension	0.08	0.16	0.14	0.01	0.12	
Unnotched Tension 1	0.43	0.29	0.22	0.03	0.40	
Warp Compression	0.57	0.55	0.56	0.18	0.67	
Fill Compression	0.17	0.16	0.07	0.00	0.14	
Unnotched Compression 1	0.55	0.46	0.19	0.00	0.15	
In-Plane Shear (+/-45 Tension)	0.37	0.39	0.45	0.16	0.80	
In-Plane Shear (V-Notch/Iosipescu)	0.18	0.22	0.01	0.23	0.00	
Flexure	0.32	0.40	0.26	0.05	0.00	

- Correlations were not strong for properties at elevated temperature so they are not shown
- Strongest correlation is with density and porosity for most strength properties at room temperature
- Fiber volume and per ply thickness have much higher correlation with most modulus properties than strength properties at room temperature

Process-Property Relationships – Multivariate Regression

- Single parameter regression analysis does show some correlation among multiple parameters so a multivariate regression analysis was performed for each test to see if certain parameters in combination with one another show greater correlation with mechanical properties
- A regression decision tree was used to model the data
- The following processing parameters had a statistically significant effect (P-value ≤ 0.05) on the density, porosity, fiber volume, matrix volume, and per ply thickness
 - Sintering hold time •
 - Duration of full pressure at initial dwell prior to ramping to the final dwell
- The same physical properties were found to have a statistically significant effect (P-value ≤ 0.05) on most mechanical properties with matrix dominant properties being more significantly affected

									>
REGRESS	SION P1	DENSITY [G/CM	31						
SUMMA	RYOUTPUT		-1					-	
								_	
R	Regression S	tatistics							
Multiple	e R	0.689480987							
R Square	е	0.475384031							
Adjuste	d R Square	0.429365087							
Standard	d Error	0.051765437						_	
Observa	ations	63						_	
ANOVA								-	
		df	SS	MS	F	Sianificance F		1	
Regressi	ion	5	0.13840689	0.027681378	1	Regre	ssion Decision Tre	ee for P1	
Residua		57	0.152740647	0.00267966					
Total		62	0.291147537		_				
<u> </u>		Coefficients	Standard Error	t Stat	4		Trading of a link	365	
Intercep	ot	2.883881303	1.472581481	1.958384877	-		1868-2367		
X Variab	ole 1	0.000169744	0.000242998	0.698541291	C		/	1	
X Variab	ole 2	0.00016714	0.000762835	0.21910367	C		/		
X Variab	ole 3	-0.00183725	0.000608168	-3.020959339	C	/	(/	
X Variab	ole 4	-0.000218546	0.000355747	-0.614330342	C	/			
X Variab	ole 5	0.003774568	0.000803987	4.69481202				>	
					4	Torontillent + 122 5 mail - 0.556 interview - 22 value - 2.658		final and final and software software	929 92 92 9 17 42 7 19 10
								/	/
Process	sing							/	1
VAR1	Min Vacu	um During AC	Cure ["Hg]			$\langle \rangle$			$\langle \cdot \rangle$
VAR2	Sintering	Temperature [°F]					/	1
VAR3	Sintering	Hold Time [mir	nutes]		term term	- 103 - 114 - 105	68.0×30.7.0 = 5.561 (m) = 11 (= 2.536	min = 5.00 min = 5.00 service = 20 service = 2.758	Hardwood, e. (13.), Hardwood,
VAR4	Time at Fi	rst Dwell [mini	utes]		1		1		
VAR5	Time at In	itiation of Full	Pressure to Final		1	\ /		/ \	/ \
	Time of Fi	rst Dwell [min	utes]		1	\ /	1	/ \	/ \
					1	\ /	1	/ \	/ \
					1	\ /	1		$I \rightarrow I$
					1000 + 100	#10-10 PTM-1207	702 + 0.002	mm+40 ms+41	mm + 30

Process Parameter Evaluations

Autoclave Cure Cycle from Process Specification NPS 87800

Investigate the following parameters:

- 1. Debulk one 15-20 minute debulk after layup in NPS 87800 but Axiom now recommends debulk at least every 6 plies
- 2. Bleeder plies three plies in NPS 87800 but Axiom now recommends one bleeder ply per every two prepreg plies
- Initial dwell temperature hold at 250°F ±10°F in NPS 87800 but Axiom now recommends 225°F ±10°F as a result of rheology data collected after the NPS was issued
- 4. Pressure apply full pressure after 60 minutes into the initial dwell in NPS 87800 but Axiom now recommends applying full pressure at the beginning of the initial dwell

Physical Property Acceptance Limits

 No current acceptance limits - Axiom has typical values for many physical properties but doesn't have acceptance limits for composite physical properties from a robust dataset for this material and panel fabrication process.

• Acceptance Limit Investigation

- The qualification data from all four material batches was aggregated and normalized to the mean for each property then plotted against porosity, density, and per ply thickness.
- Limits were analyzed with the goal of optimizing the limits such that as much "good data" falls within the bounds and as much "bad data" falls outside of the bounds.
- A program was written to determine the ratio of accepted-to-rejected strength data over a range of limits to guide initial acceptance limits. The goal was to find the highest ratio of accepted-to-rejected strength data for initial acceptance limits.
- Limits were further optimized by looking at the data graphically.

Physical Property Acceptance Limits – Porosity

88.5% of all data are inside of limits (IA + IB), including 81.8% that are above (IA) and 6.6% that are below (IB) 80% of the mean

11.5% of all data are outside of limits (OA + OB), including 2.7% that are above (OA) and 8.8% that are below (OB) 80% of the mean

The average CV across all strength properties is roughly 10% so 80% of the mean corresponds to a 2 x CV deviation from the mean.

Evaluation of the Microstructure

• **Background** - There are cases where specimens with similar measured bulk porosity have different mechanical properties.

Methodology

- X-ray CT was utilized to determine if pore size, location, or distribution is different and if there is any correlation with mechanical properties.
- Select panel remnants were submitted for X-ray CT inspection, which was performed from each batch and cure/sintering cycle to better understand the microstructure of these panels.
- X-ray CT scans were reviewed to look for differences between the panels, and some analysis was performed to determine if the features in the microstructure correlate with panel quality.

Wichita State University

Evaluation of the Microstructure – ILT

Interlaminar (Through-Thickness) Tension

Interested in finding long interconnected pores/voids in a single plane

Notes:

X-ray CT scans are from off-cuts from the panels and are not actual test specimens

Images are not representative – were selected to show long interconnected pores/voids in a single plane

HT.C.C52, 1./CBT, 1 Page Area on Thickness Location

Analysis of 17 in-plane images

2.5

2 1.5

0.2 0.3

Bulk panel

porosity:

32.5%

1 of 17

17

Ox/Ox Equivalency

ULST

Ox/Ox Equivalency – Test Matrices

Property	Test Method	Min Replicates per Panel
NDI by Ultrasonic Through Transmission (C-Scan), Thermography, or Radiography (CT Scan)		1
Cured/Sintered Ply Thickness	ASTM D3171 (Method II)	All data from mechanical test specimens
Fiber Volume, % by Volume	ASTM D3171 (Method II)	3
Matrix Volume, % by Volume	ASTM D3171 (Method II)	3
Cured/Sintered Composite Density	ASTM C373	3
Void/Porous Content	ASTM C373	3
Specific Heat	ASTM E1269	3 (Total)
Thermal Conductivity (Diffusivity), Measured in x, y, and z directions	ASTM E1461	3
Thermal Expansion, Measured in x, y, and z directions	ASTM E228	3

Layup	Test Type and Direction	Property	Test Method	Number of Batches x No. o Panels x No. o Specimens Test Temperature RTD ETD	
[0]58	Warp Tension	Strength, Modulus, and Poisson's Ratio	ASTM C1275 (RTD) ASTM C1359 (ETD)	1x2x4	
[90]5s	Fill Tension	Strength and Modulus	ASTM C1275 (RTD) ASTM C1359 (ETD)	1x2x4	1x2x4
[0]6S	Warp Compression	Strength and Modulus	ASTM C1358	1x2x4	1x2x4
[90]6S	Fill Compression	Strength and Modulus	ASTM C1358	1x2x4	
[0]7s	In-Plane Shear (V-Notch Shear)	Strength and Modulus	ASTM D5379	1x2x4	
[0]78	Interlaminar Shear (Double Notch Shear)	Strength	ASTM C1292 (RTD) ASTM C1425 (ETD)	1x2x4	1x2x4
[0]10	Interlaminar Tension (Trans-Thickness / Flatwise Tension)	Strength	ASTM C1468	1x2x4	
[45/0/-45/90]28	Open-Hole Compression	Strength	ASTM D6484	1x2x4	
[45/0/-45/90/-45/90]s	Open-Hole Tension	Strength	ASTM D5766	1x2x4	1x2x4

Ox/Ox Equivalency – Statistical Approaches

Unnotched Tension Strength Basis Values and Statistics						
		Norm	alized	As-me	asured	
	Env	RTD	ETD	RTD	ETD	
	Mean	27.891	25.767	27.690	25.675	
	Stdev	1.793	3.481	2.067	3.974	
	CV	6.427	13.510	7.465	15.478	
	Mod CV	7.214	13.510	7.733	15.478	
Basis Statistics	Min	24.932	20.343	24.969	19.889	
	Max	30.815	29.449	31.459	30.197	
	No. Batches	3	3	3	3	
	No. Panels	6	6	6	6	
	No. Spec.	18	18	18	18	
	Basis Values and Estimates (CMH17 by Batch)					
	B-Basis	24.352	18.111	23.609	17.878	
Grade A	A-Estimate	21.844	11.694	20.717	10.646	
	Method	Normal	Non- Parametric	Normal	Non- Parametric	
	Basis	Value Estin	nates (ANO	VA By Pan	el)	
Grade B	B-Estimate	22.185	14.994	21.115	13.210	
	A-Estimate	18.284	7.617	16.620	4.681	
	Modif	ied CV Bas	is Values a	nd Estimat	es	
Crada C	B-Basis	23.919		23.463		
Grade C	A-Estimate	21.109	NA	20.473	NA	
	Method	Normal		Normal		
	Ger	neric Basis	Values and	Estimates		
M Grade G	B-Basis	21.050	12.921	19.809	10.772	
	A-Estimate	17.966	7.129	16.255	4.053	

Estimates and Allowables Generated from Qualification Dataset

Equivalency Criteria Determined from Analysis of Qualification Dataset

Unnotched Tension Strength Equivalency Criteria								
		Normal	ized	easured				
	Env	RTD	ETD	RTD	ETD			
Onesia A an	CMH17	Minimum Equivalenc	y Criteria for Stre	ength (n=8, alpha	= 5%)			
Grade A or Grade B	Mean	26.674	23.404	26.287	22.976			
	Minimum	23.051	16.368	22.109	14.945			
Grade C	CMH17 Mod CV Minimum Equivalency Criteria for Strength (n=8, alpha = 5%)							
	Mean	26.525	NA	26.236	NA			
	Minimum	22.459	NA NA	21.909	INA			
	Generic Equivalency Criteria for Strength (n=8, alpha = 5%)							
Grade G	Acceptance Limit for Mean	23.823	18.128	23.004	16.813			
	Maximum Sample Standard Deviation	4.185	7.860	4.822	9.118			

Various statistical approaches will be considered for determining equivalency and guidance will be developed.

J

20

Durability and Long Term Safety

Durability and Long Term Safety

Initial Evaluations for Scoping Final Fatigue Test Matrix

		Number of Batches x No of Panels x No of Specimens (see Note 1)						
		Projected Coupon Counts for Scoping Tests						
		Inclusion in	Appropriate	Fatigue	Stress Level	Elevated		
		Test Plan	R-Value (see	Frequency	Targets (see	Temperature		
Layup	Test Type	(see Note 2)	Note 3)	(see Note 4)	Note 5)	(see Note 6)		
[45/0/-45/90/-45/90]s	Unnotched Tension-			1x1x9	1x1x6	1x1x3		
	Tension							
[45/0/-45/90/-45/90]s	Notched Tension-			1x1x9	1x1x6			
	Tension							
[45/0/-45/90/-45/90]s	Notched Tension-			1x1x9	1x1x6			
	Compression							
[0] _{7S}	Interlaminar Shear	1x1x6	1x1x18		1x1x6	1x1x3		
	(Double Notch Shear)							
[0] ₂₈	Interlaminar Shear	1x1x6			1x1x6			
	(Short Beam Strength)							
[0]10	Interlaminar Tension	1x1x3		1x1x9	1x1x6			
	(Flatwise Tension)							
[45/0/-45/90/-45/90]s	Fatigue After Impact				1x1x6			
	Tension-Tension							
[45/0/-45/90/-45/90]s	Fatigue After Impact				1x1x6			
	Tension-Compression							

Durability and Long Term Safety

Notional Fatigue Test Matrix

				Number Panels 2	of Batche x No of Sp	s x No of ecimens	
				Targete	d Cycle Co	ount (see	Relevant Test
					Note 2, 3))	Methods (see
	Layup (see Note 1)	Test Type	R-Value	"Low"	"Mid"	"High"	Notes 4, 5)
	[45/0/-45/90/-45/90]s	Unnotched Tension-	0.1	3x1x3	3x1x3	3x1x3	ASTM C1360
		Tension					
	[45/0/-45/90/-45/90]s	Notched Tension-	0.1	1x3x3	1x3x3	1x3x3	ASTM C1360
		Tension					ASTM C1869
	[45/0/-45/90/-45/90]s	Notched Tension-	-1	2x3x3	2x3x3	2x3x3	ASTM C1360
		Compression					ASTM D6484
	TBD (See Note 7)	Interlaminar Shear	TBD	2x3x3	2x3x3	2x3x3	ASTM C1360
			(See Note 7)				ASTM C1292
	[0]10	Interlaminar Tension	0.1	2x3x3	2x3x3	2x3x3	ASTM C1360
		(see Note 8)					ASTM D7291
	[45/0/-45/90/-45/90]s	Fatigue After Impact	0.1	1x3x3	1x3x3	1x3x3	ASTM C1360
		Tension-Tension (see					ASTM C1468
		Note 6)					
	[45/0/-45/90/-45/90]s	Fatigue After Impact	-1	1x3x3	1x3x3	1x3x3	ASTM C1360
ana Int		Tension-Compression					ASTM D7136
		(see Note 6)					ASTM D6484

- The target for "low" cycle fatigue is on the order of 1 x 10⁴ to 5 x 10⁴ cycles.
- The target for "mid" cycle fatigue is on the order of 5 x 10⁴ to 2 x 10⁵ cycles.
- The target for "high" cycle fatigue is on the order 2 x 10⁵ to 1 x 10⁶ cycles.
- Specimens which do not fail will be run for at least 10⁶ cycles (runout), and residual strength tested.
- Stress levels to target low, mid, and high cycle fatigue stress will be identified during the scoping trials and better defined ranges will be established for low, mid, and high cycle failures.

22

WICHITA STATE

Durability and Long Term Safety

Thermal Exposure Test Matrix

			1										
			Test	Number of Batches x No of Panels x No of Specime				ens					
		Methods Exposure Temperature an						and D	uratior	on (see Notes 2, 3)			
		Test Type (Test	(see	1650F	1800F	1400F	1650F	1800F	1400F	1650F	1800F	1650F	
	Layup (see Note 1)	Environment)	Note 2)	500h	500h	1000h	1000h	1000h	5000h	5000h	5000h	TBD	
	[0] _{5S} Warp Tension		ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
		(RTA)	C1275										
	[0] ₅₈	Warp Tension	ASTM				1x2x3	1x2x3		1x2x3	1x2x3		
		(ETA – 1650F)	C1359										
	$[45/0/-45/90/-45/90]_{\rm S}$	Unnotched	ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
		Tension (RTA)	C1275										
	$[45/0/-45/90/-45/90]_{\rm S}$	Open Hole	ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
		Tension (RTA)	D5766										
	[0] _{7S}	Flexure (RTA)	ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
			C1341										
	[0] _{7S}	Interlaminar	ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
		Shear -DNS	C1292										
		(RTA)											
	[0] _{7S}	Interlaminar	ASTM				1x2x3	1x2x3		1x2x3	1x2x3		
1		Shear - DNS	C1292										
CAN CE		(ETA – 1650F)											
	[0]10	Interlaminar	ASTM	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	1x2x3	
		Tension (RTA)	C1468										

- Mechanical tests will be performed statically for all test types.
- TBD: will notionally be tested after 10,000 hours, but specimens could be exposed for a longer period of time if the need arises.
- The weight of each specimen will be measured before and after exposure.
- Photographs of each failed specimen will be taken, and the failure mode will be recorded. A subset of coupons for each test type may have fracture surfaces analyzed.

Durability and Long Term Safety

High Temperature Creep Test Matrix

			Number	r of Batch	es x No o	f Panels x	No of Spe	ecimens
Layup (see	Test Type (Test	Test Method		Relat	ive Stress	(see Note	s 3, 4)	
Note 1)	Environment)	(see Note 2)	40%	50%	60%	70%	80%	TBD
[0] ₅₈	Warp Tension	ASTM		1x2x3	1x2x3	1x2x3	1x2x3	1x2x3
	(ETA - 1650F)	C1359						
		ASTM						
		C1337						
[45/-45] ₂₈	In Plane Shear	ASTM	1x2x3	1x2x3	1x2x3			1x2x3
	(ETA - 1650F)	D3518						
		ASTM						
		C1337						

- Testing will be conducted at 1650°F.
- Relative applied stress is defined as a percentage of either the ultimate stress or peak stress, as appropriate, as determined by static testing on the same batch of material.
- One set of coupons for each test type will be reserved for either testing at an additional stress level or testing at an identical stress level but a higher or lower temperature. This will be determined based on preliminary creep testing results.

SiC/SiC Qualification

Watanabe, F., Manabe, T., "Engine Testing for the Demonstration of a 3D-Woven Based Ceramic Matrix Composite Turbine Vane Design Concept," ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, June 11-15, 2018

SiC/SiC Qualification Tasks

Documents Generated for Qualification Program:

- Material Specification
- Process Specification
- Test plan including test matrix with physical, thermal, and mechanical test requirements

Future Tasks Survey

- A survey was distributed to solicit input on further work to support the CMC qualification framework development.
- Responses came from a broad distribution of backgrounds and with expertise in materials relevant to commercial aviation

Q4 What is your company's role in the aviation industry?

Answered: 8 Skipped: 0

Key Survey Question

- Considering current efforts on developing a CMC qualification framework, rank the following from most to least important:
 - Documentation: Document recommended framework through FAA reports
 - Test method development: including testing, heating, and instrumentation methods
 - Inspection method development: including NDE to support framework development
 - Statistical analysis and allowables methodology development
 - New material qualification: validate the framework development that has occurred on a different CMC material and process
 - Additional existing material investigation: including effects of aging, freeze/thaw, and protective coatings

Survey Response

Wichita State University

Current CMC Test Methods Status

- ASTM C28.07 publishes and maintains a basic set of test methods, with goals to develop additional standards when resources allow
- In the absence of CMC-specific methods for testing, heating, and instrumentation, PMC methods are generally substituted, sometimes with significant modification
- Common CMC data needs that use modified PMC methods
 - Precursor or sol-gel flow
 - Prepreg tack, drape
 - Water absorption, density, porosity
 - Short beam strength, in-plane shear ±45°, filled hole tension, bearing, bearing fatigue, compression after impact, tension after impact, fastener pull through, curved beam strength,
 - Elevated temperature tests: compression, open hole compression, interlaminar tension, fatigue, open hole tension, flexure

ASTM C28.07 Future Standards Goals

 C28.07 has identified individual standards to develop, but is not broadly addressing common issues of standardized specimen preparation, instrumentation, or heating

Mechanical PropertiesFlats-BarsTubes/RedCompression Properties (ultimate, fracture, PropL)Modified for HT TestsRT in drafShear Properties (ultimate, fracture, PropL)•Improved for InterlaminarNew for TeInterlaminar. Translaminar•Improved for TranslaminarNew for TeTransthickness Tensile Properties (ultimate, fracture, PropL)Improved for HTNeeded??	orsion	
Compression Properties (ultimate, fracture, PropL)Modified for HT TestsRT in draftShear Properties (ultimate, fracture, PropL)•Improved for Interlaminar•Improved for InterlaminarInterlaminar. Translaminar•Improved for TranslaminarNew for ToTransthickness Tensile Properties (ultimate, fracture, PropL)Improved for HTNeeded??	orsion	
Shear Properties (ultimate, fracture, PropL) •Improved for Interlaminar Interlaminar. Translaminar •Improved for Translaminar Transthickness Tensile Properties (ultimate, fracture, PropL) Improved for HT Interlaminar. Translaminar New for Total State	orsion	
Interlaminar. Translaminar •Improved for Translaminar Transthickness Tensile Properties (ultimate, Improved for HT Needed??	0151011	
Transthickness Tensile Properties (ultimate, fracture, PropL)		
fracture, PropL)	Needed???	
, ,		
Fracture Toughness / Crack Growth Resistance/ •RT Mode I in Draft		
Strain Energy Release Rate/ •New for Mode II & Mode III	Needed222	
Interlaminar and Translaminar •New for Translaminar	:	
(Mode 1, 2, 3, Mixed) •New HT for All		
Open Hole Tensile Strength Properties C1869 New for Te	ıbes	
Open Hole Compression Strength Properties NEW base D6484 New for Te	ıbes	
Notch Tensile Strength Properties NEW New for Te	ıbes	
Notch Compression Strength Properties NEW New for Te	ıbes	
Pin Bearing Strength Properties NEW base D5961 New for Tu	ıbes	
Torsion Shear Joint StrengthRT in DraftNA		
Single Filament Tensile C1557 Improved, NA		
Dry/Impreg. Tensile Tow Tests NEW NA		

ASTM C28.07 would be the most appropriate place for standard guides to Ox/Ox testing.

General CMC Testing Challenges

- **Specimen alignment and gripping** –CMCs are in general stiffer and more brittle than metals and usually require alignment fixtures. Gripping needs to be done with hydraulic grips with metallic or polymer inserts to mitigate surface roughness effects and distribute forces more evenly
- Specimen shape and machining –Typically notches or dog bones are required to insure high stress regions within the gage section; machining CMCs can be difficult especially if sharp notches are required
- **Specimen size** Due to cost and effort of production, coupons are often sized as small as possible, which can impact results if specimen architecture/repeat units are not compatible with the size
- Strain instrumentation Since CMCs are more brittle and matrix cracking occurs at relatively low strain (0.03 to 0.1%), more sensitive strain measures are required –offset strain techniques for nonlinearity parameters will have much smaller offset strains (0.005% instead of 0.2% as in metals) which still may not be adequate
- Material class variability CMC material systems have a very wide range of material behavior characteristics (E_f >> E_m, E_f = E_m, E_f < E_m; 2D & 3D weaves; very low to very high K's, CTEs, CMEs; various tow sizes and FAW) so standard test methods and specimen designs that work for one material system won't work for all/others.
- High temperature environment Furnace design, heating rates, temperature distributions, and interface with grips and instrumentation can vary widely.

Documentation Next Steps

- **Document framework development** thus far through reports similar to DOT/FAA/AR-02/109 and 110, and DOT/FAA/AR-03/19
 - Necessary to properly document everything learned during framework development
- **Develop standard guides** supporting <u>Ox/Ox CMC</u> testing for future test method standardization
 - Guides for
 - Specimen gripping
 - Specimen machining
 - Strain instrumentation
 - Heating and temperature distribution
 - Guidance already developed by NIAR as part of framework development will be supplemented by studies evaluating methodology precision and acceptability
 - Publish in ASTM standard guides or in CMH-17

Publications

Publication Type	Date	Publication
Conference Presentation	Jan-17	R. Andrulonis, "CMC Qualification Research at NIAR," United States Advanced Ceramics Association (USACA), Cocoa Beach FL, January 2017.
Conference Presentation	Jan-18	R. Andrulonis, "CMC Qualification Research at NIAR," United States Advanced Ceramics Association (USACA), Cocoa Beach FL, January 2018.
Conference Presentation	Jan-19	M. Opliger, "CMC Qualification Research at NIAR," United States Advanced Ceramics Association (USACA), Cocoa Beach FL, January 2019.
FAA Technical Reports	Dec-19	FAA Annual Report, "Ceramic Matrix Composites (CMC) Characterization and Qualification Guidelines for Aircraft Design and Certification," December 2019 (submitted).
Conference Presentation	Jan-20	M. Opliger, "CMC Qualification Research at NIAR," United States Advanced Ceramics Association (USACA), Cocoa Beach FL, January 2020.
FAA Technical Reports	Dec-20	FAA Annual Report, "Ceramic Matrix Composites (CMC) Characterization and Qualification Guidelines for Aircraft Design and Certification," December 2020 (submitted).
Conference Presentation	Mar-21	R. Andrulonis, "CMC Qualification Research," SAE Aero Tech conference, March 2021.
FAA Technical Reports	Dec-21	FAA Annual Report, "Ceramic Matrix Composites (CMC) Characterization and Qualification Guidelines for Aircraft Design and Certification," December 2021 (submitted).
Conference Presentation	Jan-22	M. Opliger, R. Andrulonis, "CMC Qualification Research at NIAR," United States Advanced Ceramics Association (USACA), Cocoa Beach FL, January 2022.
Conference Presentation	Mar-22	M. Opliger, "CMC Qualification Research at NIAR," ESA Virtual Conference, March 2022.
Conference Presentation	Jan-23	M. Opliger, R. Andrulonis, "Oxide-Oxide Process Property Relationships," United States Advanced Ceramics Association (USACA), St Augustine FL, January 2023.
FAA Technical Reports	May-23	Processing Property Relationship of Oxide/Oxide Composites
FAA Technical Reports	Sep-23	Oxide/Oxide Ceramic Matrix Composites Qualification Summary and Lessons Learned
FAA Technical Reports	TBD	Durability and Long Term Safety

Rachael Andrulonis (rachael.andrulonis@idp.wichita.edu)

Questions/Comments: