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Background
• Motivation and Key Issues

• The matrix phase of composites can absorb various fluids, including fuel leading to matrix swelling and matrix 
cracking

• Fuel absorption can lead to the degradation of the thermal and mechanical properties of composites
• Alternative fuels can have similar effects as typical Jet fuels, but not been reported in the literature extensively

• Objectives and Scope
• Determine whether the use of alternative fuels poses more risk on aerospace structural composites than 

the use of Jet A
• Investigate the effects of alternative fuels on carbon/epoxy composites

• Fuel uptake
• Thermal and mechanical properties

• Develop a modeling framework based on the experimental data that can be used for complex, real-life 
geometries

• Approach
• Experimental investigation of conventional and alternative fuels absorption of carbon/epoxy composites

• Track the weight gain with time to determine the amount of fuel absorbed
• Investigate the changes in the dynamic properties after absorption

• Modeling the diffusion process using Finite Element Method
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Literature Study: Effects of JP4 Fuel Uptake on Composites

% weight gain for composites with 
[±45]2s layup and  thermoplastic matrix

% weight gain for composites with 
[±45]2s layup and thermoset matrix

• AS4/3501-6: carbon fiber with
epoxy resin

• IM7/8551-7A: carbon fiber with
epoxy resin

• IM7/977-2: carbon fiber with
epoxy resin

• IM7/5250-4: carbon fiber with
bismaleimide resin

• AS4/PEEK(APC-2): carbon fiber
with polyetheretherketone resin

• IM8/APC (HTA): carbon fiber
with aromatic polymer
composite (high temperature
amorphous)

Graphs	reproduced	
from	Ref	1

• Composites with a thermoset (cross-linked) matrix absorb less fuel than composites
with a thermoplastic matrix

• The type of matrix and layup affect the fuel uptake

[1] Curliss, D.B., and Carlin, D., 1990, “Effect of jet-fuel exposure on advanced aerospace composites, II: Mechanical properties,” Final Report, no. WRDC-TR-90-4064, Air Force Wright 
Research and Development Center, OH, USA.
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Material Systems: Composites

• Three aerospace-grade carbon/epoxy composites were considered:

Material system Fiber type Fabrication method Layup

Hexcel SGP370-8H/8552 Eight harness woven 
carbon fabric

Autoclave cured Cross-ply [0/90/90/0]

Hexcel SGP370-8H/8552 Eight harness woven 
carbon fabric

Autoclave cured Quasi-isotropic [0/-45/45/90]

DMS2436/API-1078 Warp/knit carbon 
fabric

Resin-infused [45/-45/0/90/0/-45/45] 

• Specimens were cut from these composite panels into 2 (L) x 0.5 (W) in2 dimensions

Red: carbon fibers
Blue: Epoxy



5

Fuels used
• Conventional jet fuel Jet A was used

• The alternative fuels (AF) used in this work were:

AF blend used Process used Blending ratio with Jet A Aromatic content (AF only)

ATJ/Jet A ATJ/SPK 50/50 0%

SPK/Jet A HEFA/SPK 50/50 0-0.4%

Farnesane/Jet A HFS/SIP 10/90 0%

S8/Jet A FT/SPK 50/50 <0.2%

ATJ/SPK: Alcohol-to-Jet to Synthetic Paraffinic Kerosene 

HEFA/SPK: Hydroprocessing Esters and Fatty Acids to Synthetic Paraffinic Kerosene 

HFS/SIP:  Hydroprocessed Fermented Sugars to Synthetic Isoparaffins 

FT/SPK: Fischer-Tropsch to Synthetic Paraffinic Kerosene 
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Fuels used

ATJ/SPK:	Alcohol‐to‐Jet	to	Synthetic	Paraffinic	Kerosene

HEFA/SPK:	Hydroprocessing	Esters	and	Fatty	Acids	to	Synthetic	Paraffinic	Kerosene	

HFS/SIP:		Hydroprocessed	Fermented	Sugars	to	Synthetic	Isoparaffins

FT/SPK:	Fischer‐Tropsch	to	Synthetic	Paraffinic	Kerosene	
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Weight Gain with Time for Autoclave Quasi-Isotropic Hexcel SGP370-8H/8552 
Carbon/Epoxy immersed in Jet A fuel

The average fuel 
uptake and a Bezier 
trendline. Error bars 
represent the 
standard deviation. 

• Faster absorption in the early stages of the fuel immersion
• The equilibrium weight gain was of 0.27% and the range [L-H] of [0.18 - 0.35] %
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Summary of Average Weight Gain for All Specimens and Fuels 
Used

• Total fuel uptakes were low for all
three composite types 2, 3

• No notable difference was measured
in fuel absorption for specimens
immersed in Jet A fuel versus the
alternative fuel blends

• Composites fabricated using woven
fabric plies absorbed more fuel than
composites fabricated using warp-
knitted unidirectional plies

Warp-knitted 
specimens

Woven fabric 
specimens

[2] Harich, Naoufal, et al. Effects of New Jet Fuel Exposure on Aerospace Composites–Phase 1 Final Report. No. DOT/FAA/TC-21/53. United States. Department of Transportation. 
Federal Aviation Administration. William J. Hughes Technical Center, 2022.
[3] Harich, Naoufal, et al. "Effects of alternative jet fuel blends on aerospace-grade carbon/epoxy composites." Materials & Design 221 (2022): 110993.
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Dynamic Mechanical Analysis (DMA)

• The effects of fuel absorption on the thermomechanical 
properties of composites are studied using Dynamic 
Mechanical Analysis (DMA).

• DMA was performed on neat and fuel-immersed 
specimens using an RSA-G2 Solids Analyzer  with the 
three-point bending mode.

• The analysis was performed following the ASTM D7028-
07.

Test method Frequency Heating Rate

Three-point bending 1 Hz 5 °C/min

DMA parameters used
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Dynamic Mechanical Analysis (DMA)

• Thermomechanical properties of interest:

• Storage modulus 𝐸′ measures the elastic response

• Loss modulus 𝐸′′ measures the viscous response 
(dissipation in the system)

• tan(δ) is the ratio of 𝐸′′⁄𝐸′

• The ASTM D7028-07[3] define two temperatures of interest for 
the glass transition temperature:

• The intersection of the two tangent lines from the storage 
modulus gives DMA Tg

• The maxima in the tan(δ) curves is the glass transition 
temperature, 𝑇t

Obtained	
from	ref	[2]

[2] Sperling, L. H. (2005). Introduction to physical polymer science. John Wiley & Sons.
[3] ASTM International. (2007). ASTM D7028-07-Standard Test Method for Glass Transition Temperature (DMA Tg) 
of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA).
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DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy 
Specimens: Neat and Immersed in ATJ/Jet A Blend 

Tg	=	11.3	°C

Tt	=	13.7	°C

• Both DMA Tg and Tt decreased after 
fuel absorption: ∆𝐃𝐌𝐀 𝑻𝒈 ൌ 𝟏𝟏.𝟑℃
and ∆𝑻𝒕 ൌ 𝟏𝟑.𝟕℃

• DMA Tg and Tt for specimens 
saturated with four alternative 
fuel/Jet A blends were impacted to 
the same extent as those saturated 
with 100% Jet A fuel.
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• DMA Tg and Tt for specimens saturated with the four alternative fuel
blends were impacted to the same extent as those saturated with Jet A
fuel.

• Both DMA Tg and Tt decreased after fuel uptake in the range of 3.1-19°C
for DMA Tg and 1.8-20.6°C for Tt.

• The DMA Tg and Tt for woven fabric composites degraded more than for
composite specimens with warp-knitted unidirectional plies.

Summary of DMA results for All Specimens and Fuels Used



13

Motivation for Considering Alternative Fuels and Cyclic 
Absorption/Desorption Cycles

• The pure alternative fuels are comprised mostly of paraffins and olefins and have almost 

no aromatics

• MSU has limited access to alternative fluids, particularly unblended ones

• Investigate model fluids with similar chemical structures as the pure alternative 

fuels

• Cyclic fuel absorption-desorption experiments were performed:

• Composites’ encounter with fluids is a cyclic and not continuous process
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Model Fluids Used

• Model fluids to be used:

Jet Fuel Composition 4

[4] Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results. 9th AIAA aviation technology, 
integration, and operations conference (ATIO) and aircraft noise and emissions reduction symposium (ANERS), (p. 7002).

Octane

Decane

Dodecane
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Material Systems/Composites Used

• Two aerospace-grade carbon/epoxy composites were used:

Material system Fiber type Fabrication method Layup

Hexcel SGP370-8H/8552 Eight-harness woven 
carbon fabric

Autoclave cured Cross-ply [0/90/90/0]

• Hexcel SGP370-8H/8552 is an eight-harness woven fabric made from IM7 fibers

• Specimens were cut from these composite panels into 2 (L) x 0.5 (W) in2 dimensions
Red: carbon fibers
Blue: epoxy
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Experimental Details

• Maximum three fuel absorption-desorption cycles were performed:

• DMA was performed once saturation was reached

• Vacuum drying was used to accelerate desorption

• Each set consists of three replicas for each model fluid

DMASet 1 Immersion

Desorption DMAImmersion ImmersionSet 2

DMADesorptionDesorptionSet 3 Immersion Immersion Immersion
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Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 
Carbon/Epoxy Immersed in Dodecane - 1st Absorption Cycle

The average fuel 
uptake with error 
bars representing 
the standard 
deviation

• Faster absorption in the early stages of the fuel immersion

• The equilibrium weight gain was of 0.69%
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Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 
Carbon/Epoxy Immersed in All Fluids - 1st Absorption Cycle

• Faster absorption in the early stages of the fuel immersion
• The equilibrium weight gain for all specimens was in the range of 0.3 - 0.7% 
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Weight Gain with Time for Autoclave Cross-Ply Hexcel SGP370-8H/8552 
Carbon/Epoxy Immersed in Dodecane - All Cycles

• Faster absorption in the early 
stages of the fuel immersion

• The equilibrium weight gain slightly 
decreases after each cycle
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Weight Gain Comparison for Autoclave Cross-Ply Hexcel SGP370-8H/8552 
Carbon/Epoxy Immersed in All 5 Fluids - All Cycles

• The equilibrium weight gain slightly 
decreases after each cycle for all fluids

• Dodecane and Jet A have the highest
equilibrium weight gain for all 3 cycles

• Octane has the lowest equilibrium weight 
gain for all 3 cycles
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Number of Moles Absorbed of Each Model Fuel

Weight gain % Molecular weight (g/mol) Moles absorbed (mol)

Octane 0.32 ± 0.01 114.23 4.20 ± 0.15 x 10ିହ

Decane 0.50 ± 0.01 142.29 5.22 ± 0.15 x 10ିହ

Dodecane 0.67 ± 0.01 170.33 5.91 ± 0.03 x 10ିହ

Xylene 0.53 ± 0.09 106.16 7.44 ± 1.30 x 10ିହ

Jet A fuel 0.66 ± 0.02 N/A1 N/A

1Jet A fuel is a mixture of different compounds, its molecular weight was not obtained

• The number of moles absorbed was calculated using the mass absorbed

• Xylene had the highest moles absorbed 

• Octane had the lowest moles absorbed
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Solubility Parameters

• Solubility parameters: Hansen solubility parameters (HSP)

• Contains a dispersion 𝛿ௗ, polarity 𝛿 and hydrogen bonding 𝛿 capability of each molecule and 

compare it to the polymer

• Hansen Parameters

• Ra is the distance between the polymer and the molecule

• Relative energy difference RED is defined as: 

RED ൌ ோೌ
ோబ

with R0 is the interaction radius

• RED <1 the molecule will dissolve

• RED =1 the system will partially dissolve

• RED >1 the system will not dissolve

ሺ𝑅ሻଶൌ 4ሺ𝛿ௗଶ െ 𝛿ௗଵሻଶሺ𝛿ଶ െ 𝛿ଵሻଶሺ𝛿ଶ െ 𝛿ଵሻଶ

[5] Hansen CM. Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton: CRC Press; 2007.
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Solubility Parameters (Cont.)

D P H R0  Ra RED

Polymer 18.1 11.4 9 9.1 23.21

Octane 14.9 0 0 14.9 15.9 1.74

Decane 15.7 0 0 15.7 15.3 1.68

Dodecane 16 0 0 16 15.1 1.66

Xylene 17.8 1 3.1 18.1 11.9 1.32

• Xylene is expected to be the most absorbed fluid

• RED closest to 1

• Octane is expected to be the least absorbed fluid

• RED farthest from 1



24

Summary of Absorption Results

Weight gain % Molecular weight (g/mol) Moles absorbed (mol)  (MPa1/2)

Epoxy N/A N/A N/A 23.2

Octane 0.32 ± 0.01 114.23 4.20 ± 0.15 x 10ିହ 14.9

Decane 0.50 ± 0.01 142.29 5.22 ± 0.15 x 10ିହ 15.7

Dodecane 0.67 ± 0.01 170.33 5.91 ± 0.03 x 10ିହ 16

Xylene 0.53 ± 0.09 106.16 7.44 ± 1.30 x 10ିହ 18.1

Jet A fuel 0.66 ± 0.02 N/A1 N/A N/A

1Jet A fuel is a mixture of different compounds, its molecular weight was not obtained
• Xylene is the fluid that was mostly absorbed but due to its low molecular weight it 

does not translate to the highest weight gain %

• Octane has the lowest # of moles absorbed and lowest weight gain %
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Summary of Average Weight Gain for All Specimens and Model 
Fuels Used

• The small differences in fuel absorption were explained using solubility
parameters.

• The equilibrium weight gain decreased after each absorption-desorption cycle

• The saturation %WG was in the range of 0.32-0.67% for the 1st cycle, 0.24-
0.59% for the 2nd cycle and 0.17-0.40% for the 3rd cycle.

• Octane had the lowest %WG for all three cycles while Dodecane and Jet A had
the highest.
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DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy 
Specimens: Immersed in Dodecane for the 1st absorption cycle

• DMA Tg decreased after the first cycle of 
fluids absorption: ∆𝐃𝐌𝐀 𝑻𝒕 ൌ 𝟏𝟐.𝟓 ℃ and
∆𝐃𝐌𝐀 𝑻𝒈 ൌ 𝟔.𝟔 ℃

• DMA Tg and Tt for specimens saturated
with four model fuels were impacted to 
the same extent as those saturated with 
Jet A fuel.
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DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy 
Specimens: Immersed in Dodecane for all absorption cycle

• DMA Tg decreased after the first cycle 
of absorption then increased after 
each absorption cycle

• DMA Tg for specimens saturated with 
four model fuels were impacted to 
the same extent as those saturated 
with Jet A fuel.
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DMA Results for Autoclaved Cross-ply Hexcel SGP370-8H/8552 Carbon/Epoxy 
Specimens: Comparison of All Fuels and Cycles

• DMA Tt decreased after all cycles of 
absorption compared to neat 
specimen

• The DMA Tt drop for the 2nd and 3rd

cycles was smaller compared to the 
1st cycle

• This correlates well with the results 
from the weight gain

• Tg for specimens saturated with four 
model fuels were impacted to the 
same extent as those saturated with 
Jet A fuel.
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Summary of DMA Results for All Specimens and Fuels Used

• DMA Tg for specimens saturated with the model fuels were impacted to the
same extent as those saturated with Jet A fuel.

• DMA Tg decreased for the 1st, 2nd and 3rd cycle by 11.9, 8.4 and 8.0,
respectively, when compared with the neat specimens.

• The DMA Tg drop for the 2nd and 3rd cycles was smaller compared to the 1st

cycle

• This correlates well with the results from the weight gain
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Modelling Work

• The effects of fiber packing and fiber arrangement on the diffusion 

behavior of fluids in composite materials were investigated:

• Three types of fiber arrangements were used (Square, Hexagonal, 

and Random Arrays)

• Fiber volume fraction was changed to investigate the fiber packing  

(10 %  Vf  50%)

• Finite Element Analysis via ABAQUS was used (mass diffusion process)
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Geometry Details – Square and Hexagonal Array

Vf = 10% Vf = 60% Vf = 10% Vf = 60%

Hexagonal ArraySquare Array
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Weight Gain % vs Time for Square Array

• Weight gain % ൌ ௦ௗ ௨௧
௬ ௐ௧  ௦௧

x100%

• The weight gain % decreases with the 
increase in fiber volume fraction
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Effective Diffusivity Results

• The effective diffusivities obtained 
correlates well with the weight gain % 
results

• It decreases with the increase in the 
volume fraction

• At low Vf, the effective diffusivities are 
similar

• At high Vf, the hexagonal array has 
higher effective diffusivity values 
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Explanation of Effective Diffusivity Results

Square 
Vf = 50%

Hex 
Vf = 50%

Square 
Vf = 30%

Hex 
Vf = 30%

• At low fiber volume fraction, the square and hexagonal have similar effective diffusivities

• At high volume fraction, the hexagonal array had higher diffusivities
• Likely caused by the different nature of fuel diffusion in the confined space
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Concluding Remarks

• Alternative fuels blended with Jet A fuel within the ratios studied showed 
no different impact on composite materials than conventional fuel 

• Model fuels used showed no differences in thermomechanical properties 
with Jet A

• Fiber packing impacted both the weight gain and thermomechanical 
properties

• From the research performed: The alternative fuels represent a safe 
substitute for conventional fuels (effects of fluid vapor pressure 
not investigated)
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