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Low energy density during fabrication results in lack of fusion defects (LLoF), and are irregular in shape

High solidification rates often cause gas-entrapped pores (GEPs) to form, typically appearing as small, spherical
voids

Keyhole pores (KHs) arise from excessive energy density, leading to deep melt pool penetration and pore
formation at the bottom, larger than GEPs

Shamsaei & Shao et al., Int. ]. Adv. Manuf. Tech., 126: 3093-3107, 2023. Tehrani, Doct. Diss. Auburn University, 2022.



Background

BLP-DED Ti-6Al4V

® Wrought Ti-6Al-4V
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AM defects:

Significantly reduce and introduce uncertainty to fatigue performance

Influence of their morphologies are seldom studied

The difference in their morphologies poses a significant challenge to quantifying their role
in fatigue behavior

Shamsaei, et al. Int. ]. Fatigue, 124: 188-204, 2019.
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Snell, et al., Jour. Of. Mate 101-109, 2020.



Objective & Approach

Obijective: To quantify the detrimental effect of volumetric defects on mechanical properties of L-PBF Ti-6Al-4V
Gr. 5

Approach: Three steps are taken,
Explore process windows by varying laser power, scan speed, and hatching distance

Determine the criticality of volumetric defects on mechanical performance using specimens seeded with different

defect types

Take advantage of machine learning and simulations wherever applicable
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AP&C Ti-6Al-4V Grade 5 powder (15-53 pm) was used as feedstock




Design of experiments

Designation Orientation Process parameters variation Ener§y density g
0

_ (V/O) _ Ez%(‘]/mmﬁ §

Ua V.D, H 20 0 0 44.44 9
Ub V,D, H 0 0 20 46.29
Uc V,D, H -10 0 0 50.00
Ud V,D,H -5 0 0 52.77
Ue V,D, H 0 0 5 52.91
R V,D,H 0 0 0 55.55
Oa A% 30 -20 0 90.28
Ob A% 20 -30 0 95.24

U: Underheated set  Lors -4 v/ 240 fatigue (20 x 12) and 100 tensile

R: Recommended set Geps - ¢ @ @ & (20 x 5) specimens were fabricated

O: Overheated set KHs . . .

20pm
==

Horizontal (H) Diagonal (D)

Shamsaei & Shao et al., Int. ]. Adv. Manuf. Tech., 126: 3093-107, 2023.



Defect contents: Fatigue specimens
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X-ray computed tomography (XCT) was performed on vertical fatigue specimens with 5.5 um voxel size

240 fatigue (20 x 12) and 100 tensile (20 x 5) specimens were fabricated

Lack of fusion (LoF): P19 (Ua), P-2"" (Ub), H*2" (Uc), P~>" (Ud), and H™” (Ue)

Keyhole (IKF): PH20%V30% (Og) and P+30%V20% (Ob)
A comparative analysis of defect morphologies across specimen sets revealed substantial variation 1n defect size and
other relevant features

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981. Shamsaei & Shao et al., Nature Communications, 13: 6369, 2022.



Tensile properties

(a) Vertical (b) Diagonal

1300 ¢ —— 40 1300 |
I 0OSy @BSu 2%El ] & f OSy BSu z%El
1250 o > N S 61 1250 f 1
F = © 8 i 3
1200 | 3T 8 87 © 0% 1200 f [~
T EREL S 2 oh PR
$1150 | {- 1 255 F1150 F %
b - - S ok
— @ - 1
< 1100 g [ 8 208 S£1100 | Sf
2 | 8k i s 2
g [ = g i 5
& 1050 | ): 18 31050 ||
i $ = ¥ 5 AN'E
1000 F |} % 2 A 10 & 1000 F | B
|2 S 7 = |7
950 | 7 .f: :' 5 950 | |2
Q00 L L ZH s L P 5 0 900 L et 1 L i 2
Uc U6e R Oa Ua Ue  Ud  Ue R
Overheated specimens exhibited slightly higher strength than

recommended ones, mostly due to higher content of nitrogen

Defects in underheated specimens negatively impacted the ductility
compared to the recommended one, contributing to the early onset of
final fracture

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.
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Fatigue behavior
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On average, KH specimens exhibited better fatigue performance than the recommended ones due to both
smaller crack initiating defect size than the recommended ones

Scatter in the fatigue behavior of Lol specimens may be attributed to the variation in the crack initiating
defects’ morphology and location

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.




Fatigue fractography
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Note: All fractographies are from vertical specimens. Varea of crack initiating defects is shown on the top right side of the fractography images

LoF specimens:
All fatigue cracks, except for some in I.d and Le sets, initiated from either internal or surface LoF defects

Fatigue cracks for LLd and Le specimens initiated from mostly internal LoF defects and rarely from KH defects

Recommended specimens: all fatigue cracks initiated from internal or surface LoF defects

KH specimens: fatigue cracks initiated mostly from KH defects and rarely from LoF defects, located internally or at

surface
Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981. 12




Critical defect sizes

Defect sizes were measured using actual Varea of
the defect

The size of the fatigue crack initiating defects of
recommended and KH specimens were comparable

Mean Varea of the crack initiating defects of LoF
specimens with higher defect content (LoF sets a, b,
and ¢) were significantly larger compared to
recommended and KH specimens

Size of the defects explained the order of fatigue
life to some extent
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Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.




2D morphological features
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Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981. Shamsaei & Shao et al., Int. J. Adv. Manuf. Tech., 126: 3093-3107, 2023.



Effect of defect size on the fatigue behavior

(a) Size,\area,,.,
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Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.
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(b) Size,areay, xami
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Size 1s the most important parameter of a defect influencing the fatigue performance

Size alone could not explain the order of fatigue lives

\/are Aactual
\/are ApMurakami

At similar fatigue life, size of circular defects are appearing to be smaller than the irregular ones

Shamsaei & Shao et al., Nature Communications, 13: 6369, 2022,




Effect of defect location on the fatigue behaviot
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Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981. Shao & Shamsaei ct al., Eng. Fract. Mech. 285 (2023) 109298.



Effect of defect shape on the fatigue behavior

(a) Circularity, Surface (b) Circularity, Near-surface (c) Circularity, Internal
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Circularity alone did not exhibit a clear trend

Sub-set of similar sized defects indicated that circular/near-circular defects (i.e., KH/GEP) might be
detrimental to the fatigue performance of the surface defects than irregular shaped ones

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981. Shao & Shamsaei et al., Eng. Fract. Mech. 285 (2023) 109298.



Numerical analysis procedure

Fracture surface Crack front Modeling defect Finite element Stress intensity
and defect extraction as crack meshes factor solutions
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The crack was modeled as internal crack in an infinite body for simulations

Size of the crack front element was kept same as that of embedded penny crack of similar size for which the
converged stress intensity factor solutions are obtained

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.




Effect of defect shape on the fatigue behavior
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Circular defects have a contour of uniform SIF, leading to
Higher probability of crack initiation

In irregular shaped defects, SIFs the interior region of the defect, rather than from its sharp features

Lower probability of crack initiation compared to circular defects

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.



Effect of defect shape on the fatigue behavior (internal) ‘
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The fatigue behavior is more consistent when using /greq, .

. \/areaMIC
the V areayc as defect size

V. areayc accounts for defect shape as well vVareayyrakami




Probability density plots for fatigue life

Probability density function of largest extreme value distribution using the non-parametric moments method in
terms of reduced variate, Yi .
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Distribution of circular and irregular defects are identical

If the defect size measure is appropriate, the probability density plots of both defect types should be identical

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.



Probability density plots for defect size measures
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Distribution of circular and irregular defect sizes are similar when measured using \/areaMIC

Shao and Shamsaei, et al. Theoretical and Applied Fracture Mechanies (2025): 104981.



Summary

Defect location significantly influenced the fatigue behavior of AM specimens, with surface
defects being more critical than internal ones

Defect size estimated with the existing approaches could not adequately represent the severity
of defects by addressing their shape

The proposed defect size parameter, \/areaMIC could account for the effect of defect shape

Accurate fatigue life predictions were obtained when using the proposed defect size parameter
for internal defects




Thank You for Your Attention!

National Center for Additive Manufacturing Excellence NCAME)
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