Characterizing Mechanical Property Variability in Ti6Al4V produced by Laser Powder Bed Fusion Additive Manufacturing

Dwayne Arola^{1,2}, Mamidala Ramulu^{1,2} Alex Montelione¹, Rick Schleusener¹, Aaron Abeyta¹, Daniel Lund¹ ¹Materials Science and Engineering, ²Mechanical Engineering, UW, Seattle, WA

FAA Technical Monitors: Kevin Stonaker and Ahmet Oztekin

May 20th, 2025

Laser Powder Bed Fusion (LPBF)

Advantages

- Low Buy-to-Fly ratio
- Nearly unlimited design complexity
- Enables generative customization
- Short lead times
- Concerns
 - Variability in the process, reflected in properties
 - Machine qualification

Objective and Outline -

Overall Objective - characterize the <u>variability</u> in microstructure and mechanical properties of Grade 5 Ti6Al4V produced by LPBF to improve metal/component reliability and advance applications across aerospace.

Approach – perform a Round Robin investigation led by the University of Washington and involving multiple other partners in the aerospace industry.

Phase I: Static Properties (completed)

Phase II: Stress-life (finite life) Fatigue Properties

Phase III: Damage Tolerance

Categories of Process Variability in LPBF

I. Intra-Build (Within single build volume)

II. Inter-Build (Over multiple builds with same machine)

III. Inter-Machine (Across identical machines) 4

Round Robin Partners

Overview of Program and Printing

• All partners operating an EOS M290

- Single lot of powder for all partners (EOS Grade 5 Ti6Al4V)
- Single Process Control Document (PCD) for all partners
- All partners use same process parameters (default for Ti6Al4V)
- All partners follow same build design

Process Control Document University of Washington Round Robin (UWRR): Partner C (Powder

Process Control Document

Property Variability in AM of Ti6Al4V by SLM

Prepared by:

Reid Schur, Sean Ghods, Alex Montelione, Rick Schleusen Dwayne Arola* Material Science and Engineering, UW Roberts Hall, 333, Box 352120, Seattle, WA 98195 *Email: darola@uw.edu *Phone: (206) 685-8158

10/22/2020

Prepared for: Inner Core Participa

University of Washington (lead) The Boeing Company EOS Lockheed Martin Toray Precision Company 3D Logics

Partner Questionaire (Powder + Machine)

ocument	University of Washington Round Robin (UWRR):
	Property Variability in AM of Ti6Al4V by SLM
	Process Parameter Survey
one, Rick Schleusener	Note: This survey is provided in order to establish understanding between the inner core participants and The University of Washington (UW) team about the participant operating conditions for this study. Please answer the following prompts to the best of your ability and email the response to Dr. Dwayne Arola (<u>clarcian@uw.edu</u>).
eering, UW 52120,	Participant Company Name:
5 adu	Primary Operator Name and Email:
158	A Powder Storage Conditions
	Storage temperature: Humidity control: Yes No
	Storage humidity:
	Please describe the powder storage containers (original containers, explosion proof, or other):
Participants	
	B Machine Conditions
	Machine Operating Environment
	Operating room temperature: Humidity control: Yes No
	Powder used prior to April, 2020: Ti-6Al-4V Other (please specify below)
	(if used material other than Ti-6AJ-4V) Materials:
	Last use:
	Plan on using other powder during this study on this machine: 🔲 Yes 📃 No
	Have a machine cleaning SOP to prevent cross-contamination: Yes No
	Willing to share this SOP with UW: Yes No
	Any details about machine cleaning SOP:

Metal Post-Processing and Characterization

Metal Characterization Facilities

Microscopy

X-Ray Fluorescence Bruker M4 Tornado

7

Optical/Stereo Microscopes Olympus Olympus BX 51M SZX16

Scanning Electron Microscopes Philips XL-30 Sirion (+EDS) TFS Apreo var-press (+EDS + EBSD)

(Static and cyclic)

1200

1000 (MPa) 800 600 Stress 400 200 0.02 0.04 0.06 0.08 0.1 0.12 0 Strain ASTM E8 based procedures

Universal Testing System: Instron Model 5585H; Norwood, MA

7

Phase I and II: Post Processing

- 745°C for 2 hours in argon
- ii. Hot Isostatic Pressing (HIP)
 - 815°C for 165 min @ 190 MPa (AMS 7028)

Discretization of Build Volume

Β1

B2

A1

A2

BO

A0

Β4

Β3

Α4

A3

(0, 1, 2, 3, 4, 5)**Build Envelope Discretization**

Phase I: Build Design (5 zones, 2 levels)

Phase I: Tensile Properties

• Significant inter-machine variation in mean response (strain to failure) and outliers

Variability in Strain to Failure

- Weibull distributions for strain at failure are mostly linear
 - Most defect-sensitive measurement

$$P_{f} = 1 - \exp\left(-\left(\frac{e}{e_{\theta}}\right)^{m}\right)$$

- Vertical orientation exhibits both larger m and single slope

 single defect family
- Horizontal orientation exhibits multimodal distribution

- multiple families of contributing defects?

11

Importance of Orientation & Heat Treatment

12

HIP did not remove anisotropy in strain at failure ٠

Phase II: Finite Life Fatigue

Phase II: Build Design Details

- Two levels and five primary zones on each level
- Each zone comprised of hexagonal coupon blanks with vertical and horizontal orientations
- Machined into final fatigue coupons with longitudinal grind according to ASTME466
- Mitigating effect of near surface porosity
- Fiducial marks for 3D registration of layers and defects

8

A0 A2 Top View -

B1

Total Specimens = 720 per partner*

Post-processing of metal involves:

- i) Heat treatment
- ii) Net shape machining to ASTM E466

*If partner performs four builds 15

Phase II: Printing Progress

P6 To be determined

Fatigue Life Distributions: SR vs HIP

- Increase in fatigue life as a result of HIP treatment $SR_{avg} = 2.33 \times 10^5$ cycles; $HIP_{avg} = 5.93 \times 10^5$ cycles
- HIP substantially reduces anisotropy between horizontal and vertical orientations

* All data shown tested at 850 MPa max stress

* Partner #1

Fatigue Life Distributions: SR vs HIP (Vertical)

<u>Reduction in intra-build and inter-machine variability</u> after HIP treatment!

* All data shown tested at 850 MPa max stress

Spatial Variations in Life: SR Condition

Spatial Variations in Life: SR vs HIP Condition

Phase II: Failure Origin Breakdown

SR Condition

- Failure dominated by voids
- FOD failures observed
- Inter-machine differences

HIP Condition

- Failure by carbon FOD and brittle microstructural features (appear driven by Tungsten FOD)
- **Zero** porosity-related defects observed on fracture surfaces

Correlating Defects and Life : SR and HIP Condition

Measures of dimensions are based on root cause defect revealed on fracture surface

Correlating Defects and Life : SR and HIP Condition

Measures of distance are based on location of root cause defects revealed on fracture surface

Phase II: Composition of Foreign Object Debris

- Interesting insight on failure origins from fractography
- Large powder-sized carbon
 particle
- Large powder-sized LaO particle with dispersed W nanoparticles
- FOD is likely introduced in powder through atomization process – largely observed in HIP specimens

Limitations:

- It is unclear if the FOD are a result of the feedstock or the machine
 - Single powder source has complicated the process for diagnosing source of FOD
- Additional aspects of machine condition are not reflected
 e.g. glass cover condition, gas filter loading, etc
- Environmental factors are potentially relevant but not considered
- Does not reflect influence of post-processing surface treatments
 - No failures initiated from surface in HIP condition
 - Zero porosity-related defects observed on fracture surfaces

Analysis of Spatial Variation in Inert Gas Flow

- A mock build chamber (1:1 scale) was constructed with OEM gas ducting for the EOS M290
- Quantifying gas flow using particle image velocimetry (PIV).

[1] Abeyta et al,

In-situ Monitoring Analysis Underway

- **OT imaging** long exposure thermal image, shows hot spots and spatter
- Powderbed imaging visible light image, shows short feeding, and edge warping
- Meltpool imaging co-axial monitoring of laser spot, tracks meltpool temperature
- Processing and evaluation of anomalies performed using Peregrine.

Recruiting Additional Partners to Engage

- i) Partner performs one build
 - enables characterization of: i) intra-build, and ii) inter-machine variability

- ii) Partner performs four identical builds
 - enables characterization of intra-build, inter-build and inter-machine variability

Summary

- HIP treatment according to AMS 7028 results in significant increase in fatigue life of metal for both horizontal and vertical orientations; largest benefit to vertical orientation
- While anisotropy in the quasi-static properties is retained after HIP, the finite life fatigue responses of the vertical and horizontal orientations are not significantly different.
- Root cause defects in HIP condition are FOD consisting largely of carbon and tungsten contaminants. No failures yet attributed to LOF
- Recruiting additional partners that seek to evaluate their process variability with respect to a robust database

Acknowledgements

Special thanks to Cory Cunningham and Reid Schur of The Boeing Company.

Toray Precision Co., Ltd.

Reused Powder, LPBF Grade 5, Ti6Al4V EOS M290_UW RR After 6 Build cycles

Thank you.....

Courtesy: Chris Liu, UW Capstone

