

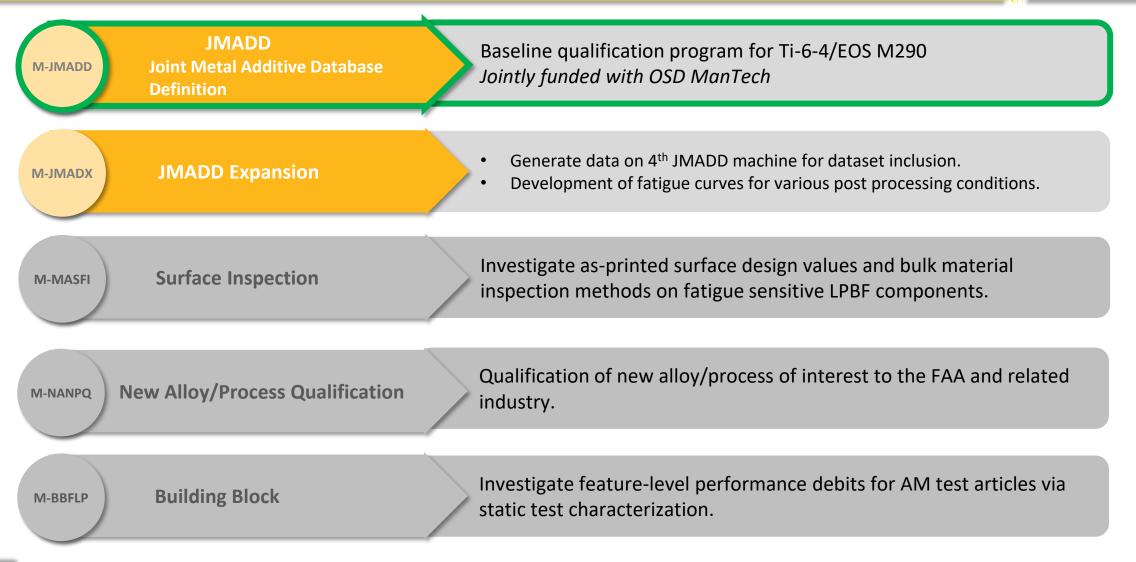
WICHITA STATE UNIVERSITY

Joint Metal Additive Database Definition (JMADD): Baseline Qualification and Expansion Activities May 20, 2025

INDUSTRIAL MODERNIZATION OF MATERIALS & MANUFACTURING

Federal Aviation Administration

Research Team & Objectives


 Generate allowables (T90 and T99) and specifications for Ti64 grade 5 and EOS M290 material-machine combination for publication in MMPDS.

FAA JAMS – Metal AM | Program Overview

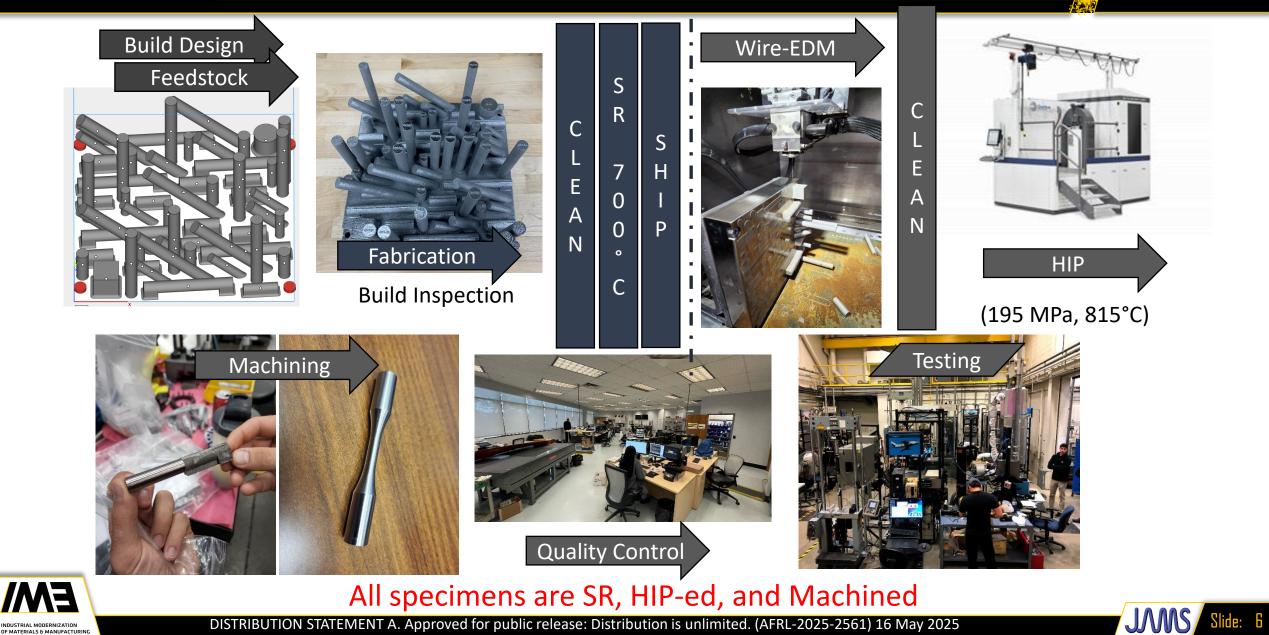
Project JMADD - Joint Metal Additive Database Definition

Agenda

- Overview of Ti-6AI-4V Grade 5 Projects
- Reporting and Documentation Update
- JMADD Testing Updates
- JMADD Statistics Discussion
- Fatigue data updates
- Microstructure and Chemistry
- Lessons learned and Next Steps

Overview Ti-6AI-4V Grade 5 Projects

JMS Slide: 5



	Number of	specimens teste	ed (across orien	tations and test to	emperatures)	5 machine	A/A/005
Test Type	NIAR (M290)	Beehive (M290)	Boeing (M290)	NIAR / (GE-M2) (in-process)	3D Systems (DMP Flex 350) (in-process)	total specimen count	MMPDS C- and D-Basis Requirements and Recommendations x 3 orientations (XY, ZX45, ZX)
E8 – Tension	369	292	104	132	132	1029	100 x 3 = 300 Across 5 machines, 10 heats
E9 – Compression	175	143	51	66	66	501	100 x 3 = 300 Across 5 machines, 10 heats
B769 – Shear	174	148	54	66	66	508	100 x 3 = 300 Across 5 machines, 10 heats
E238 – Bearing	146	134	45	36	36	397	100 x 3 x 2 (two e/D ratios) = 600 Across 5 machines, 10 heats
E399 – Fracture Toughness	154	130	39	36	36	395	30 x 3 = 90 Across 3 machines, 3 heats
E606/466 – Fatigue	143	113	48	108	-	412	 Recommended Load control: 6 test per stress ratio (R), 3 stress ratios, no minimum heat or lot requirements Strain control: 10 tests for Rg = -1.0, 6 tests other strain ratios

JMADD Qualification Process Chain

INDUSTRIAL MODERNIZATION OF MATERIALS & MANUFACTUR

Reporting Deliverables

Organization	Report/Specification	Contents	Status	Completion date
	NAPS 065 - NCAMP Process specification (Rev A)	 This document defines the minimum requirements for control of the L-PBF process. 	Revision in process	5/31/25
	NFS 064 - NCAMP Feedstock Specification (Rev A)	 This document provides the required test methods and specification limits for all feedstock powder. 	Revision in process	5/31/25
NCAMP	NAMS 064 - NCAMP Material specification (Rev A)	 This additive specification establishes the requirements for the finished printed material properties of LPBF Ti64. 	Revision in process	5/31/25
	NPCD 81064 - NCAMP Process Control Document (Rev C)	Process Control document for EOS M290	Revision in process	5/31/25
	NTP-AM-1064Q1 - NCAMP Test Plan (Rev C)	 Outlines number of specimens required for each test type 	Uploaded	5/31/25
	NCAMP Material Property Data Report	 Compilation of all raw data with summary statistics (mean, SD, and CoV) 	In Review	5/31/25
	FAA Technical Report Parameter Set Comparison Study	 Results and recommendation on Parameter Set Comparison Study 	Submitted to FAA	Submitted
FAA	FAA Technical Report on Lessons Learned and Guidelines	 JMADD fatigue results, statistical guidelines, and lessons learned throughout project (prequal and qual) 	In process	5/31/25
America Makes	 1st Revision of Baseline JMADD Report on Static and Physical Properties <i>Future revisions will be made to this report to include:</i> JMADD 5th machine results JMADD Fatigue + Corrosion results 	 Final report including objective, methodology and summary graphs and tables of test results (prequal and qual) with basic statistics (mean, SD, COV) 	1 st revision Submitted to America Makes	1 st Revision Complete

JMADD Testing Status

Pre-Qualification (Task 1) Virgin powder fabrication	-	fication 1 (Ta bowder fabr	•	Qualification 2 (Task 3) Reuse (50/50) blend fabrication					
Parameter Comparison Study	Static r	mechanical t	esting	Static mechanical testing					
Orientation Down-selection study	Physica	al property t	esting	Physica	al property te	esting			
Site comparison study	Room tem	perature LC	F and HCF	Room tem	Room temperature LCF and HCF				
	Gra	in Size Anal	ysis						
	Remaining tests:	Progress (%)	Estimated Completion	Remaining tests:	Progress (%)	Estimated Completion			
	LCF @ 600°F 85% End of May		EBSD, grain size analysis	60%	End of June				
				LCF @ 600°F	7%	End of June			

Completed In-progress

Updates:

- Qualification 1 and 2 static data have been compiled and sent to MMPDS for statistical analysis.
- NIAR working on comparing statistical analysis between CMH-17 and MMPDS.
- Fatigue data analysis on-going (S-N curve generation and fractography).

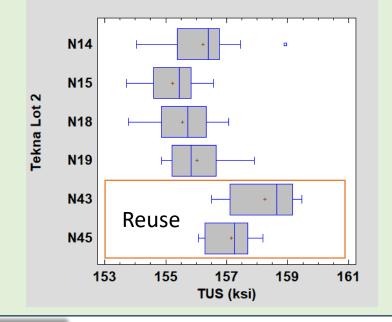
MMPDS vs CMH-17 Allowables Comparison (Orientations Separated)

	RESENTED LLOWABLES ARE 🛁 OT FINAL!				DS (3 mai	chines)			1	CMH NOVA N 790 = <i>B</i> - 799 = <i>A</i> -	lethod basis			AMS Invest Cast	tment	Extrs Solu treate	4934 suion - ution ed and ged	AMS 4 bar and forgi	d die	AMS 7028 Ti-6Al-4V, HIP (Low Temperature, High Pressure), Produced by Laser Powder Bed Fusion
NOT TINAL:		QUAL 1 n = :		QUAL 2 n = 3		QUAL 1 n = 1	-		LONLY 365	-	2 ONLY 359	QUAI Qua n = 7	l 2	Thick <0.	mess 500		kness .500	0.5-1	1.0	E8 specimen 3
Property	(orientation)	Т99	T90	T99	T90	T99	T90	T99	T90	T99	T90	T99	Т90	T99	T90	T99	T90	T99	Т90	Minimum tensile properties
Ultimate Tensile Strength	(XY) (XY45Z) (Z)	154 153 153	154 154 155	145 143 144	151 151 152	149 148 148	152 152 152	141 141 140	148 148 148	141 141 142	149 149 150	143 142 142	149 149 150	125	129	155	163	135	142	150
Yield Strength	(XY) (XY45Z) (Z)	140 140 142	140 141 144	130 132 133	138 139 142	135 135 137	138 138 141	126 126 129	134 135 137	127 126 130	135 135 139	128 127 131	135 136 139	111	116	138	147	125	134	136 140
Elongation (%)	(XY) (XY45Z) (Z)	12 11 15	13 13 16	10 10 13	12 13 15	11 10 14	13 13 16	11 10 15	13 13 16	11 12 14	12 13 15	11 11 15	13 13 16							11 14
		•		ATII-12 re n = 3	41	n = 3	706			n =	removed 341	remo n = 7	ved 706			JMAI	DD and	AMS702	28 are	ds for tensile test used in different. Secondary
Ultimate Tensile Strength	(XY) (XY45Z) (Z)			T99 147 146 147	T90 152 152 153	T99 150 150 151	T90 152 154 155			T99 143 142 143	T90 150 150 151	T99 143 142 143	T90 150 150 150			were	tested		.05 in/	n/min. and AMS7028 n/min. Comparisons are poses.
Yield Strength	(XY) (XY45Z) (Z)			133 132 136	138 139 143	136 136 136 141	138 141 144			128 127 131	136 136 136 140	128 127 131	136 136 139		specime	ens fab	ricated	ed omitt by ATI p was belo	owdei	
Elongation (%)	(XY) (XY45Z) (Z)			10 11 13	12 13 15	11 10 14	13 13 16			11 12 14	12 13 15	11 11 14	13 13 16			(out of specification per AMS				
	TRIBUTION STATEM	IENT A.	Appro	ved for p	oublic	release	: Distril	bution	is unlin	nited. (AFRL-20)25-25	61) 1	6 May	2025					JMS Slide: 9

MMPDS vs CMH-17 (Non-parametric) Allowables Comparison

JMS Slide: 10

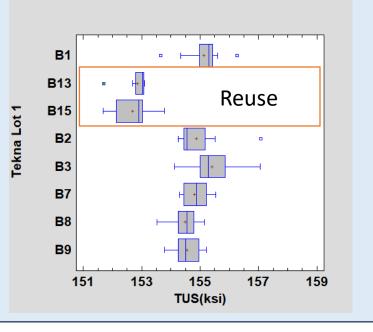
														A GA						
	PRESENTED ALLOWABLES ARE NOT FINAL!		MMPDS S-basis values (3 machines)				CMH-17 Non-Parametric T90 = B-basis T99 = A-basis				AMS 4 Investi Casti	ment	Extrs Solu treate	4934 auion - ution ed and ged	AMS 49 bar and forging	die g	AMS 7028 Ti-6Al-4V, Hot Isostatically Pressed (Low Temperature, High Pressure), Produced by Laser Powder Bed Fusion			
NOT TINAL:		QUAL 1 C n=36		QUAL 2 n=3	2 ONLY 359	QUAL 1 n=7	-	-	1 ONLY 365	QUAL 2 N =		QUAL 1 2 N=7	-	Thicki <0.5			kness .500	0.5-1.0	D	E8 specimen 3
Property	(orientation)	T99	Т90	T99	T90	Т99	T90	T99	T90	T99	T90	T99	T90	T99	T90	T99	T90	Т99 Т	90	Minimum tensile properties
Lilling and Tamaila	(XY)	154	154	145	151	149	152	152	154	142	149	144	149							150
Ultimate Tensile Strength	(XY45Z)	153	154	143	151	148	152	151	154	143	150	146	150	125	129	155	163	135 1	42	
Strength	(Z)	153	155	144	152	148	152	152	154	144	151	147	151							151
	(XY)	140	140	130	138	135	138	138	140	128	135	130	135							136
Yield Strength	(XY45Z)	140	141	132	139	135	138	138	140	131	137	133	137	111	116	138	147	125 1	.34	
	(Z)	142	144	133	142	137	141	137	141	134	140	136	140							140
	(XY)	12	13	10	12	11	13	11	13	7	10	7	10							11
Elongation (%)	(XY45Z)	11	13	10	13	10	13	10	12	10	12	10	12							
	(Z)	15	16	13	15	14	16	12	15	11	13	11	13							14
					emoved 341	ATI-12 r N =				ATI remo N =	oved	ATI remo n = 1	oved		[• •		for tensile test used in fferent. Secondary
				T99	T90	T99	T90			T99	T90	T99	T90							min. and AMS7028
Littine etc. Tomoilo	(XY)			147	152	150	152			146	151	148	151					-		/min. Comparisons are
Ultimate Tensile Strength	(XY45Z)			146	152	150	154			144	151	147	151			only fo	or infori	mational p	ourpc	ses.
Juciikui	(Z)			147	153	151	155			147	152	149	152		\setminus					
	(XY)			133	138	136	138			132	137	134	137		\ -00	1 700		,		7
Yield Strength	3			132	139	136	141			131	138	134	138					d omitting ated by AT		
	(Z)			136	143	141	144			136	142	138	141							
	(XY)			10	12	11	13			7	10	7	10			er lot 12. Oxygen (wt%) was v 0.11% (out of specification				
Elongation (%)	(XY45Z)			11	13	10	13			10	12	10	12			S 7015)				
	(X1 102) (Z)			13	15	14	16			11	13	11	13							



Build to Build Variation across Virgin and Reuse from same powder lot

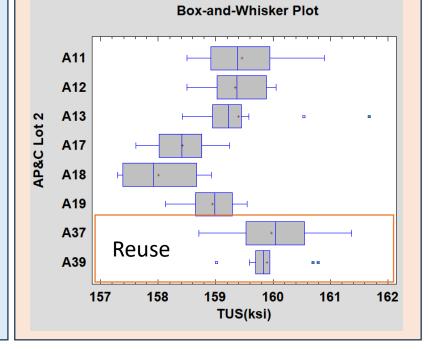
NIAR Builds

- 70 data points across 6 builds from same Tekna powder lot 2 (4 Virgin builds, 2 Reuse Builds)
- Data approximates a normal distribution
- ANOVA P-value = 0.0001 (Significant difference between the mean)
- Levene's test P-value 0.8622. There is not a statistically significant difference amongst the standard deviations



Box-and-Whisker Plot

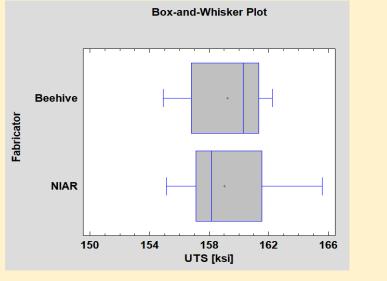
Boeing Builds


- 74 data points across 8 builds from same Tekna powder lot 1 (6 Virgin builds, 2 Reuse Builds)
- Data approximates a normal distribution
- ANOVA P-value = 0.0001 (Significant difference between the mean)
- Levene's test P-value 0.669. there is not a statistically significant difference amongst the standard deviations

Box-and-Whisker Plot

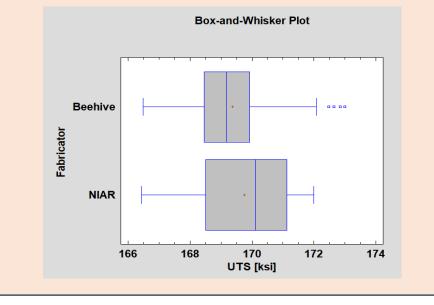
Beehive Builds

- 82 data points across 8 builds from same AP&C powder lot 2 (6 Virgin builds, 2 Reuse Builds)
- Data approximates a normal distribution
- ANOVA P-value = 0.0001 (Significant difference between the mean)
- Levene's test P-value 0.7594. there is not a statistically significant difference amongst the standard deviations


Machine to Machine variability

- Interstitial elements across 6 powder lots (5 virgin and 1 reuse):
 - Oxygen 0.142% 0.15%
 - Nitrogen 0.009% 0.02%
 - Carbon 0.006% 0.022%

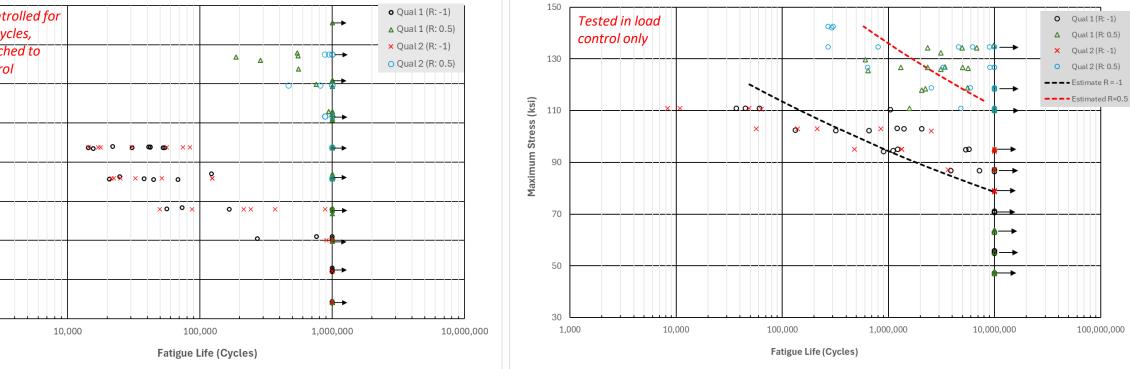
<u>Results</u>


- 161 data points across 14 builds (6 Beehive builds, 8 NIAR Builds) were analyzed.
- Data **not normal** (Stnd. kurtosis out of ±2 range)
- K.W. P-value = 0.902 (there is not a statistically significant difference amongst the medians at the 95.0% confidence level)
- Levene's test P-value 0.4656. there is not a statistically significant difference amongst the standard deviations at the 95.0% confidence level.

- Interstitial elements across 8 ATI powder lots (6 virgin and 2 reuse):
 - Oxygen 0.188% 0.20%
 - Nitrogen 0.023% 0.039%
 - Carbon 0.031% 0.044%

<u>Results</u>

- 114 data points across 12 builds (6 Beehive builds, 6 NIAR Builds) were analyzed.
- Data approximates a normal distribution.
- K.W. P-value = 0.144 (there is not a statistically significant difference amongst the medians at the 95.0% confidence level)
- Levene's test P-value 0.0212. there is a statistically significant difference amongst the standard deviations at the 95.0% confidence level.


Fatigue data (Q1 and Q2 Room Temperature data combined)

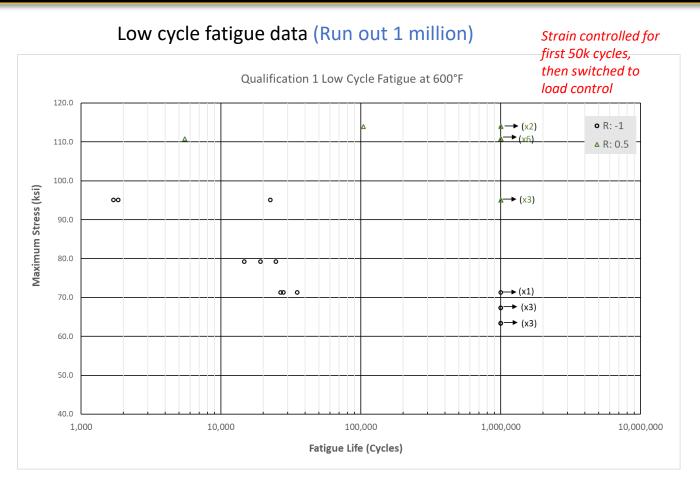
Low cycle fatigue data (Run out 1 million) High Cycle Fatigue Low Cycle Fatigue 155 150 Strain controlled for • Qual 1 (R: -1) Tested in load 00 ▲ Qual 1 (R: 0.5) first 50k cycles, control only 145 × Qual 2 (R: -1) 0 then switched to ∞ ∞ Δ 8 Δ 130 Δ O Qual 2 (R: 0.5) load control $\Delta \Delta$ A Δ 8 135 ΔΔ Maximum Stress (ksi) 110 Maximum Stress (ksi) 125 00 0 X × X 0 œ 115 90 0 × õ 105 ×0 0 o xx ≜→ 70 95 50 85 30 75 1,000 10,000 1,000,000 100,000 10,000 100,000 10,000,000 1,000 1,000,000 Fatigue Life (Cycles)

High cycle fatigue data (Run out 10 million)

HCF estimated curves generated according to MMPDS section 9.6.

LCF estimated curves still in process

Fatigue (Qualification 1)	Failure Initiation Location	Occurrence Rate in Failed Specimens
LCF		15%
HCF	Internally initiated	47%


Qual 2 fractography ongoing

Preliminary Qual 1 LCF data at 600°F

LCF at 600°F still in process More data to follow

Extracted from MMPDS Vol I Handbook

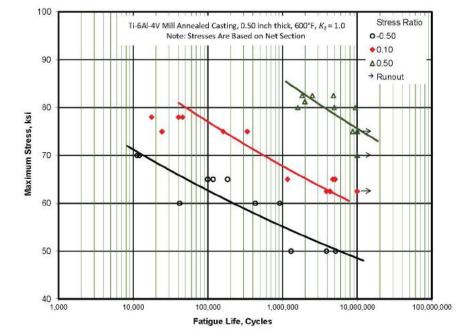
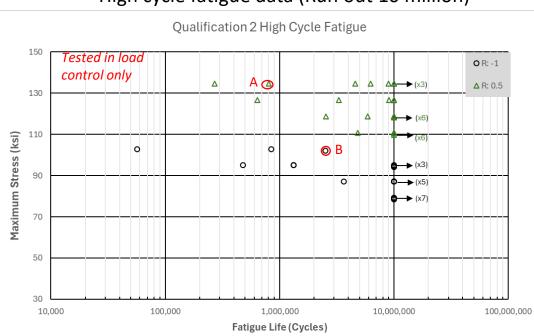
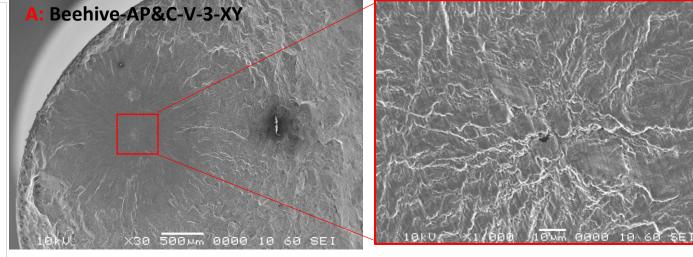
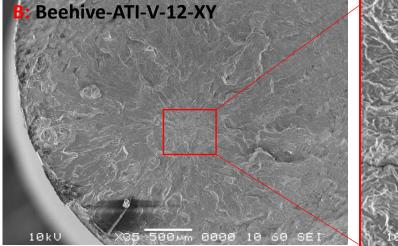
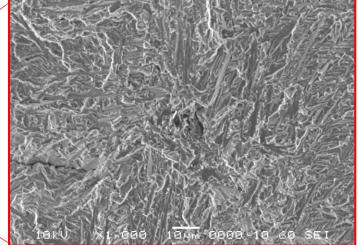


Figure 5.4.1.1.8(i). Best-fit S/N curves for unnotched Ti-6AI-4V mill annealed casting, 0.50-inch thick, 600°F.


Stress level	Maximum Stress (ksi)	Min. no. of cycles (R:-1/R:0.5)
40%	63.3	(Run Out / Not tested)
45%	71.3	(26,727 / Not tested)
50%	79.2	(14,674 / Not tested)
60%	95.0	(1,713 / Run Out)
70%	110.8	(Not tested / Run Out)
72%	114.0	(Not tested / 104,453)


JMADD Fractography

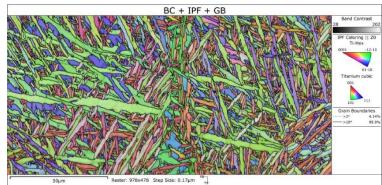


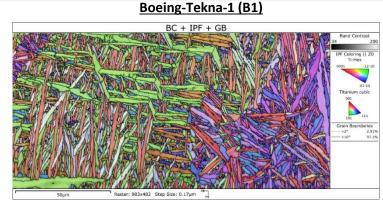


Stress level	Maximum Stress (ksi)	Min. no. of cycles (R:-1/R:0.5)
50%	78.78	(Run out / not testing)
55%	87.09	(Run out / not testing)
60%	95.01	(478,773 / not testing)
65%	102.93	(56,925 / not testing)
70%	109.86	(not testing / Run out)
75%	118.76	(not testing / Run out)
85%	134.60	(not testing / 271,317)

High cycle fatigue data (Run out 10 million)

LCF @ 600°F testing to follow

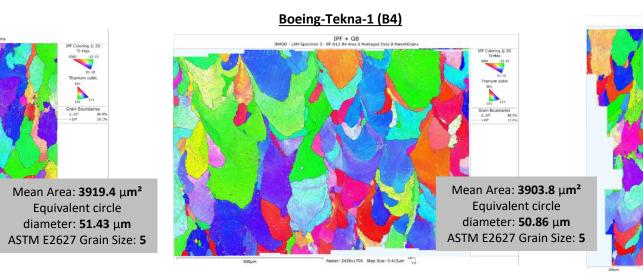




JMADD Microstructure Results

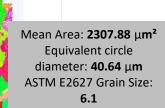
NIAR-Tekna-2 (N16)

BC + IPF + GB


Beehive-ATI-6 (A8)

- All Images shown were taken on the ZX plane.
- Parent grains below were reconstructed with AZTEC ICE software.

NIAR-Tekna-2 (N15)


Raster: 2778x1747 Step Size: 0.415um

		AR 8 builds)		eing 6 builds)	Beehive (across 10 builds)		
Measurement	Average	CoV (%)	Average	CoV (%)	Average	CoV (%)	
α Width (µm)	2.33	11.67	2.19	7.20	2.69	11.90	
α Length (μ m)	8.72 18.07		8.31	4.88	9.54 13.32		

Beehive-AP&C-2 (A19)

er: 978x509 Sten Size: 0.17ur

JMS

Slide: 16

Print Direction

Chemistry of Bulk Printed Material – Qualification 1

WICHITA STATE UNIVERSITY

Chemistry of Bulk Printed Material

 According to AMS2249K check limits for Ti64, the oxygen and Nitrogen content for highlighted values are within acceptable variation.

Check Analysis limits (AMS2249K)

Element				Maximum of ied Range %	Under	Variation Min or Over Max
Nitrogen	í	Up to	0.10	(1000 ppm), incl	0.02	(200 ppm)
Oxygen		Up to	0.20	(2000 ppm), incl		(200 ppm)
1.7	Over	0.20	press hits	(2000 ppm)	0.03	(300 ppm)

Per AMS2249 section 2.3.1:

In the analysis of finished parts, these values do not apply to elements whose percentage can be varied by fabricating techniques employed (for example, oxygen, nitrogen, hydrogen) unless the sample is sufficiently large to produce a reliable result.

						CHEMIC	AL COMPOSI	TION (wt. 9	%) - Ti BALA	NCE		
Supplier	Lot #	Powder state	AI	v	Fe	Y	с	O ²	N	H ²	OTHERS EACH	OTHERS TOTAL
		Virgin	6.41	4.03	0.22	< 0.001	0.010	0.14	0.0100	0.0020	< 0.10	< 0.40
409.0	Lot 1	Bulk Mat.	6.38	3.96	0.22	< 0.001	0.016	0.16	0.0270	0.0026	<0.05	<0.1
AP&C	1 = + 2	Virgin	6.31	3.96	0.2	< 0.001	0.01	0.14	0.01	0.002	< 0.1	< 0.4
	Lot 2	Bulk Mat.	6.28	4.04	0.2	<0.001	0.014	0.16	0.033	0.0027	<0.05	<0.1
	1 = + 1	Virgin	6.13	4.05	0.17	< 0.005	0.009	0.12	0.0070	0.0020	< 0.05	< 0.05
	Lot 1	Bulk Mat.	6.42	4.33	0.18	<0.001	0.011	0.15	0.0160	0.0097	<0.05	<0.1
Talaa	1	Virgin	6.39	4.23	0.18	< 0.005	0.010	0.13	0.0070	0.0020	< 0.05	< 0.05
Tekna	Lot 2	Bulk Mat.	6.4	4.25	0.18	<0.001	0.010	0.15	0.0260	0.0025	<0.05	<0.1
		Virgin	6.18	4.06	0.16	< 0.001	< 0.005	0.12	0.0090	0.0040	< 0.02	< 0.05
	Lot 4	Bulk Mat.	6.34	3.95	0.17	<0.001	<0.005	0.15	0.0390	0.0086	<0.05	<0.1
	1.1.4	Virgin	6.03	4.02	0.21	< 0.0009	0.006	0.149	0.013	0.0009		
	Lot 1	Bulk Mat.	6.1	4.05	0.2	<0.001	0.007	0.18	0.033	0.0012	<0.05	<0.1
	1.44.2	Virgin	6.12	4.06	0.22	< 0.0009	0.007	0.142	0.012	0.0006		
	Lot 2	Bulk Mat.	6.06	4.12	0.2	<0.001	0.12	0.17	0.028	0.0024	<0.05	<0.1
	1.1.2	Virgin	6.01	4.12	0.21	< 0.0009	0.008	0.145	0.014	0.0010		
	Lot 3	Bulk Mat.	6.41	4.2	0.21	<0.001	0.008	0.17	0.032	0.0015	<0.05	<0.1
ATI	1.1.4	Virgin	6.3	4.01	0.21	< 0.0009	0.006	0.16	0.006	0.0009		
	Lot 4	Bulk Mat.	6.2	4.06	0.19	<0.001	0.02	0.18	0.026	0.0029	<0.05	<0.1
	1.1.5	Virgin	6.31	3.94	0.15	< 0.0009	0.029	0.178	0.030	0.0010		
	Lot 5	Bulk Mat.	6.14	4.07	0.16	<0.001	0.032	0.2	0.044	0.0017	<0.05	<0.1
	Lot 6	Virgin	6.22	3.86	0.15	< 0.0009	0.04	0.188	0.036	0.0009		
	LOU B	Bulk Mat.	6.26	3.96	0.14	<0.001	0.041	0.21	0.047	0.0023	<0.05	<0.001
	Lot 7	Virgin	6.16	3.86	0.14	<0.0009	0.039	0.185	0.036	0.001		
	1017	Bulk Mat.	6.39	4.32	0.14	<0.001	0.041	0.21	0.051	0.0016	<0.05	<0.1
AMS	5 7015 (Cla	ss A)	5.50 - 6.75	3.50 - 4.50	≤ 0.30	≤ 0.005	≤ 0.08	0.11 - 0.20	≤ 0.05	≤ 0.015	≤ 0.10	≤ 0.40
A	STM F292	4	0.75	4.50				≤ 0.20				

Chemistry of Bulk Printed Material– Qualification 2

					СНЕ	MICAL COMP	OSITION (wt	. %) - Ti BALA	NCE		
Powder Supplier	Powder Lot	Material state	Aluminum	Vanadium	Iron	Yttrium	Carbon	Oxygen	Nitrogen	Hydrogen	Titanium
	P 1	Powder	6.13	4.05	0.20	< 0.0010	0.01	0.160	0.01	0.00	Balance
	R-1	Bulk Mat.	6.13	4.13	0.19	< 0.001	0.010	0.160	0.021	0.0012	Balance
		Powder	6.26	4.13	0.19	< 0.001	0.008	0.140	0.010	0.0010	Balance
	R-2	Bulk Mat.	6.13	4.14	0.20	<0.001	0.008	0.150	0.020	0.0010	Balance
	R-3	Powder	6.16	4.14	0.20	< 0.0010	0.010	0.160	0.012	0.0010	Balance
	K-3	Bulk Mat.	6.11	4.14	0.20	< 0.001	0.008	0.160	0.021	0.0013	Balance
		Powder	6.43	4.06	0.18	< 0.001	0.01	0.170	0.01	0.00	Balance
	R-4	Bulk Mat.	6.26	4.02	0.16	<0.001	0.020	0.180	0.027	0.0015	Balance
		Powder	6.35	3.96	0.15	< 0.0010	0.031	0.190	0.023	0.0011	Balance
	R-5	Bulk Mat.	6.30	3.98	0.14	< 0.001	0.032	0.180	0.026	0.0014	Balance
		Powder	6.49	3.99	0.13	< 0.001	0.038	0.200	0.030	0.0011	Balance
	R-6	Bulk Mat.	6.54	4.00	0.13	< 0.001	0.037	0.190	0.042	0.0014	Balance
		Powder	6.16	3.86	0.14	< 0.0009	0.039	0.190	0.036	0.0010	Balance
	V-7	Bulk Mat.	6.46	3.97	0.13	<0.001	0.038	0.190	0.015	0.0027	Balance
		Powder	6.27	3.96	0.15	< 0.0009	0.038	0.190	0.039	0.0011	Balance
ATI	V-8	Bulk Mat.	6.50	3.97	0.13	<0.001	0.038	0.190	0.065	0.0024	Balance
	V-9	Powder	6.28	3.90	0.15	< 0.0009	0.044	0.195	0.035	0.0008	Balance
	Beehive	Bulk Mat.	6.40	3.90	0.14	<0.001	0.039	0.180	0.045	0.0021	Balance
	V-9	Powder	6.25	3.91	0.15	< 0.0009	0.038	0.193	0.035	0.0010	Balance
	NIAR	Bulk Mat.	6.44	3.89	0.14	<0.001	0.039	0.200	0.060	00028	Balance
	v-10	powder	6.15	3.91	0.15	< 0.0009	0.039	0.190	0.034	0.0014	Balance
	Beehive	Bulk Mat.	6.48	4.03	0.13	<0.001	0.039	0.200	0.043	0.0020	Balance
	v-10	powder	6.24	3.89	0.15	< 0.0009	0.041	0.193	0.034	0.0010	Balance
	NIAR	Bulk Mat.	6.20	3.89	0.13	<0.001	0.042	0.190	0.026	0.0013	Balance
		powder	5.73	3.54	0.16	< 0.0009	0.022	0.150	0.023	0.0015	Balance
	v-11	Bulk Mat.	6.29	3.85	0.15	<0.001	0.034	0.160	0.021	0.0026	Balance
	v-12	Powder	6.21	3.72	0.20	< 0.0009	0.006	0.097	0.012	0.0013	Balance
	Beehive	Bulk Mat.	6.37	3.80	0.17	<0.001	0.006	0.099	0.032	0.0022	Balance
	v-12	Powder	6.01	3.66	0.20	< 0.0009	0.008	0.090	0.010	0.0013	Balance
	NIAR	Bulk Mat.	6.25	3.69	0.18	<0.001	0.006	0.096	0.042	0.0029	Balance

					CHEM	ICAL COMP	OSITION (w	t. %) - Ti BA	LANCE		
Powder Supplier	Powder Lot	Material	Aluminum	Vanadium	Iron	Yttrium	Carbon	Oxygen	Nitrogen	Hydrogen	Titanium
	R-1	Powder	6.48	4.04	0.22	< 0.001	0.016	0.15	0.009	0.0017	Balance
	N-1	Bulk Mat.	6.56	4.15	0.19	<0.001	0.017	0.17	0.036	0.0020	Balance
	AP&C R-2	Powder	6.41	4.01	0.19	< 0.001	0.014	0.14	0.013	0.0016	Balance
AP&C	N-2	Bulk Mat.	6.39	4.02	0.19	<0.001	0.014	0.16	0.033	0.0020	Balance
		Powder	6.35	4.12	0.22	< 0.001	0.020	0.15	0.020	0.0020	Balance
	V-3	Bulk Mat.	6.44	4.21	0.20	<0.001	0.018	0.19	0.037	0.0023	Balance
	R-1	Powder	6.32	4.26	0.19	<0.001	0.010	0.14	0.005	0.0029	Balance
	N-1	Bulk Mat.	6.23	4.25	0.17	<0.001	0.009	0.12	0.016	0.0016	Balance
	R-2	Powder	6.37	4.17	0.19	< 0.001	0.010	0.16	0.007	0.0022	
TEKNA	K-2	Bulk Mat.	6.31	4.19	0.17	<0.001	0.013	0.12	0.023	0.0022	Balance
TERNA	V-3	Powder	6.44	4.37	0.17	<0.005	0.009	0.13	0.009	0.0020	Balance
	V-3	Bulk Mat.	6.35	4.23	0.15	<0.001	0.024	0.14	0.017	0.0026	Balance
	R-4	Powder	6.32	4.07	0.17	< 0.001	0.006	0.14	0.010	0.0037	
	n-4	Bulk Mat.	6.22	4.05	0.15	< 0.001	0.006	0.14	0.021	0.0033	Balance
	AMS 7015							0.11 - 0.20			
	ASTM F2924		5.50 - 6.75	3.50 - 4.50	≤ 0.30	≤ 0.005	≤ 0.08	≤ 0.20	≤ 0.05	≤ 0.015	Balance

Check Analysis limits (SAE AMS2249K)

	Limits or Maximum of Specified Range	Variation
Element	<u> </u>	Under Min or Over Max
Nitrogen	Up to 0.10 (1000 ppm), incl	0.02 (200 ppm)
Oxygen	Up to 0.20 (2000 ppm), incl	0.02 (200 ppm)
	Over 0.20 (2000 ppm)	0.03 (300 ppm)

All powder lots, except for ATI Lot 12, meet the AMS 7015 specifications.

JMADD Lessons Learned

- Room Temperature Mechanical Properties: The room temperature static mechanical properties across different fabricators show strong consistency, with coefficients of variation (CoV) ≤ 6%. The observed scatter trends align closely with those seen in Ti-6Al-4V wrought products as reported in MMPDS.
- Impact of Powder Lot Composition on Strength: It was found that powder lots with higher interstitial elements, particularly oxygen and nitrogen, resulted in increased strength properties seen in both Qual 1 and Qual 2. This suggests that controlling powder composition can influence the strength characteristics of the final printed parts (see slide 8).
- Strength-Ductility Trade-Off: Specimens with higher strength properties exhibited a lower reduction in gauge section area during tensile testing, coupled with a decrease in fracture toughness. This finding supports the well-known strength-ductility trade-off, where increasing material strength can lead to reduced ductility and toughness.
- Elevated Temperature Performance: Elevated temperature test results for L-PBF Ti-6Al-4V showed similar performance to the percent knockdown data reported by MMPDS, further validating the material's high-temperature behavior and reinforcing the consistency of Ti-6Al-4V properties across different manufacturing methods and conditions.
- Elemental Composition Changes After Powder Blending: After blending reuse with virgin powder, changes were observed in the elemental composition, particularly in oxygen and iron contents. This highlights the importance of closely monitoring and controlling elemental composition when reusing or mixing powder lots to ensure material consistency.
- **Physical Properties Consistency**: The physical properties, such as density and hardness, exhibited comparable results between different powder lots and fabricators, suggesting that the variability in physical properties is minimal and within acceptable ranges.
- Variability Across Builds and Machines: Build-to-build variability was observed across the three fabricators (see slide 7) when powder lot was kept constant. However, it was observed that there were no significant difference between machine-to-machine comparisons when powder lots with similar chemistry were used.

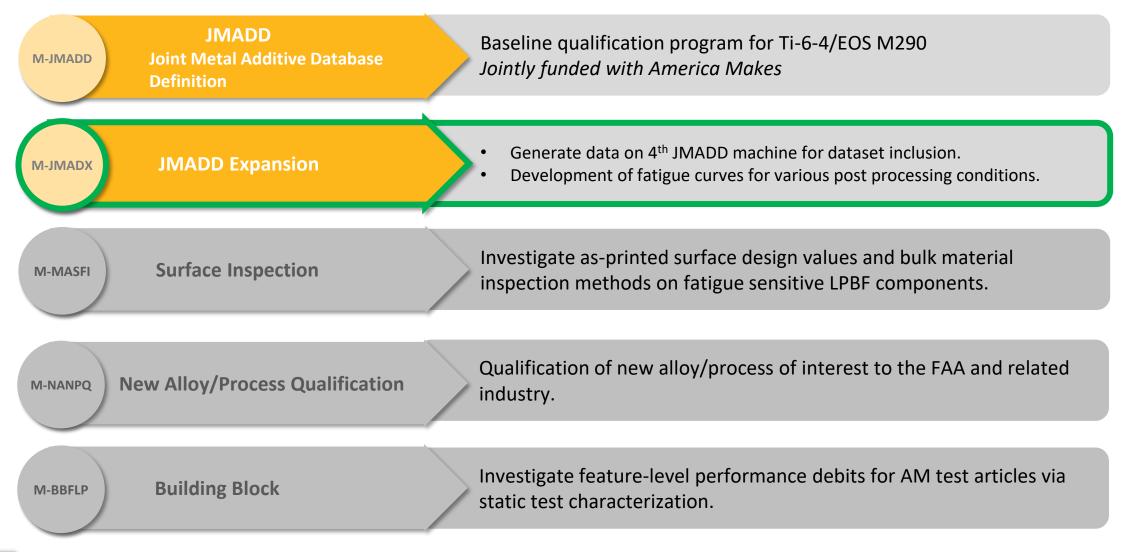
WICHITA STATE UNIVERSITY

Next Steps:

- NIAR to complete all remaining Qualification 1 and Qualification 2 fatigue testing and EBSD analysis.
- NIAR to collaborate with OSU on fractography and EBSD analysis data.
- Distribute NCAMP Material Property Data Report (MPDR) to steering committee for review.
- Continue work on statistical analysis to compare CMH-17 and MMPDS methodologies for allowables. (Final NCAMP statistical analysis methodology to be decided by Government Steering Committee before publishing NCAMP allowable.)
- NIAR to continue analyzing fatigue data (fractography and S-N curves)

Benefit to Aviation:

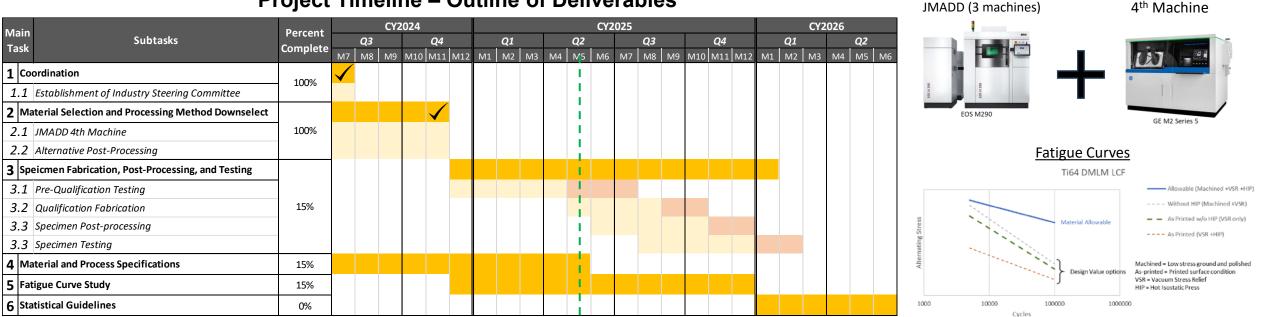
- Standardized qualification framework which can be applied to new metal AM material.
- Publicly available material allowables for L-PBF Ti-6Al-4V grade 5 material.


Acknowledgment: This material is based on research sponsored by Air Force Research Laboratory under Agreement Number FA8650-20-2-5700. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. **Disclaimer**: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

FAA JAMS – Metal AM | Program Overview

Project M-JMADX: JMADD Expansion

Project Overview


Research Objectives

- Task 1: Utilize NIAR's GE M2 Series 5 machine to fabricate specimens for static mechanical and fatigue testing as the 4th machine to be combined to the JMADD dataset.
- Task 2: Generate fatigue curves for the as-fabricated and additional alternate post-processing conditions for comparison back to JMADD fatigue performance (EOS M290).

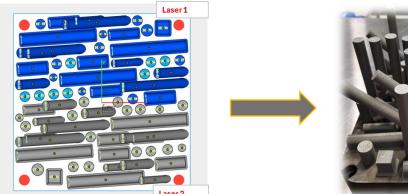
Project Deliverables

Research Outcomes

- A deliverables report documenting the lessons learned and results, including statistical comparison (combinability) between the Concept Laser M2 data and the baseline JMADD EOS M290 gualification.
- An FAA technical report documenting the design value fatigue curves with as printed and alternative heat treatment debits.

OF MATERIALS & MANUFACTURI

Project Timeline – Outline of Deliverables



Pre-Qualification:

- Compare build quality and test results to baseline JMADD qualification data following the defined JMADD process chain.
- Confirm acceptable quality of fabrication and material performance to support qual effort.

Approach:

- Pre-qualification fabrication will leverage test matrix and build design from JMADD pre-qualification site comparison study.
- Internal GE M2 Series 5 stock parameter for Ti64 material (60 um layer height) will be utilized to fabricate build NIAR to post-process and test specimens.
- Specimen post-processing will follow process defined JMADD (SR, HIP, & machine)
- After receiving pre-qualification test results, NIAR to run equivalency analysis using CMH-17 and MMPDS (OSAT) methods for comparisons to baseline JMADD data.

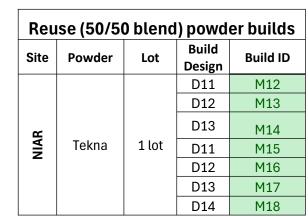
Task 1 test matrix

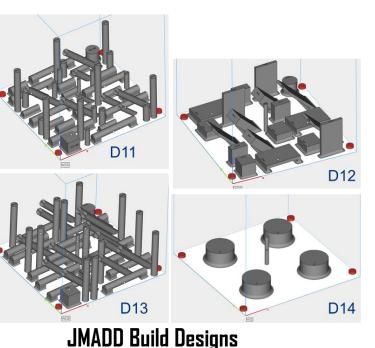
	DMP Flex 350		RTA	ETA 700°F
Test Type	Specimen	Property	No. of	No. of
			Coupons	Coupons
	E8/E21/E111	Strength and	3	3
	ХҮ	modulus		
Tension	E8/E21/E111	Strength and	3	3
Tension	ZX	modulus		
	E8/E21/E111	Strength and	3	3
	ZX-45	modulus		
	E9/E209/E111	Compressive	3	3
	ХҮ	strength, yield,		
		and modulus		
	E9/E209/E111	Compressive	3	3
Compression	ZX	strength, yield,		
		and modulus		
	E9/E209/E111	Compressive	3	3
	ZX-45	strength, yield,		
		and modulus		
	B769 XY	Ultimate shear	3	3
		strength		
Shear	B769 ZX	Ultimate shear	3	3
JIEai		strength		
	B769 ZX-45	Ultimate shear	3	3
		strength		

Fatigue specimens will be available for testing if required.

Pre-Qualification in progress

GE M2 Fabricated pre-qualification build




4th JMADD machine Qualification approach:

- Will utilize one **Ti64 Grade 5** powder lot from **Tekna** (total 565kg) and JMADD build designs.
- **Two dataset** will be generated: First larger dataset will use virgin powder and second smaller dataset will use (50/50) reuse blend powder.
- **17 builds total** (10 virgin builds, 7 reuse builds). Number of builds proposed is similar to the Boeing site fabrication.
- After first ten virgin builds are completed, recaptured powder feedstock will be sieved and blended (ratio of 50/50) by ELCAN industries for reuse build fabrication (similar to JMADD).
- Both lasers will be utilized on the GE M2 Series 5. (Build plate areas will be split into six areas to evaluate location-location variability)
- There will be no stitching during fabrication.
- Test conditions: RTA, ETA (300, 500, 700, 900°F).
- NCAMP will develop separate NCAMP PCD for the GE M2 machine.

Virgin powder builds								
Site	Powder	Lot	Build Design	Build ID				
				M2				
			D11	M3				
				M4				
				M5				
AR	Talma	4 1	D12 M6	M6				
NIAR	Tekna	1 lot		M6 M7				
				M8				
			D13	Build ID M2 M3 M4 M5 M6 M7				
			D14	M11				

ΔΤΕΚΝΛ

Static test matrix

			Virgin Static Test Matrix				(50/50) Reuse blend Static T	est Matrix	
					Runs per Machine ecimens per build		Number of Lots x Runs per Machin Specimens per build		
Build Orientation	Test Type	ASTM Standard	Property	Test Temperature		Coupons Tested	Test Temperature		Coupons Tested
				RTA	ETA (300, 500, 700, 900°F)		RTA	ETA (300, 500, 700, 900°F)	
ХҮ	Tension	ASTM E8, E21, E111	UTS, Yield, Modulus, and Elongation	1x2x3	1x2x8	22	1x2x3	1x2x8	22
ZX	Tension	ASTM E8, E21, E111	UTS, Yield, Modulus, and Elongation	1x2x3	1x2x8	22	1x2x3	1x2x8	22
Z45	Tension	ASTM E8, E21, E111	UTS, Yield, Modulus, and Elongation	1x2x3	1x2x8	22	1x2x3	1x2x8	22
ХҮ	Compression	ASTM E9, E209, E111	Compressive Strength, Yield, and Modulus	1x1x3	1x1x8	11	1x1x3	1x1x8	11
ZX	Compression	ASTM E9, E209, E111	Compressive Strength, Yield, and Modulus	1x1x3	1x1x8	11	1x1x3	1x1x8	11
Z45	Compression	ASTM E9, E209, E111	Compressive Strength, Yield, and Modulus	1x1x3	1x1x8	11	1x1x3	1x1x8	11
XY	Shear	ASTM B769	Ultimate Shear Strength	1x1x3	1x1x8	11	1x1x3	1x1x8	11
ZX	Shear	ASTM B769	Ultimate Shear Strength	1x1x3	1x1x8	11	1x1x3	1x1x8	11
Z45	Shear	ASTM B769	Ultimate Shear Strength	1x1x3	1x1x8	11	1x1x3	1x1x8	11
ХҮ	Bearing (e/D=1.5 & 2.0)	ASTM E238	Bearing Strength and Yield	1x3x5		15	1x2x5		10
ZX	Bearing (e/D=1.5 & 2.0)	ASTM E238	Bearing Strength and Yield	1x3x5		15	1x2x5		10
Z45	Bearing (e/D=1.5 & 2.0)	ASTM E238	Bearing Strength and Yield	1x3x5		15	1x2x5		10
XY	Frac. Tough.	ASTM E399	Plain Strain Fracture Toughness	1x2x3		6	1x2x3		6
ZX	Frac. Tough.	ASTM E399	Plain Strain Fracture Toughness	1x2x3		6	1x2x3		6
Z45	Frac. Tough.	ASTM E399	Plain Strain Fracture Toughness	1x2x3		6	1x2x3		6

Fatigue test matrix

				Virgin Static Test Matrix					(50/50) Reuse blend Static Test Matrix		
Build	Build Test Type	ASTM Standard	R-value	Stress Levels	Property	Machine x	ots x Runs per Number of Is per build	Coupons	Number of Lots x Runs per Number of Specimens p		Coupons
Orientation	restrype	Astrinstandard	in value		linoperty	Test Ten	nperature	Tested	Test Temperatur	e	Tested
					RTA ETA (700°F)				RTA	ETA (700°F)	
XY	LCF (1 million runout)	ASTM E606	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3	1x3x3	18	1x2x3	1x2x3	12
ZX	LCF (1 million runout)	ASTM E606	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3	1x3x3	18	1x2x3	1x2x3	12
Z45	LCF (1 million runout)	ASTM E606	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3	1x3x3	18	1x2x3	1x2x3	12
XY	HCF (10 million run out)	ASTM E466	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3		9	1x2x3		6
ZX	HCF (10 million run out)	ASTM E466	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3		9	1x2x3		6
Z45	HCF (10 million run out)	ASTM E466	0.5 and -1	3 stress levels	Fatigue Strength, Residual	1x3x3		9	1x2x3		6

Physical properties test matrix

Test Type	Test Standard	Coupons Tested
Density	ASTM B311	6
Hardness, Rockwell	ASTM E18	6
Microstructure & EBSD	ASTM E112	6
X-ray CT	ASTM E1441	12 from each test type
Coefficient of Thermal Expansion	ASTM E831	6
Thermal Conductivity	ASTM E1530	6
Thermal Diffusivity	ASTM E1461	6
Specific Heat Capacity	ASTM E1269	6

All specimens will be tested in the stress relieved, HIP'ed, and machined condition.

Current Status:

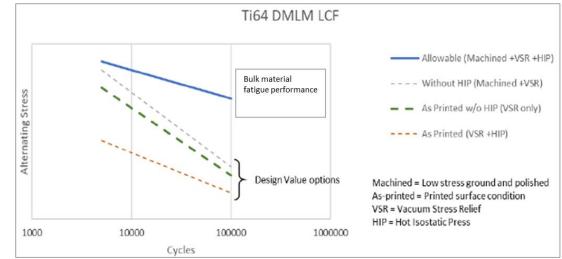
- Powder feedstock for the proposed fabrication plan have been purchased and inventoried.
- Pre-qualification build specimens have been fabricated.
- NIAR working on developing process control document (PCD) for GE M2 series 5 machine.

Next Steps

- Post-process fabricated pre-qualification specimens and prepare for specimen testing.
- Begin qualification fabrication.

Benefit to Aviation:

- Expansion of established framework to additional AM machine types.
- The Ti-6Al-4V dataset from a fourth AM machine contributes toward satisfying MMPDS C/D-basis requirements for multi-machine statistical validation.


Project M-JMADX: Task 2 (Fatigue Design Curves)

Approach:

- After bulk material average fatigue curves have been generated (JMADD), fatigue curves must be created to enable design of parts based off of differing surface finish and post-processing, such as stress relief and HIP. Additional curves may be generated in industry to provide characterization of knock-downs for other part features.
- Knock-downs and behavior associated with each iteration will be generated.
- JMADD test plan and specifications will be leveraged to ensure resulting data aligns with methodology used in the original JMADD qualification Program.

	Group	SR	200 MPa HIP	100 MPa HIP	Machined Notes		Purpose
	JMADD	Х	Х		Х	Baseline	-
	Α	Х			Х	No HIP	Cost reduction
ses	В	Х		Х	Х	Alternate HIP	Alignment with GAMAT & castings
Processes	С	Х				VSR only, As-fab	Potential As-fab best case
		Х		х		Alternate HIP, As-fab	Comparison to C, As-fab
Alternate	Е	Х	X			Baseline, As-fab	α case consideration
ern	F		X			Straight to HIP, As-fab	Comparison to G, As-fab
Alt	G		х		Х	Straight to HIP	Alignment with industry process

Notional Graphic of Material Allowable and Design Value Fatigue Curves

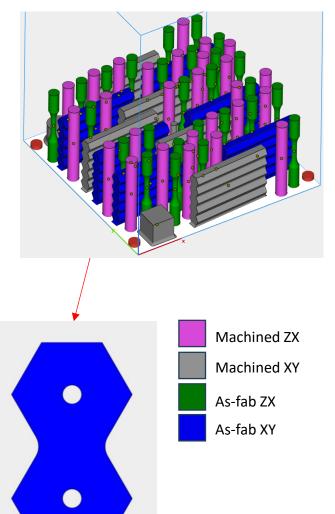
JMADD baseline and alternate condition comparison

Notes:

1) Industry partners have discussed that fatigue performance may be negatively impacted in the HIP-ed state if parts are not machined, due to surface α -case formation.

Alternate process definitions E and C are included to generate data to characterize this performance difference.

2) GAMAT P-DED static allowables project heat treatment investigation


Project M-JMADX: Task 2 (Alternate Post Processing Fatigue Matrix)

Approach (continued):

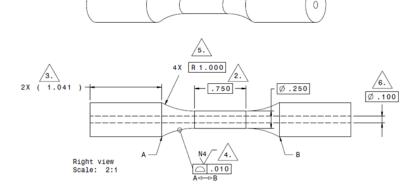
- Create common mixed-orientation build design for fabrication and performance comparison across builds.
- Fabricate specimens from one common material lot and vendor.
- Post-process and machine per test matrix definition.
- Generate fatigue curves for comparison to JMADD baseline.
- Include E8 static tensile lot release, density, thermal, and microstructure specimens on each build.
- Stress levels/Strain levels utilized will be identical across all conditions.
- XY As-Fab surface condition specimen geometry determined with trial prints (0.1" hole diameter to start teardrop geometry).

Fatigue	R-ratio	Stress levels	Finish	Heat Treat (Group)	Orientation	Number of stress levels x Specimens per stress level RTA (70°F)	Specimens tested
				VSR	XY	5 x 3	15
				(A)	ZX	5 x 3	15
			Machinad	VSR+100HIP	ZX	5 x 3	15
			Machined	(B)	XY	5 x 3	15
		55%		Straight to HIP	XY	5 x 3	15
				(G)	ZX	5 x 3	15
LCF	-1	60% 65%		VSR	XY	5 x 3	15
LCF	-1	70%		(C)	ZX	5 x 3	tested 15 15 15 15 15 15 15 15
		75%		VSR+100HIP	ZX	5 x 3	
		7370	As Tab	(D)	XY	5 x 3	15
			As Fab	Straight to HIP	XY	5 x 3	15
				(F)	ZX	5 x 3	15
				VSR + 200 MPa HIP	XY	5 x 3	15
				(E)	ZX	5 x 3	15
						Total	210

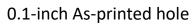
As-fab XY (with 0.1 inch through Hole)

Project M-JMADX: Task 2 (Fatigue Design Curves)

Project Status:


- Fatigue design curve test and fabrication plan has been proposed and presented to the FAA.
- Powder feedstock for the proposed fabrication plan have been purchased and inventoried.
- Specimen fabrication in progress.

Next Steps:


- NIAR to complete fabrication for required specimens
- Carry out heat treatment according to proposed test plan and run fatigue tests.

Benefit to Aviation:

 Understanding the effects of common industry postprocessing methods on the fatigue performance of L-PBF Ti-6Al-4V.

WICHITA STATE UNIVERSITY

JVVS

Slide: 30

	Group	SR	200 MPa HIP	100 MPa HIP	Machined	Notes	Purpose
	JMADD	Х	x		Х	Baseline	-
	Α	Х			Х	No HIP	Cost reduction
ses	В	Х		Х	Х	Alternate HIP	Alignment with GAMAT & castings
ces	С	Х				VSR only, As-fab	Potential As-fab best case
Pro	D	Х		Х		Alternate HIP, As-fab	Comparison to C, As-fab
ate	E	Х	х			Baseline, As-fab	α case consideration
ern	F		x			Straight to HIP, As-fab	Comparison to G, As-fab
Alt	G		X		Х	Straight to HIP	Alignment with industry process

Questions?

- Contact:
 - Neville Tay <u>neville.tay@idp.wichita.edu</u>
 - Royal Lovingfoss royal.lovingfoss@idp.wichita.edu
 - Rachael Andrulonis rachael.andrulonis@idp.wichita.edu

NATIONAL INSTITUTE FOR AVIATION RESEARCH

WICHITA STATE UNIVERSITY

Following are backup slides

JMADD Fifth Machine (America Makes sponsored)

Objective:

• To generate L-PBF fabricated Ti-6AI-4V (grade 5) data to enable the creation of a C/D-basis material allowable for MMPDS and an A/B-basis NCAMP material specification.

	Number of	specimens teste	d (across orienta	ations and test te	mperatures)		
Test Type	JMADD	JMADD	JMADD	JMADX	JMADD Fifth	Five machine total	MMPDS C- and D-Basis Requirements and
	NIAR (EOS M290)	Beehive (EOS M290)	Boeing (EOS M290)	(GE M2)	Machine Phase 1	specimen count	Recommendations
E8 – Tension	369	292	104	132	132	1029	300 Across 5 machines, 10 heats
E9 – Compression	175	143	51	66	66	501	300 Across 5 machines, 10 heats
B769 – Shear	174	148	54	66	66	508	300 Across 5 machines, 10 heats
E238 – Bearing (E/D = 1.5 & 2.0)	146	134	45	144	144	613	600 Across 5 machines, 10 heats
E399 – Fracture Toughness	154	130	39	36	36	395	
E606 & E466 — Fatigue	143	113	48	108	-	412	 Recommended Load control: 6 test per stress ratio (R), 3 stress ratios, no minimum heat or lot requirements Strain control: 10 tests for Rg = -1.0, 6 tests other strain ratios

WICHITA STATE UNIVERSITY

3D Systems DMP Flex 350

MMPDS requires 100 specimens in each orientations for direct analysis method. JMADD is investigating three orientations, hence 300 specimens is required

5th JMADD Machine Pre-Qualification

Objective:

 Compare build quality and test results to baseline JMADD qualification data following the defined JMADD process chain. Confirm acceptable quality of fabrication and material performance to support qual effort.

Approach:

- Pre-qualification fabrication will leverage test matrix and build design from JMADD pre-qualification site comparison study.
- 3DS will utilize internal stock parameter for Ti64 material to fabricate build (see table below).
- Tekna virgin powder (with Oxygen = 0.12 wt%) was utilized
- NIAR to post-process and test specimens.

Machine	3DS DMP Flex 350	EOS M290
Parameter	Standard Part LT60	Ti64_SpeedM 291 1.10
Laser Power (W)	245	340
Speed (mm/s)	1250	1250
Hatch Spacing (um)	82	120
Layer Thickness (um)	60	60
Volumetric Energy Density (J/mm	39.84	37.78

3DS fabricated build

Pre-qualification test matrix

	DMP Flex 350			ETA 700°F
Test Type	Specimen Property		No. of	No. of
			Coupons	Coupons
Tension	E8/E21/E111	Strength and	3	3
	ХҮ	modulus		
	E8/E21/E111	Strength and	3	3
	ZX	modulus		
	E8/E21/E111	Strength and	3	3
	ZX-45	modulus		
	E9/E209/E111	Compressive	3	3
	ХҮ	strength, yield,		
		and modulus		
	E9/E209/E111	Compressive	3	3
Compression	ZX	strength, yield,		
		and modulus		
	E9/E209/E111	Compressive	3	3
	ZX-45	strength, yield,		
		and modulus		
	B769 XY	Ultimate shear	3	3
		strength		
Shear	B769 ZX	Ultimate shear	3	3
Silear		strength		
	B769 ZX-45	Ultimate shear	3	3
		strength		

Fatigue specimens will be available for testing if required.

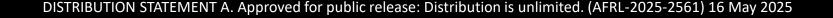
Pre-qualification work in process

Qualification fabrication to begin after verifying fabricability and material performance from Pre-qualification build.

Qualification Approach:

- 17 builds total (10 virgin builds, 7 reuse builds). Number of builds proposed is similar to the Boeing site fabrication.
- Will utilize 1 Ti64 Grade 5 powder lot from AP&C (total 565kg) and JMADD build designs.
- After first ten virgin builds are completed, recaptured powder feedstock will be sieved and blended by ELCAN industries for reuse build fabrication (similar to JMADD).
- Fatigue specimens will be available for testing if required.
- NCAMP and 3DS will develop separate NCAMP PCD for the DMP Flex 350.

Task 2


Virgin powder builds				
Site	Powder	Lot	Build Design	Build ID
NIAR	Tekna	1 lot	D11	C1
				C2
				C3
			D12	C4
				C5
				C6
			D13	C7
				C8
				C9
			D14	C10

Task 3

WICHITA STATE

Reuse (50/50 blend) powder builds						
Site	Powder	Lot	Build Design	Build ID		
NIAR	Tekna	1 lot	D11	C11		
			D12	C12		
			D13	C13		
			D11	C14		
			D12	C15		
			D13	C16		
			D14	C17		

Pre-Qualification updates:

- All fabricated tensile, shear, compression and fatigue specimens have been machined and are in queue for testing.
- Draft PCD for the DMP Flex 350 is in process.
- PO for powder was submitted to AP&C and powder will ship by beginning of May.

Next Steps:

- NIAR to perform quality control on machined specimen and subsequent testing.
- NIAR and 3DS to continue developing NCAMP PCD for the DMP Flex 350.
- After receiving pre-qualification test results, NIAR to run equivalency analysis using CMH-17 and MMPDS (OSAT) methods for comparisons to baseline JMADD data.

Benefit to Aviation:

• Broad dissemination across the aerospace industry will inform design allowable value generation.

Acknowledgment: This material is based on research sponsored by Air Force Research Laboratory under Agreement Number FA8650-20-2-5700. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. **Disclaimer**: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

