

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Report No: NCP-RP-2024-009 Rev -Report Date: July 08, 2025

Syensqo PRISMTM EP2400 toughened epoxy resin with TenaxTM Reinforcement Fabrics, Material Allowables Statistical Analysis Report

NCAMP Project Number: NPN 072101

NCAMP Report Number: NCP-RP-2024-009 Rev -Report Date: July 08, 2025

Sylvina Castillo

National Center for Advanced Materials Performance (NCAMP) National Institute for Aviation Research Wichita State University Wichita, KS 67260

Testing Facility:

National Institute for Aviation Research Wichita State University 1845 N. Fairmount Wichita, KS 67260

Test Panel Fabrication Facility:

Fiber Dynamics 3730 Midco St. Wichita, KS 67215

Distribution Statement A. Approved for public release; distribution is unlimited.

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Report No: NCP-RP-2024-009 Rev -Report Date: July 08, 2025

Prepared by:

Sylvina Castillo

Reviewed by:

Jorge Chavez-Salas

Nicole Stahl

Approved by:

Royal Lovingfoss

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Report No: NCP-RP-2024-009 Rev -Report Date: July 08, 2025

REVISIONS:

Rev	By	Date	Pages Revised or Added
-	Sylvina Castillo	07/08/2025	Document Initial Release

Table of Contents

1. Int	roduction	10
1.1	Symbols and Abbreviations	. 11
1.2	Pooling Across Environments	. 13
1.3	Basis Value Computational Process	. 13
1.4	Modified Coefficient of Variation (CV) Method	. 13
2. Bao	ckground	
2.1	0	
2.1	—	
2.1		
2.1	.3 Basis Value Computations	. 16
2.1		
2.1		
2.1	1 0 1 1	
2.1		20
2.1 2.1		
	.10 Non-parametric Basis Values	
	.11 Analysis of Variance (ANOVA) Basis Values	
2.2	Single Batch and Two Batch Estimates using Modified CV	
2.3	Lamina Variability Method (LVM)	
2.4	Specification Limits	
	nmary of Results	
3.1	NCAMP Recommended B-basis Values	
47	Summary Tables	44
3.2 4 Ind	Summary Tables	
4. Ind	lividual Test Summaries, Statistics, Basis Values and Graphs	48
4. Ind 4.1	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN)	48 49
4. Ind 4.1 4.2	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC)	48 . 49 . 53
4. Ind 4.1 4.2 4.3	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN)	48 . 49 . 53 . 57
4. Ind 4.1 4.2 4.3 4.4	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC)	48 49 53 57 61
4. Ind 4.1 4.2 4.3 4.4 4.5	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS)	48 . 49 . 53 . 57 . 61 . 65
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS)	48 . 49 . 53 . 57 . 61 . 65 . 69
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX)	48 .49 .53 .57 .61 .65 .69 .71
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN)	48 . 49 . 53 . 57 . 61 . 65 . 69 . 71 . 73
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal 0° Compression (BD-0CLC)	48 .49 .53 .57 .61 .65 .69 .71 .73 .77
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal 0° Compression (BD-0CLC) Bidiagonal In-Plane Shear (BD-IPS)	48 . 49 . 53 . 57 . 61 . 65 . 69 . 71 . 73 . 77 . 80
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal 0° Compression (BD-0CLC) Bidiagonal In-Plane Shear (BD-IPS) Bidiagonal Lamina Short Beam Strength (BD-SBS)	48 .49 .53 .57 .61 .65 .69 .71 .73 .77 .80 .84
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal 0° Compression (BD-0CLC) Bidiagonal In-Plane Shear (BD-IPS) Bidiagonal Lamina Short Beam Strength (BD-SBS) Bidiagonal Flexural Strength (BD-Flex)	48 .49 .53 .57 .61 .65 .69 .71 .73 .80 .84 .86
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal In-Plane Shear (BD-IPS) Bidiagonal Lamina Short Beam Strength (BD-SBS) Bidiagonal Flexural Strength (BD-Flex) 	48 .49 .53 .57 .61 .65 .69 .71 .73 .80 .84 .88
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC)	48 .49 .53 .57 .61 .73 .77 .80 .84 .88 .88 .92
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN)	48 .49 .53 .57 .61 .65 .69 .71 .73 .77 .80 .84 .88 .92 .96
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial 90° Compression (BA-90CLC)	48 .49 .53 .57 .61 .65 .69 .71 .73 .80 .84 .88 .92 .96 100
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17	lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN) Biaxial 0° Compression (BA-0CLC) Biaxial 90° Tension (BA-90TEN) Biaxial 90° Compression (BA-90CLC) Biaxial In-Plane Shear (BA-IPS) Biaxial Lamina Short Beam Strength (BA-SBS) Biaxial Flexural Strength (BA-FLEX) Bidiagonal 0° Tension (BD-0TEN) Bidiagonal 0° Compression (BD-0CLC) Bidiagonal 1n-Plane Shear (BD-IPS) Bidiagonal In-Plane Shear (BD-IPS) Bidiagonal Flexural Strength (BD-Flex) UD Woven 0/90° Unnotched Tension (UD-UNT0) UD Woven 0° Tabbed Tension (UD-0TEN) UD Woven 0° Compression Modulus (UD-0CLC) UD Woven 1n-Plane Shear (UD-IPS)	48 .49 .53 .57 .61 .73 .73 .77 .80 .88 .88 .92 .96 100 104
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN)	48 .49 .53 .57 .61 .65 .69 .71 .73 .77 .80 .84 .88 .92 .96 100 104 108
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN)	48 .49 .53 .57 .61 .65 .69 .71 .73 .80 .84 .88 .92 .96 100 104 108 110
4. Ind 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20	 lividual Test Summaries, Statistics, Basis Values and Graphs Biaxial 0° Tension (BA - 0TEN)	48 .49 .53 .57 .61 .65 .69 .71 .73 .77 .80 .84 .88 .92 .96 100 104 110 112

4.22 Unnotched Tension 3 (UNT3)	118
4.23 Unnotched Compression 1 (UNC1)	120
4.24 Unnotched Compression 2 (UNC2)	
4.25 Unnotched Compression 3 (UNC3)	126
4.26 Laminate Short-Beam Strength (SBS1)	129
4.27 Open-Hole Tension 1 (OHT1)	131
4.28 Open-Hole Tension 2 (OHT2)	135
4.29 Open-Hole Tension 3 (OHT3)	137
4.30 Open-Hole Tension 4 (OHT4)	139
4.31 Filled-Hole Tension 1 (FHT1)	141
4.32 Filled-Hole Tension 2 (FHT2)	145
4.33 Filled-Hole Tension 3 (FHT3)	147
4.34 Open-Hole Compression 1 (OHC1)	149
4.35 Open-Hole Compression 2 (OHC2)	
4.36 Open-Hole Compression 3 (OHC3)	154
4.37 Open-Hole Compression 4 (OHC4)	156
4.38 Filled-Hole Compression 1 (FHC1)	
4.39 Filled-Hole Compression 2 (FHC2)	161
4.40 Filled-Hole Compression 3 (FHC3)	
4.41 Single-Shear Bearing 1 (SSB1)	166
4.42 Single-Shear Bearing 2 (SSB2)	169
4.43 Single-Shear Bearing 3 (SSB3)	
4.44 Compression After Impact 1 (CAI1)	176
4.45 Interlaminar Tension Strength (ILT) and Curved Beam Strength (CH	
5. Outliers	
6. References	
	104

List Of Figures

Figure 4-1: Batch Plot for BA 0TEN Normalized Strength	50
Figure 4-2: Batch Plot for BA 0CLC Normalized Strength	
Figure 4-3: Batch Plot for BA 90TEN Normalized Strength	58
Figure 4-4: Batch Plot for BA 90CLC Normalized Strength	62
Figure 4-5: Batch Plot for BA IPS As Measured Strength at 5% Strain	
Figure 4-6: Batch Plot for BA IPS 0.2% Offset As Measured Strength	
Figure 4-7: Batch Plot for BA SBS As Measured Strength	
Figure 4-8: Batch Plot for BA FLEX Normalized Strength	
Figure 4-9: Batch Plot for BD 0TEN Normalized Strength	
Figure 4-10: Batch Plot for BD 0CLC Normalized Strength	
Figure 4-11: Batch Plot for BD IPS As Measured Strength at 5% Strain	
Figure 4-12: Batch Plot for BD IPS As Measured 0.2% Offset Strength	
Figure 4-13: Batch Plot for BD As Measured SBS	
Figure 4-14: Batch Plot for BD FLEX Normalized Strength	
Figure 4-15: Batch Plot UD UNTO Normalized Strength	
Figure 4-16: Batch Plot for UD UNC0 Normalized Strength	
Figure 4-10: Batch Plot for UD OTEN Normalized Strength	
Figure 4-17: Batch Flot for UD 01ER Normalized Strength	
Figure 4-19: Batch Plot for UD IPS As Measured Strength at 5% Strain	
Figure 4-20: Batch Plot for UD IPS As Measured 51/englinat 5 % Strain	
Figure 4-20: Batch Flot for UD As Measured SBS	
Figure 4-21: Batch Flot for UD As Measured SBS	
Figure 4-22: Batch Flot for UD FLEX Normalized Strength	
Figure 4-23: Batch Plot for UNT2 Normalized Strength	
Figure 4-25: Batch Plot for UNT3 Normalized Strength	
Figure 4-25: Batch Plot for UNC1 Normalized Strength	
Figure 4-20: Batch Flot for UNC2 Normalized Strength	
Figure 4-27: Batch Flot for UNC2 Normalized Strength	
Figure 4-29: Batch Plot for As Measured SBS1	
Figure 4-29: Batch Flot for AS Measured SDS1	
Figure 4-30: Batch Plot for OHT2 Normalized Strength	
Figure 4-31: Batch Flot for OHT2 Normalized Strength	
Figure 4-32: Batch Plot for OHT4 Normalized Strength	
Figure 4-34: Batch Plot for FHT1 Normalized Strength	
Figure 4-35: Batch Plot for FHT2 Normalized Strength	
Figure 4-36: Batch plot for FHT2 Normalized Strength	
Figure 4-37: Batch Plot for OHC1 Normalized Strength	
Figure 4-38: Batch Plot for OHC2 Normalized Strength	
Figure 4-39: Batch Plot for OHC3 Normalized Strength	
Figure 4-40: Batch Plot for OHC4 Normalized Strength	
Figure 4-41: Batch plot for FHC1 Normalized Strength	
Figure 4-42: Batch plot for FHC2 Normalized Strength	
Figure 4-42: Batch Plot for FHC3 Normalized Strength	
Figure 4-44: Batch Plot for SSB1 Normalized 2% Offset Strength	
Figure 4-45: Batch Plot for SSB1 Normalized Ultimate Strength	

Figure 4-46: Batch Plot for SSB2 Normalized Strength	170
Figure 4-47: Batch Plot for SSB3 Normalized Strength	173
Figure 4-48: Batch Plot for Compression After Impact Normalized Strength	176
Figure 4-49: Batch Plot for BD As Measured ILT and CBS	178
Figure 4-50: Batch Plot for BA As Measured ILT and CBS	179

List of Tables

Table 1-1: Test Property Abbreviations	11
Table 1-2: Test Property Symbols	
Table 1-3: Environmental Conditions Abbreviations	12
Table 2-1: Weibull Distribution Basis Value Factors	24
Table 2-2: B-Basis Hanson-Koopmans Table	
Table 2-3: A-Basis Hanson-Koopmans Table	28
Table 2-4: B-Basis Factors for Small Datasets Using Variability of Corresponding Large Dataset.	32
Table 3-1: NCAMP Recommended B-Basis Values for Biaxial Lamina Strength Tests	39
Table 3-2: NCAMP Recommended B-Basis Values for Bidiagonal Lamina Strength Tests	
Table 3-3: NCAMP Recommended B-Basis Values for Unidirectional Lamina Strength Tests	
Table 3-4: NCAMP Recommended B-Basis Values for Laminate Strength Tests	
Table 3-5: Summary of B-Basis Values and Estimates for Biaxial Lamina Strength Tests	
Table 3-6: Summary of B-Basis Values and Estimates for Bidiagonal Lamina Strength Tests	
Table 3-7: Summary of B-Basis Values and Estimates for Unidirectional Lamina Strength Tests	
Table 3-8: Summary of B-Basis Values and Estimates for Laminate Strength Tests	
Table 4-1: Normalized Statistics, B-Basis Values and Estimates for BA 0TEN Strength Data	
Table 4-2: As Measured Statistics, B-Basis Values and Estimates for BA 0TEN Strength Data	
Table 4-3: Statistics for BA 0TEN Modulus Data	
Table 4-4: Normalized Statistics, B-Basis Values and Estimates for BA 0CLC Strength Data	
Table 4-5: As Measured Statistics, B-Basis Values and Estimates for BA 0CLC Strength Data	
Table 4-6: Statistics for BA 0CLC Modulus Data	
Table 4-7: Normalized Statistics, B-Basis Values and Estimates for BA 90TEN Strength Data	
Table 4-8: As Measured Statistics, B-Basis Values and Estimates for BA 90TEN Strength	
Table 4-9: Statistics for BA 90TEN Modulus Data	
Table 4-10: Normalized Statistics, B-Basis Values and Estimates for BA 90CLC Strength Data	
Table 4-11: As Measured Statistics, B-Basis Values and Estimates for BA 90CLC Strength Data	
Table 4-12: Statistics for BA 90CLC Modulus Data	
Table 4-13: Statistics, B-Basis Values and Estimates for BA IPS 0.2% Offset Strength Data	
Table 4-14: Statistics, B-Basis Values and Estimates for BA IPS Strength at 5% Strain Data	
Table 4-15: Statistics for BA IPS Modulus Data Table 4-16: Statistics for BA IPS Modulus Data	
Table 4-16: Statistics, B-Basis Values and Estimates for BA SBS Strength Data	
Table 4-17: Statistics, B-Basis Values and Estimates for BA FLEX Strength Data	
Table 4-18: Normalized Statistics, B-Basis Values and Estimates for BD 0TEN Strength Data	
Table 4-19: As Measured Statistics, B-Basis Values and Estimates for BD 0TEN Strength Data	
Table 4-20: Statistics for BD 0TEN Modulus Data Table 4-21: Normalized Statistics B Data	
Table 4-21: Normalized Statistics, B-Basis Values and Estimates for BD OCLC Strength Data	
Table 4-22: As Measured Statistics, B-Basis Values and Estimates for BD CLC Strength Data	
Table 4-23: Statistics for BD 0CLC Modulus Data Table 4-24: Statistics, B-Basis Values and Estimates for BD IPS 0.2% Offset Strength Data	.19
Table 4-25: Statistics, B-Basis Values and Estimates for BD IPS Strength a 5% Strain Data Table 4-26: Statistics for BD IPS Modulus Data	
Table 4-20: Statistics for BD IFS Mounus Data Table 4-27: Statistics, B-Basis Values and Estimates for BD SBS Strength Data	
Table 4-27: Statistics, B-Basis Values and Estimates for BD SBS Strength Data Table 4-28: Statistics, B-Basis Values and Estimates for BD FLEX Strength Data	
Table 4-20: Statistics, B-Basis Values and Estimates for BD FLEA Strength Data Table 4-29: Normalized Statistics, B-Basis Values and Estimates for UD UNT0 Strength Data	
Table 4-29: Normanzed Statistics, B-Basis Values and Estimates for UD UNTO Strength Data Table 4-30: As Measured Statistics, B-Basis Values and Estimates for UD UNTO Strength Data	
Table 4-30: As inteasured Statistics, D-Dasis Values and Estimates for OD ONTO Strength Data Table 4-31: Statistics for UD UNTO Modulus Data	
Table 4-31: Statistics for OD UNTO Would bata Table 4-32: Normalized Statistics, B-Basis Values and Estimates for UD UNCO Strength Data	
Table 4-32: As Measured Statistics, B-Basis Values and Estimates for UD UNC0 Strength Data Table 4-33: As Measured Statistics, B-Basis Values and Estimates for UD UNC0 Strength Data	
Table 4-34: Statistics for UD UNC0 Modulus Data	
Table 4-34: Statistics for OD UNCO Modulus Data Table 4-35: Normalized Statistics, B-Basis Values and Estimates for UD 0TEN Strength Data	
Table 7 55, 1101 mailed Guardines, D-Dasis Values and Estimates for OD VIEN Su thgu Data	70

Table 4-36: As Measured Statistics, B-Basis Values and Estimates for UD 0TEN Strength Data98 Table 4-37: Statistics for UD 0TEN Medulus Data
Table 4-37: Statistics for UD 0TEN Modulus Data
Table 4-38: Normalized Statistics, B-Basis Values and Estimates for OCLC Strength Data
Table 4-39: As Weasured Statistics B-Basis Values and Estimates for OCLC Strength Data
Table 4-40: Statistics for UD OCLC Modulus Data 105 Table 4-41: Statistics, B-Basis Values and Estimates for UD IPS 0.2% Offset Strength Data 106
Table 4-41: Statistics, B-Basis Values and Estimates for UD IPS 0.2% Onset Strength Data 100 Table 4-42: Statistics, B-Basis Values and Estimates for UD IPS Strength at 5% Strain Data 107
Table 4-42. Statistics, B-Basis Values and Estimates for OD ITS Strength at 5 % Strain Data 107 Table 4-43: Statistics for UD IPS Modulus Data
Table 4-45: Statistics for UD II 5 Modulus Data Table 4-44: Statistics, B-Basis Values and Estimates for UD SBS Strength Data 109
Table 4-44: Statistics, B-Basis Values and Estimates for UD FLEX Strength Data
Table 4-45: Statistics, B-Basis Values and Estimates for OD FLEA Strength Data Table 4-46: Normalized Statistics, B-Basis Values and Estimates for UNT1 Strength Data
Table 4-47: As Measured Statistics, B-Basis Values and Estimates for UNT1 Strength Data
Table 4-47: As intersticed statistics, D-Dasis values and Estimates for Orviri Strength Data
Table 4-49: Statistics, B-Basis Values and Estimates for UNT2 Strength Data
Table 4-50: Statistics for UNT2 Modulus Data 117
Table 4-51: Statistics, B-Basis Values and Estimates for UNT3 Strength Data Table 1-51
Table 4-52: Statistics for UNT3 Modulus Data 119
Table 4-53: Normalized Statistics, B-Basis Values and Estimates for UNC1 Strength Data
Table 4-54: As Measured Statistics, B-Basis Values and Estimates for UNC1 Strength Data
Table 4-55: Statistics for UNC1 Modulus Data 123
Table 4-56: Statistics, B-Basis Values and Estimates for UNC2 Strength Data
Table 4-57: Statistics for UNC2 Modulus Data 125
Table 4-58: Statistics, B-Basis Values and Estimates for UNC3 Strength Data
Table 4-59: Statistics for UNC3 Modulus Data 128
Table 4-60: Statistics, B-Basis Values and Estimates for SBS1 Strength Data 130
Table 4-61: Normalized Statistics, B-Basis Values and Estimates for OHT1 Strength Data
Table 4-62: As Measured Statistics, B-Basis Values and Estimates for OHT1 Strength Data
Table 4-63: Statistics, B-Basis Values and Estimates for OHT2 Strength Data 136
Table 4-64: Statistics and Estimates for OHT4 Strength Data 140
Table 4-65: Normalized Statistics, B-Basis Values and Estimates for FHT1 Strength Data
Table 4-66: As Measured Statistics, B-Basis Values and Estimates for FHT1 Strength Data
Table 4-67: Statistics, B-Basis Values and Estimates for FHT2 Strength Data 146
Table 4-68: Statistics, B-Basis Values and Estimates for FHT3 Strength Data 148
Table 4-69: Normalized Statistics, B-Basis Values and Estimates for OHC1 Strength Data
Table 4-70: As Measured Statistics, B-Basis Values and Estimates for OHC1 Strength Data
Table 4-71: Statistics, B-Basis Values and Estimates for OHC2 Strength Data 153
Table 4-72: Statistics, B-Basis Values and Estimates for OHC3 Strength Data 155
Table 4-73: Statistics and Estimates for OHC4 Strength Data
Table 4-74: Statistics, B-Basis Values and Estimates for FHC1 Strength Data Table 160
Table 4-75: Statistics, B-Basis Values and Estimates for FHC2 Strength Data Table 162
Table 4-76: Statistics, B-Basis Values and Estimates for FHC3 Strength Data Table 165
Table 4-77: Normalized Statistics, B-Basis Values and Estimates for SSB1 Strength Data
Table 4-78: As Measured Statistics, B-Basis Values and Estimates for SSB1 Strength Data
Table 4-79: Normalized Statistics, B-Basis Values and Estimates for SSB2 Strength Data
Table 4-80: As Measured Statistics, B-Basis Values and Estimates for SSB2 Strength Data
Table 4-81: Normalized Statistics, B-Basis Values and Estimates for SSB3 Strength Data 174
Table 4-82: As Measured Statistics, B-Basis Values and Estimates for SSB3 Strength Data
Table 4-83: Statistics for CAI1 Strength Data 177
Table 4-84: Statistics for BD ILT Strength Data 178 178 178
Table 4-85: Statistics for BA ILT Strength Data 179
Table 5-1: List of Outliers 181

1. Introduction

This report contains statistical analysis of the Syensqo PRISMTM EP2400 toughened epoxy resin with TenaxTM Reinforcement Fabrics material property data published in NCAMP Test Report CAM-RP-2021-025 Rev N/C. The lamina and laminate material property data have been generated with NCAMP oversight through NCAMP Project Number NPN 072101 and also meet the requirements outlined in NCAMP Standard Operating Procedure NSP 100. The test panels and test specimens have been inspected by NCAMP Authorized Inspection Representatives (AIR) and the testing has been witnessed by NCAMP Authorized Engineering Representatives (AER).

B-Basis values, A-estimates, and B-estimates were calculated using a variety of techniques that are detailed in section 2. The qualification material was procured to NCAMP Material Specification NMS 241 family series. The qualification test panels were cured in accordance with NCAMP Process Specification NPS 82401 Rev -, dated December 6th, 2022 using baseline cure cycle "C" for VARTM processing. The panels were fabricated at Fiber Dynamics, 3730 Midco, Wichita KS 67215. The NCAMP Test Plan NTP 2401Q1 was used for this qualification program. The testing was performed at the National Institute for Aviation Research (NIAR) in Wichita, Kansas.

Basis numbers are labeled as 'values' when the data meets all the requirements of CMH-17-1H. When those requirements are not met, they will be labeled as 'estimates.' When the data does not meet all requirements, the failure to meet these requirements is reported and the specific requirement(s) the data fails to meet is identified. The method used to compute the basis value is noted for each basis value provided. When appropriate, in addition to the traditional computational methods, values computed using the modified coefficient of variation method is also provided.

The material property data acquisition process is designed to generate basic material property data with sufficient pedigree for submission to Complete Documentation sections of the Composite Materials Handbook (CMH-17-1H).

The NCAMP shared material property database contains material property data of common usefulness to a wide range of aerospace projects. However, the data may not fulfill all the needs of a project. Specific properties, environments, laminate architecture, and loading situations that individual projects need may require additional testing.

The use of NCAMP material and process specifications do not guarantee material or structural performance. Material users should be actively involved in evaluating material performance and quality including, but not limited to, performing regular purchaser quality control tests, performing periodic equivalency/additional testing, participating in material change management activities, conducting statistical process control, and conducting regular supplier audits.

The applicability and accuracy of NCAMP material property data, material allowables, and specifications must be evaluated on case-by-case basis by aircraft companies and certifying agencies. NCAMP assumes no liability whatsoever, expressed or implied, related to the use of the material property data, material allowables, and specifications.

Part fabricators that wish to utilize the material property data, allowables, and specifications may be able to do so by demonstrating the capability to reproduce the original material properties; a process known as equivalency. More information about this equivalency process including the test statistics and its limitations can be found in Section 6 of DOT/FAA/AR-03/19 and Section 8.4.1 of CMH-17-1H. The applicability of equivalency process must be evaluated on program-by-program basis by the applicant and certifying agency. The applicant and certifying agency must agree that the equivalency test plan along with the equivalency process described in Section 6 of DOT/FAA/AR-03/19 and Section 8.4.1 of CMH-17-1H are adequate for the given program.

Aircraft companies should not use the data published in this report without specifying NCAMP Material Specification NMS 241 family series. NMS 241 has additional requirements that are listed in its prepreg process control document (PCD), fiber specification, fiber PCD, and other raw material specifications and PCDs which impose essential quality controls on the raw materials and raw material manufacturing equipment and processes. *Aircraft companies and certifying agencies should assume that the material property data published in this report is not applicable when the material is not procured to NCAMP Material Specification NMS 241.* NMS 241 is a free, publicly available, non-proprietary aerospace industry material specification.

This report is intended for general distribution to the public, either freely or at a price that does not exceed the cost of reproduction (e.g. printing) and distribution (e.g. postage).

Test Property	Abbreviation
0° Tension	0TEN
0° Compression	0CLC
90° Tension	90TEN
90° Compression	90CLC
Flexural Strength	FLEX
In-Plane Shear	IPS
Short Beam Strength	SBS
Unnotched Tension	UNT
Unnotched Compression	UNC
Filled Hole Tension	FHT
Filled Hole Compression	FHC
Open Hole Tension	OHT
Open Hole Compression	OHC
Single Shear Bearing	SSB
Interlaminar Tension	ILT
Compression After Impact	CAI

1.1 Symbols and Abbreviations

Table 1-1: Test Property Abbreviations

Test Property	Symbol
0° Tension Strength	${\bf F_1}^{ m tu}$
0° Tension Modulus	E_1^t
90° Tension Strength	F_2^{tu}
90° Tension Modulus	E_2^t
0° Compression Strength	F_1^{cu}
0° Compression Modulus	E_1^c
90° Compression Strength	F_2^{cu}
90° Compression Modulus	E_2^c
In Plane Shear Strength at 5% strain	$F_{12}^{s5\%}$
In Plane Shear Strength at 0.2% offset	$F_{12}^{s0.2\%}$
In Plane Shear Modulus	G_{12}^{s}

Table 1-2: Test Property Symbols

Environmental Condition	Abbreviation	Temperature
Cold Temperature Ambient	CTA	$-65 \pm 5^{\circ}F$
Room Temperature Ambient	RTA	$70 \pm 10^{\circ} F$
Elevated Temperature Ambient	ETA	$180 \pm 5^{\circ}F$
Elevated Temperature Wet	ETW1	$180 \pm 5^{\circ}F$
Elevated Temperature Wet	ETW2	$250 \pm 5^{\circ}F$
Table 1-3: Environmental Conditions Abbreviations		

Table 1-3: Environmental Conditions Abbreviations

Tests with a number immediately after the abbreviation indicate the lay-up:

1 refers to a 25/50/25 layup. This is also referred to as "Quasi-Isotropic" 2 refers to a 10/80/10 layup. This is also referred to as "Soft" 3 refers to a 40/20/40 layup. This is also referred to as "Hard"

EX: OHT1 is an open hole tension test with a 25/50/25 layup

Detailed information about the test methods and conditions used is given in NCAMP Test Report CAM-RP-2024-020 Rev N/C.

1.2 Pooling Across Environments

When pooling across environments was possible, the pooled co-efficient of variation was used. CMH17 STATS (CMH17 Approved Statistical Analysis Program) was used to determine if pooling was possible and to compute the pooled coefficient of variation for those tests. In these cases, the modified coefficient of variation based on the pooled data was used to compute the basis values.

When pooling across environments was not advisable because the data was not eligible for pooling and engineering judgment indicated there was no justification for overriding the result, then B-Basis values were computed for each environmental condition separately, which are also provided by CMH17 STATS.

1.3 Basis Value Computational Process

The general form to compute engineering basis values is: basis value $= \overline{X} - kS$ where k is a factor based on the sample size and the distribution of the sample data. There are many different methods to determine the value of k in this equation, depending on the sample size and the distribution of the data. In addition, the computational formula used for the standard deviation, S, may vary depending on the distribution of the data. The details of those different computations and when each should be used are in section 2.

1.4 Modified Coefficient of Variation (CV) Method

A common problem with new material qualifications is that the initial specimens produced and tested do not contain all of the variability that will be encountered when the material is being produced in larger amounts over a lengthy period of time. This can result in setting basis values that are unrealistically high. The variability as measured in the qualification program is often lower than the actual material variability because of several reasons. The materials used in the qualification programs are usually manufactured within a short period of time, typically 2-3 weeks only, which is not representative of the production material. Some raw ingredients that are used to manufacture the multi-batch qualification materials may actually be from the same production batches or manufactured within a short period of time so the qualification materials, although regarded as multiple batches, may not truly be multiple batches so they are not representative of the actual production material variability.

The modified Coefficient of Variation (CV) used in this report is in accordance with section 8.4.4 of CMH-17-1H. It is a method of adjusting the original basis values downward in anticipation of the expected additional variation. Composite materials are expected to have a CV of at least 6%. The modified coefficient of variation (CV) method increases the measured coefficient of variation when it is below 8% prior to computing basis values. A higher CV will result in lower or more conservative basis values and lower specification limits. The use of the modified CV method is intended for a temporary period of time when there is minimal data available. When a sufficient number of production batches (approximately 8 to 15) have been produced and tested, the as measured CV may be used so that the basis values and specification limits may be adjusted higher.

July 08, 2025

The material allowables in this report are calculated using both the as measured CV and modified CV, so users have the choice of using either one. When the measured CV is greater than 8%, the modified CV method does not change the basis value. NCAMP recommended values make use of the modified CV method when it is appropriate for the data.

When the data fails the Anderson-Darling K-sample test for batch to batch variability or when the data fails the normality test, the modified CV method is not appropriate and no modified CV basis value will be provided. When the ANOVA method is used, it may produce excessively conservative basis values. When appropriate, a single batch or two batch estimate may be provided in addition to the ANOVA estimate.

In some cases a transformation of the data to fit the assumption of the modified CV resulted in the transformed data passing the ADK test and thus the data can be pooled only for the modified CV method.

NCAMP recommends that if a user decides to use the basis values that are calculated from as measured CV, the specification limits and control limits be calculated with as measured CV also. Similarly, if a user decides to use the basis values that are calculated from modified CV, the specification limits and control limits be calculated with modified CV also. This will ensure that the link between material allowables, specification limits, and control limits is maintained.

2. Background

Statistical computations are performed with CMH17 STATS. Pooling across environments will be used whenever it is permissible according to CMH-17-1H guidelines. If pooling is not permissible, the results of a single point analysis provided by CMH17 STATS is included instead. If the data does not meet CMH-17-1H requirements for a single point analysis, estimates are created by a variety of methods depending on which is most appropriate for the dataset available. Specific procedures used are presented in the individual sections where the data is presented.

2.1 CMH17 STATS Statistical Formulas and Computations

This section contains the details of the specific formulas CMH17 STATS uses in its computations.

2.1.1 Basic Descriptive Statistics

The basic descriptive statistics shown are computed according to the usual formulas, which are shown below:

Mean:	$ar{X} = \sum_{i=1}^{N} rac{x_i}{N}$	Equation 1
Std. Dev.:	$S = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(x_i - \bar{X})^2}$	Equation 2
% Co. Variation:	$\frac{s}{\bar{x}} imes 100$	Equation 3

Where N refers to the number of specimens in the sample and x_i refers to the individual specimen measurements.

2.1.2 Statistics for Pooled Data

Prior to computing statistics for the pooled dataset, the data is normalized to a mean of one by dividing each value by the mean of all the data for that condition. This transformation does not affect the coefficients of variation for the individual conditions.

2.1.2.1 Pooled Standard Deviation

The formula to compute a pooled standard deviation is given below:

Pooled Std. Dev.:
$$S_p = \sqrt{\frac{\sum_{i=1}^k (n_i - 1)S_i^2}{\sum_{i=1}^k (n_i - 1)}}$$
 Equation 4

Where *k* refers to the number of batches, S_i indicates the standard deviation of i^{th} sample, and n_i refers to the number of specimens in the i^{th} sample.

2.1.2.2 Pooled Coefficient of Variation

Since the mean for the normalized data is 1.0 for each condition, the pooled normalized data also has a mean of one. The coefficient of variation for the pooled normalized data is the pooled standard deviation divided by the pooled mean, as in equation 3. Since the mean for the pooled normalized data is one, the pooled coefficient of variation is equal to the pooled standard deviation of the normalized data.

Pooled Coefficient of Variation
$$= rac{S_p}{1} = S_p$$
 Equation 5

2.1.3 Basis Value Computations

Basis values are computed using the mean and standard deviation for that environment, as follows: The mean is always the mean for the environment, but if the data meets all requirements for pooling, S_P can be used in place of the standard deviation for the environment, S.

Basis Values:
$$A - basis = \bar{X} - K_a S$$

 $B - basis = \bar{X} - K_b S$ Equation 6

2.1.3.1 K-factor computations

 K_a and K_b are computed according to the methodology documented in section 8.3.5 of CMH-17-1H. The approximation formulas are given below:

$$K_{a} = \frac{2.3263}{\sqrt{q(f)}} + \sqrt{\frac{1}{c_{A}(f) \cdot n_{j}} + \left(\frac{b_{A}(f)}{2c_{A}(f)}\right)^{2}} - \frac{b_{A}(f)}{2c_{A}(f)}$$
Equation 7
$$K_{b} = \frac{1.2816}{\sqrt{q(f)}} + \sqrt{\frac{1}{c_{B}(f) \cdot n_{j}} + \left(\frac{b_{B}(f)}{2c_{B}(f)}\right)^{2}} - \frac{b_{B}(f)}{2c_{B}(f)}$$
Equation 8

Where

r = the number of environments being pooled together $n_{j} = \text{number of data values for environment j}$ $N = \sum_{j=1}^{r} n_{j}$ f = N - r $q(f) = 1 - \frac{2.323}{\sqrt{f}} + \frac{1.064}{f} + \frac{0.9157}{f\sqrt{f}} - \frac{0.6530}{f^{2}}$ $b_{B}(f) = \frac{1.1372}{\sqrt{f}} - \frac{0.49162}{f} + \frac{0.18612}{f\sqrt{f}}$ Equation 9 $b_{B}(f) = 0.36961 + \frac{0.0040342}{\sqrt{f}} - \frac{0.71750}{f} + \frac{0.19693}{f\sqrt{f}}$ Equation 11

$$b_A(f) = \frac{2.0643}{\sqrt{f}} - \frac{0.95145}{f} + \frac{0.51251}{f\sqrt{f}}$$
Equation 12
$$c_A(f) = 0.36961 + \frac{0.0026958}{\sqrt{f}} - \frac{0.65201}{f} + \frac{0.011320}{f\sqrt{f}}$$
Equation 13

2.1.4 Modified Coefficient of Variation

The coefficient of variation is modified according to the following rules:

Modified
$$CV = CV^* = \begin{cases} .06 & if CV < .04 \\ \frac{CV}{2} + .04 & if .04 \le CV < .08 \\ CV & if CV \ge .08 \end{cases}$$
 Equation 14

This is converted to percent by multiplying by 100%.

 CV^* is used to compute a modified standard deviation S^* .

$$S^* = CV^* \cdot \bar{X}$$
 Equation 15

To compute the pooled standard deviation based on the modified CV:

$$\boldsymbol{S}_{\boldsymbol{p}}^{*} = \sqrt{\frac{\sum_{i=1}^{k} \left((\boldsymbol{n}_{i}-1) \left(\boldsymbol{C} \boldsymbol{V}_{i}^{*} \cdot \bar{\boldsymbol{X}}_{i} \right)^{2} \right)}{\sum_{i=1}^{k} (\boldsymbol{n}_{i}-1)}}$$
Equation 16

The A-basis and B-basis values under the assumption of the modified CV method are computed by replacing S with S^*

2.1.4.1 Transformation of data based on Modified CV

In order to determine if the data would pass the diagnostic tests under the assumption of the modified CV, the data must be transformed such that the batch means remain the same while the standard deviation of transformed data (all batches) matches the modified standard deviation.

To accomplish this requires a transformation in two steps:

Step 1: Apply the modified CV rules to each batch and compute the modified standard deviation $S_i^* = CV^* \cdot \bar{X}_i$ for each batch. Transform the individual data values (X_{ij}) in each batch as follows:

$$X'_{ij} = C_i (X_{ij} - \bar{X}_i) + \bar{X}_i$$
 Equation 17
 $C_i = \frac{S_i^*}{S_i}$ Equation 18

Run the Anderson-Darling k-sample test for batch equivalence (see section 2.1.6) on the transformed data. If it passes, proceed to step 2. If not, stop. The data cannot be pooled.

Step 2: Another transformation is needed as applying the modified CV to each batch leads to a larger CV for the combined data than when applying the modified CV rules to the combined data (due to the addition of between batch variation when combining data from multiple batches). In order to alter the data to match S^* , the transformed data is transformed again, this time setting using the same value of C' for all batches.

$$x_{ij}^{"} = C'(x_{ij}^{'} - \bar{X}_{i}) + \bar{x}_{i}$$
Equation 19

$$C' = \sqrt{\frac{SSE^{*}}{SSE'}}$$
Equation 20

$$SSE^{*} = (N-1)(CV^{*} \cdot \bar{X})^{2} - \sum_{i=1}^{k} n_{i}(\bar{x}_{i} - \bar{X})^{2}$$
Equation 21

$$SSE' = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (x_{ij}^{'} - x)^{2}$$
Equation 22

Once this second transformation has been completed, the k-sample Anderson Darling test for batch equivalence can be run on the transformed data to determine if the modified co-efficient of variation will permit pooling of the data.

2.1.5 Determination of Outliers

All outliers are identified in text and graphics. If an outlier is removed from the dataset, it will be specified and the reason why will be documented in the text. Outliers are identified using the Maximum Normed Residual Test for Outliers as specified in section 8.3.3 of CMH-17-1H.

$$MNR = \frac{\max_{all \ i} |x_i - X|}{S}, \ i = 1 \dots N$$
Equation 23
$$C = \frac{N-1}{\sqrt{N}} \sqrt{\frac{t^2}{N-2+t^2}}$$
Equation 24

where t is the $1 - \frac{.05}{2N}$ quartile of a t distribution with N-2 degrees of freedom, N being the total number of data values.

If MNR > C, then the x_i associated with the MNR is considered to be an outlier. If an outlier exists, then the x_i associated with the MNR is dropped from the dataset and the MNR procedure is applied again. This process is repeated until no outliers are detected. Additional information on this procedure can be found in references 1 and 2.

2.1.6 The k-Sample Anderson Darling Test for Batch Equivalency

The k-sample Anderson-Darling test is a nonparametric statistical procedure that tests the hypothesis that the populations from which two or more groups of data were drawn are identical. The distinct values in the combined data set are ordered from smallest to largest, denoted z(1), z(2), ...

July 08, 2025

 $z_{(L)}$, where L will be less than n if there are tied observations. These rankings are used to compute the test statistic.

The k-sample Anderson-Darling test statistic is:

$$ADK = \frac{N-1}{N^2(k-1)} \sum_{i=1}^{k} \left[\frac{1}{n_i} \sum_{j=1}^{L} h_j \frac{(NF_{ij} - n_i H_j)^2}{H_j(N - H_j) - \frac{Nh_j}{4}} \right]$$
 Equation 25

Where

 n_i = the number of test specimens in each batch

 $N = n_1 + n_2 + \ldots + n_k$

 h_j = the number of values in the combined samples equal to $z_{(j)}$

 H_j = the number of values in the combined samples less than $z_{(j)}$ plus $\frac{1}{2}$ the number of values in the combined samples equal to $z_{(j)}$

 F_{ij} = the number of values in the i^{th} group which are less than $z_{(j)}$ plus $\frac{1}{2}$ the number of values in this group which are equal to $z_{(j)}$.

The critical value for the test statistic at $1-\alpha$ level is computed:

$$ADC = 1 + \sigma_N \left[z_{\alpha} + \frac{0.678}{\sqrt{k-1}} - \frac{0.362}{k-1} \right]$$
 Equation 26

This formula is based on the formula in reference 3 at the end of section 5, using a Taylor's expansion to estimate the critical value via the normal distribution rather than using the t distribution with k-1 degrees of freedom.

$$\sigma_N^2 = VAR(ADK) = \frac{aN^3 + bN^2 + cN + d}{(N-1)(N-2)(N-3)(k-1)^2}$$
 Equation 27

With

$$a = (4g - 6)(k - 1) + (10 - 6g)S$$

$$b = (2g - 4)k^{2} + 8Tk + (2g - 14T - 4)S - 8T + 4g - 6$$

$$c = (6T + 2g - 2)k^{2} + (4T - 4g + 6)k + (2T - 6)S + 4T$$

$$d = (2T + 6)k^{2} - 4Tk$$

$$S = \sum_{i=1}^{k} \frac{1}{n_{i}}$$

$$T = \sum_{i=1}^{k} \frac{1}{n_{i}}$$

$$g = \sum_{i=1}^{N-2} \sum_{j=i+1}^{N-1} \frac{1}{(N-i)j}$$

July 08, 2025

The data is considered to have failed this test (i.e. the batches are not from the same population) when the test statistic is greater than the critical value. For more information on this procedure, see reference 3.

2.1.7 The Anderson Darling Test for Normality

Normal Distribution: A two parameter (μ, σ) family of probability distributions for which the probability that an observation will fall between *a* and *b* is given by the area under the curve between a and b:

$$F(x) = \int_{a}^{b} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(X-\mu)^{2}}{2\sigma^{2}}} dx$$
 Equation 28

A normal distribution with parameters (μ, σ) has population mean μ and variance σ^2 .

The normal distribution is considered by comparing the cumulative normal distribution function that best fits the data with the cumulative distribution function of the data. Let

$$\mathbf{z}_{(i)} = \frac{x_{(i)} - \bar{X}}{S}$$
, for $i = 1, ..., N$ Equation 29

where $x_{(i)}$ is the smallest sample observation, \bar{X} is the sample average, and S is the sample standard deviation.

The Anderson Darling test statistic (AD) is:

$$AD = \sum_{i=1}^{N} \frac{1-2i}{N} \{ ln [F_0(z_{(i)})] + ln [1 - F_0(z_{(N+1-i)})] \} - N$$
 Equation 30

Where F₀ is the standard normal distribution function. The observed significance level (OSL) is

$$OSL = \frac{1}{1 + e^{-0.48 + 0.78 \ln(AD^*) + 4.58AD^*}}, \quad AD^* = \left(1 + \frac{4}{N} - \frac{25}{N^2}\right)AD \quad \text{Equation 31}$$

This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if, in fact, the data are a sample from a normal population. If OSL > 0.05, the data is considered sufficiently close to a normal distribution.

2.1.8 Levene's Test for Equality of Coefficient of Variation

Levene's test performs an Analysis of Variance on the absolute deviations from their sample medians. The absolute value of the deviation from the median is computed for each data value. $w_{ij} = |y_{ij} - \tilde{y}_i|$ An F-test is then performed on the transformed data values as follows: $\sum_{i=1}^{k} \frac{n_i(\bar{w}_i - \bar{w}_i)^2}{(k-1)}$

$$F = \frac{\sum_{i=1}^{k} n_i (\bar{w}_i - \bar{w})^2 / (k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} i (w_{ij} - \bar{w}_i)^2 / (N-k)}$$
Equation 32

If this computed F statistic is less than the critical value for the F-distribution having k-1 numerator and N-k denominator degrees of freedom at the 1- α level of confidence, then the data is not rejected as being too different in terms of the co-efficient of variation. CMH-17 STATS provides the

appropriate critical values for F at α levels of 0.10, 0.05, 0.025, and 0.01. For more information on this procedure, see references 4, and 5.

2.1.9 Distribution Tests

In addition to testing for normality using the Anderson-Darling test (see 2.1.7), CMH17 STATS also tests to see if the Weibull or Lognormal distribution is a good fit for the data.

Each distribution is considered using the Anderson-Darling test statistic which is sensitive to discrepancies in the tail regions. The Anderson-Darling test compares the cumulative distribution function for the distribution of interest with the cumulative distribution function of the data.

An observed significance level (*OSL*) based on the Anderson-Darling test statistic is computed for each test. The *OSL* measures the probability of observing an Anderson-Darling test statistic at least as extreme as the value calculated if the distribution under consideration is in fact the underlying distribution of the data. In other words, the *OSL* is the probability of obtaining a value of the test statistic at least as large as that obtained if the hypothesis that the data are actually from the distribution being tested is true. If the OSL is less than or equal to 0.05, then the assumption that the data are from the distribution being tested is rejected with at most a five percent risk of being in error.

If the normal distribution has an OSL greater than 0.05, then the data is assumed to be from a population with a normal distribution. If not, then if either the Weibull or lognormal distributions has an OSL greater than 0.05, then one of those can be used. If neither of these distributions has an OSL greater than 0.05, a non-parametric approach is used.

In what follows, unless otherwise noted, the sample size is denoted by N, the sample observations by $x_1, ..., x_N$, and the sample observations ordered from least to greatest by $x_{(1)}, ..., x_{(N)}$.

2.1.9.1 One-sided B-basis tolerance factors, k_B, for the normal distribution when sample size is greater than 15.

The exact computation of k_B values is $\frac{1}{\sqrt{N}}$ times the 0.95th quantile of the noncentral t-distribution with non-centrality parameter $1.282\sqrt{N}$ and N - I degrees of freedom. Since this is not a calculation that Excel can handle, the following approximation to the k_B values is used:

$$k_B \approx 1.282 + exp\{0.958 - 0.520 \ln(N) + \frac{3.19}{N}\}$$
 Equation 33

This approximation is accurate to within 0.2% of the tabulated values for sample sizes greater than or equal to 16.

2.1.9.2 One-sided A-basis tolerance factors, k_A, for the normal distribution

The exact computation of k_A values is $\frac{1}{\sqrt{N}}$ times the 0.95th quantile of the noncentral t-distribution with non-centrality parameter $2.326\sqrt{N}$ and N - I degrees of freedom (Reference 11). Since this is not a calculation that Excel can handle, the following approximation to the k_A values is used:

$$k_A \approx 2.326 + exp\{1.34 - 0.522 \ln(N) + \frac{3.87}{N}\}$$
 Equation 34

This approximation is accurate to within 0.2% of the tabulated values for sample sizes greater than or equal to 16.

2.1.9.3 Two-parameter Weibull Distribution

A probability distribution for which the probability that a randomly selected observation from this population lies between *a* and *b* ($0 < a < b < \infty$) is given by

$$e^{-\left(\frac{a}{\alpha}\right)^{eta}} - e^{-\left(\frac{b}{\alpha}\right)^{eta}}$$
 Equation 35

where α is called the scale parameter and β is called the shape parameter.

In order to compute a check of the fit of a data set to the Weibull distribution and compute basis values assuming Weibull, it is first necessary to obtain estimates of the population shape and scale parameters (Section 2.1.9.3.1). Calculations specific to the goodness-of-fit test for the Weibull distribution are provided in section 2.1.9.3.2.

2.1.9.3.1 Estimating Weibull Parameters

This section describes the *maximum likelihood* method for estimating the parameters of the twoparameter Weibull distribution. The maximum-likelihood estimates of the shape and scale parameters are denoted $\hat{\beta}$ and $\hat{\alpha}$. The estimates are the solution to the pair of equations:

$$\widehat{\alpha}\widehat{\beta}N - \frac{\widehat{\beta}}{\widehat{\alpha}^{\widehat{\beta}-1}}\sum_{i=1}^{N}x_{i}^{\widehat{\beta}} = \mathbf{0}$$
Equation 36
$$\frac{N}{\widehat{\beta}} - N\widehat{\ln\alpha} + \sum_{i=1}^{N}\ln x_{i} - \sum_{i=1}^{N}\left[\frac{x_{i}}{\widehat{\alpha}}\right]^{\widehat{\beta}}\left(\ln x_{i} - \widehat{\ln\alpha}\right) = \mathbf{0}$$
Equation 37

CMH17 STATS solves these equations numerically for $\hat{\beta}$ and $\hat{\alpha}$ in order to compute basis values.

2.1.9.3.2 Goodness-of-fit test for the Weibull distribution

The two-parameter Weibull distribution is considered by comparing the cumulative Weibull distribution function that best fits the data with the cumulative distribution function of the data. Using the shape and scale parameter estimates from section 2.1.9.3.1, let

$$z_{(i)} = \left[\frac{x_{(i)}}{\hat{\alpha}}\right]^{\hat{\beta}}$$
, for $i = 1, ..., N$ Equation 38

The Anderson-Darling test statistic is

$$AD = \sum_{i=1}^{N} \frac{1-2i}{N} \left[\ln[1 - e^{-z_{(i)}}] - z_{(N+1-i)} \right] - N$$
 Equation 39

and the observed significance level is

$$OSL = \frac{1}{\{1 + e^{-0.10 + 1.24 \ln(AD^*) + 4.48AD^*\}}}$$
 Equation 40

where

$$AD^* = \left(1 + \frac{0.2}{\sqrt{N}}\right)AD$$
 Equation 41

This OSL measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if in fact the data is a sample from a two-parameter Weibull distribution. If $OSL \le 0.05$, one may conclude (at a five percent risk of being in error) that the population does not have a two-parameter Weibull distribution. Otherwise, the hypothesis that the population has a two-parameter Weibull distribution is not rejected. For further information on these procedures, see reference 6.

2.1.9.3.3 Basis value calculations for the Weibull distribution

For the two-parameter Weibull distribution, the B-basis value is

$$\boldsymbol{B} = \widehat{\boldsymbol{q}} \boldsymbol{e}^{\left(\frac{-V}{\overline{\beta}\sqrt{N}}\right)}$$
Equation 42

where

$$\widehat{q} = \widehat{\alpha}(0.10536)^{\frac{1}{\overline{\beta}}}$$

Equation 43

To calculate the A-basis value, substitute the equation below for the equation above.

$$\hat{q} = \hat{\alpha}(0.01005)^{1/eta}$$
 Equation 44

V is the value in Table 2-1 when the sample size is less than 16. For sample sizes of 16 or larger, a numerical approximation to the V values is given in the two equations immediately below.

$$V_B \approx 3.803 + exp\left[1.79 - 0.516 \ln(N) + \frac{5.1}{N-1}\right]$$

Equation 45

$$V_A \approx 6.649 + exp\left[2.55 - 0.526\ln(N) + \frac{4.76}{N}\right]$$

Equation 46

This approximation is accurate within 0.5% of the tabulated values for n greater than or equal to 16.

Weibull Dist. K Factors for N<16			
N	B-basis	A-basis	
2	690.804	1284.895	
3	47.318	88.011	
4	19.836	36.895	
5	13.145	24.45	
6	10.392	19.329	
7	8.937	16.623	
8	8.047	14.967	
9	7.449	13.855	
10	6.711	12.573	
11	6.477	12.093	
12	6.286	11.701	
13	6.127	11.375	
14	5.992	11.098	
15	5.875	10.861	

 Table 2-1: Weibull Distribution Basis Value Factors

2.1.9.4 Lognormal Distribution

A probability distribution for which the probability that an observation selected at random from this population falls between a and b $(0 < a < b < \infty)$ is given by the area under the normal distribution between ln(a) and ln(b).

The lognormal distribution is a positively skewed distribution that is simply related to the normal distribution. If something is lognormally distributed, then its logarithm is normally distributed. The natural (base e) logarithm is used.

2.1.9.4.1 Goodness-of-fit test for the Lognormal distribution

In order to test the goodness-of-fit of the lognormal distribution, take the logarithm of the data and perform the Anderson-Darling test for normality from Section 2.1.7. Using the natural logarithm, replace Equation 29 above with Equation 47 below:

$$\boldsymbol{z}_{(i)} = \frac{\ln(\boldsymbol{x}_{(i)}) - \bar{\boldsymbol{x}}_L}{\boldsymbol{s}_L}, \text{ for } \boldsymbol{i} = 1, \dots, N$$
 Equation 47

where $x_{(i)}$ is the *i*th smallest sample observation, \bar{x}_L and s_L are the mean and standard deviation of the $ln(x_i)$ values.

The Anderson-Darling statistic is then computed using Equation 30 above and the observed significance level (*OSL*) is computed using Equation 31 above. This *OSL* measures the probability of observing an Anderson-Darling statistic at least as extreme as the value calculated if in fact the data are a sample from a lognormal distribution. If $OSL \le 0.05$, one may conclude (at a five percent risk of being in error) that the population is not lognormally distributed. Otherwise, the hypothesis that the population is lognormally distributed is not rejected. For further information on these procedures, see reference 6.

2.1.9.4.2 Basis value calculations for the Lognormal distribution

If the data set is assumed to be from a population with a lognormal distribution, basis values are calculated using the equation above in section 2.1.3. However, the calculations are performed using the logarithms of the data rather than the original observations. The computed basis values are then transformed back to the original units by applying the inverse of the log transformation.

2.1.10 Non-parametric Basis Values

Non-parametric techniques do not assume any particularly underlying distribution for the population the sample comes from. It does require that the batches be similar enough to be grouped together, so the ADK test must have a positive result. While it can be used instead of assuming the normal, lognormal or Weibull distribution, it typically results in lower basis values. One of following two methods should be used, depending on the sample size.

2.1.10.1 Non-parametric Basis Values for large samples

The required sample sizes for this ranking method differ for A and B basis values. A sample size of at least 29 is needed for the B-basis value while a sample size of 299 is required for the A-basis.

To calculate a B-basis value for N > 28, the value of r is determined with the following formulas:

For B-basis values:

$$r_B = \frac{N}{10} - 1.645\sqrt{\frac{9N}{100}} + 0.23$$

Equation 48

For A-Basis values:

$$r_A = \frac{N}{100} - 1.645 \sqrt{\frac{99N}{10,000}} + 0.29 + \frac{19.1}{N}$$
 Equation 49

The formula for the A-basis values should be rounded to the nearest integer. This approximation is exact for most values and for a small percentage of values (less than 0.2%), the approximation errs by one rank on the conservative side.

The B-basis value is the r_B th lowest observation in the data set, while the A-basis value is the r_A th lowest observation in the data set. For example, in a sample of size N = 30, the lowest (r = 1) observation is the B-basis value. Further information on this procedure may be found in reference 7.

2.1.10.2 Non-parametric Basis Values for small samples

The Hanson-Koopmans method (references 8 and 9) is used for obtaining a B-basis value for sample sizes not exceeding 28 and A-basis values for sample sizes less than 299. This procedure requires the assumption that the observations are a random sample from a population for which the logarithm of the cumulative distribution function is concave, an assumption satisfied by a large class of probability distributions. There is substantial empirical evidence that suggests that composite strength data satisfies this assumption.

The Hanson-Koopmans B-basis value is:

$$B = x_{(r)} \left[\frac{x_{(1)}}{x_{(r)}} \right]^k$$

The A-basis value is:

$$A = x_{(N)} \left[\frac{x_{(1)}}{x_{(N)}} \right]^k$$

Equation 51

Equation 50

where $x_{(N)}$ is the largest data value, $x_{(I)}$ is the smallest, and $x_{(r)}$ is the r^{th} largest data value. The values of r and k depend on N and are listed in Table 2-2. This method is not used for the B-basis value when $x_{(r)} = x_{(I)}$.

The Hanson-Koopmans method can be used to calculate A-basis values for N less than 299. Find the value k_A corresponding to the sample size n in Table 2-3. For an A-basis value that meets all the requirements of CMH-17-1H, there must be at least five batches represented in the data and at least 55 data points. For a B-basis value, there must be at least three batches represented in the data and at least 18 data points.

B-Basis Ha	B-Basis Hanson-Koopmans Table					
n	r	k				
2	2	35.177				
3 4	2 3 4	7.859				
		4.505				
5 6 7	4 5 6 6 7 7 7 7 8	4.101				
6	5	3.064				
	5	2.858				
<u>8</u> 9	6	2.382				
	6	2.253				
10	6	2.858 2.382 2.253 2.137				
11	7	1.897				
12	7	1 814				
13	7	1.738 1.599 1.540 1.485				
14	8	1.599				
15	8	1.540				
16	8	1.485				
17	8	1.434				
18	9	1.354				
19	9	1.311				
20	10	1.253				
21	10	1.218				
22	10	1.434 1.354 1.311 1.253 1.218 1.184 1.143				
23	11	1.143				
24	11	1.114 1.087				
25	11	1.087				
26	11	1.060				
27	11	1.035				
28	12	1.010				

Table 2-2: B-Basis Hanson-Koopmans Table

A-Basis Hanson-Koopmans Table						
n	k	n	k	n	k	
2	80.00380	38	1.79301	96	1.32324	
3	16.91220	39	1.77546	98	1.31553	
4	9.49579	40	1.75868	100	1.30806	
5	6.89049	41	1.74260	105	1.29036	
6	5.57681	42	1.72718	110	1.27392	
7	4.78352	43	1.71239	115	1.25859	
8	4.25011	44	1.69817	120	1.24425	
9	3.86502	45	1.68449	125	1.23080	
10	3.57267	46	1.67132	130	1.21814	
11	3.34227	47	1.65862	135	1.20620	
12	3.15540	48	1.64638	140	1.19491	
13	3.00033	49	1.63456	145	1.18421	
14	2.86924	50	1.62313	150	1.17406	
15	2.75672	52	1.60139	155	1.16440	
16	2.65889	54	1.58101	160	1.15519	
17	2.57290	56	1.56184	165	1.14640	
18	2.49660	58	1.54377	170	1.13801	
19	2.42833	60	1.52670	175	1.12997	
20	2.36683	62	1.51053	180	1.12226	
21	2.31106	64	1.49520	185	1.11486	
22	2.26020	66	1.48063	190	1.10776	
23	2.21359	68	1.46675	195	1.10092	
24	2.17067	70	1.45352	200	1.09434	
25	2.13100	72	1.44089	205	1.08799	
26	2.09419	74	1.42881	210	1.08187	
27	2.05991	76	1.41724	215	1.07595	
28	2.02790	78	1.40614	220	1.07024	
29	1.99791	80	1.39549	225	1.06471	
30	1.96975	82	1.38525	230	1.05935	
31	1.94324	84	1.37541	235	1.05417	
32	1.91822	86	1.36592	240	1.04914	
33	1.89457	88	1.35678	245	1.04426	
34	1.87215	90	1.34796	250	1.03952	
35	1.85088	92	1.33944	275	1.01773	
36	1.83065	94	1.33120	299	1.00000	
37	1.81139					

Table 2-3: A-Basis Hanson-Koopmans	Table
------------------------------------	-------

2.1.11 Analysis of Variance (ANOVA) Basis Values

ANOVA is used to compute basis values when the batch to batch variability of the data does not pass the ADK test. Since ANOVA makes the assumption that the different batches have equal variances, the data is checked to make sure the assumption is valid. Levene's test for equality of variance is used (see section 2.1.8). If the dataset fails Levene's test, the basis values computed are likely to be conservative. Thus this method can still be used but the values produced will be listed as estimates.

Equation 58

2.1.11.1 Calculation of basis values using ANOVA

The following calculations address batch-to-batch variability. In other words, the only grouping is due to batches and the k-sample Anderson-Darling test (Section 2.1.6) indicates that the batch to batch variability is too large to pool the data. The method is based on the one-way analysis of variance random-effects model, and the procedure is documented in reference 10.

ANOVA separates the total variation (called the sum of squares) of the data into two sources: between batch variation and within batch variation.

First, statistics are computed for each batch, which are indicated with a subscript (n_i, \bar{x}_i, s_i^2) while statistics that were computed with the entire dataset do not have a subscript. Individual data values are represented with a double subscript, the first number indicated the batch and the second distinguishing between the individual data values within the batch. *k* stands for the number of batches in the analysis. With these statistics, the Sum of Squares Between batches (SSB) and the Total Sum of Squares (SST) are computed:

$$SSB = \sum_{i=1}^{k} n_i \bar{x}_I^2 - N\bar{X}^2$$
Equation 52
$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}^2 - NX^2$$
Equation 53

The within-batch, or error, sum of squares (SSE) is computed by subtraction

Next, the mean sums of squares are computed:

$$MSB = \frac{SSB}{k-1}$$
Equation 55
$$MSE = \frac{SSE}{N-k}$$
Equation 56

Since the batches need not have equal numbers of specimens, an 'effective batch size,' is defined as

$$N' = \frac{N - \frac{1}{N} \sum_{i=1}^{k} n_i^2}{k - 1}$$
 Equation 57

Using the two mean squares and the effective batch size, an estimate of the population standard deviation is computed:

$$S = \sqrt{\frac{MSB}{N'} + \left(\frac{N'-1}{N'}\right)MSE}$$

Two k-factors are computed using the methodology of section 8.3.5 of CMH-17-1H using a sample size of N (denoted k_0) and a sample size of k (denoted k_1). Whether this value is an A- or B-basis value depends only on whether k_0 and k_1 are computed for A or B-basis values.

Denote the ratio of mean squares by

$$u = \frac{MSB}{MSE}$$
 Equation 59

Page 29 of 182

60

If u is less than one, it is set equal to one. The tolerance limit factor is

$$T = \frac{k_0 - \frac{k_1}{\sqrt{N'}} + (k_1 - k_0) \sqrt{\frac{u}{u + N' - 1}}}{1 - \frac{1}{\sqrt{N'}}}$$
Equation

The basis value is $\bar{X} - TS$.

The ANOVA method can produce extremely conservative basis values when a small number of batches are available. Therefore, when less than five (5) batches are available and the ANOVA method is used, the basis values produced will be listed as estimates.

2.2 Single Batch and Two Batch Estimates using Modified CV

This method has not been approved for use by the CMH-17 organization. Values computed in this manner are estimates only. It is used only when fewer than three batches are available and no valid B-basis value could be computed using any other method. The estimate is made using the mean of the data and setting the coefficient of variation to 8 percent if it was less than that. A modified standard deviation (S_{adj}) was computed by multiplying the mean by 0.08 and computing the A and B-basis values using this inflated value for the standard deviation.

Estimated B-Basis =
$$\bar{X} - k_b S_{adj} = \bar{X} - k_b \cdot 0.08 \cdot \bar{X}$$
 Equation 61

2.3 Lamina Variability Method (LVM)

This method has not been approved for use by the CMH-17 organization. Values computed in this manner are estimates only. It is used only when the sample size is less than 16 and no valid B-basis value could be computed using any other method. The prime assumption for applying the LVM is that the intrinsic strength variability of the laminate (small) dataset is no greater than the strength variability of the lamina (large) dataset. This assumption was tested and found to be reasonable for composite materials as documented by Tomblin and Seneviratne [12].

To compute the estimate, the coefficients of variation (CVs) of laminate data are paired with lamina CV's for the same loading condition and environmental condition. For example, the 0° compression lamina CV CTD condition is used with open hole compression CTD condition. Bearing and in-plane shear laminate CV's are paired with 0° compression lamina CV's. However, if the laminate CV is larger than the corresponding lamina CV, the larger laminate CV value is used.

The LVM B-basis value is then computed as:

LVM Estimated B-Basis =
$$\bar{X}_1 - K_{(N_1,N_2)} \cdot \bar{X}_1 \cdot max(CV_1, CV_2)$$

Equation 62

When used in conjunction with the modified CV approach, a minimum value of 8% is used for the CV.

Mod CV LVM Estimated B-Basis = $\bar{X}_1 - K_{(N_1,N_2)} \cdot \bar{X}_1 \cdot Max(8\%, CV_1, CV_2)$ Equation 63

With:

 \bar{X}_1 the mean of the laminate (small dataset) N₁ the sample size of the laminate (small dataset) N₂ the sample size of the lamina (large dataset) CV₁ is the coefficient of variation of the laminate (small dataset) CV₂ is the coefficient of variation of the lamina (large dataset) $K_{(N_1,N_2)}$ is given in Table 2-4

		N1													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	4.508	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	3.827	3.607	0	0	0	0	0	0	0	0	0	0	0	0
	5	3.481	3.263	3.141	0	0	0	0	0	0	0	0	0	0	0
	6	3.273	3.056	2.934	2.854	0	0	0	0	0	0	0	0	0	0
	7	3.134	2.918	2.796	2.715	2.658	0	0	0	0	0	0	0	0	0
	8	3.035	2.820	2.697	2.616	2.558	2.515	0	0	0	0	0	0	0	0
	9	2.960	2.746	2.623	2.541	2.483	2.440	2.405	0	0	0	0	0	0	0
	10	2.903	2.688	2.565	2.484	2.425	2.381	2.346	2.318	0	0	0	0	0	0
	11	2.856	2.643	2.519	2.437	2.378	2.334	2.299	2.270	2.247	0	0	0	0	0
	12	2.819	2.605	2.481	2.399	2.340	2.295	2.260	2.231	2.207	2.187	0	0	0	0
	13	2.787	2.574	2.450	2.367	2.308	2.263	2.227	2.198	2.174	2.154	2.137	0	0	0
	14	2.761	2.547	2.423	2.341	2.281	2.236	2.200	2.171	2.147	2.126	2.109	2.093	0	0
	15	2.738	2.525	2.401	2.318	2.258	2.212	2.176	2.147	2.123	2.102	2.084	2.069	2.056	0
	16	2.719	2.505	2.381	2.298	2.238	2.192	2.156	2.126	2.102	2.081	2.063	2.048	2.034	2.022
	17	2.701	2.488	2.364	2.280	2.220	2.174	2.138	2.108	2.083	2.062	2.045	2.029	2.015	2.003
	18	2.686	2.473	2.348	2.265	2.204	2.158	2.122	2.092	2.067	2.046	2.028	2.012	1.999	1.986
	19	2.673	2.459	2.335	2.251	2.191	2.144	2.108	2.078	2.053	2.032	2.013	1.998	1.984	1.971
	20 21	2.661 2.650	2.447 2.437	2.323 2.312	2.239 2.228	2.178	2.132 2.121	2.095 2.084	2.065 2.053	2.040 2.028	2.019	2.000 1.988	1.984	1.970 1.958	1.958
N1+N2-2	21	2.650	2.437 2.427	2.312	2.228	2.167 2.157	2.121	2.064	2.053	2.028	2.007 1.996	1.966	1.972 1.962	1.956	1.946 1.935
	22	2.640	2.427	2.302	2.218	2.157	2.110	2.073	2.043	2.018	1.996	1.978	1.962	1.947	1.935
	23	2.623	2.410	2.295	2.209	2.140	2.092	2.004	2.033	2.008	1.907	1.900	1.952	1.938	1.925
	24	2.616	2.410	2.203	2.193	2.139	2.092	2.033	2.023	1.995	1.969	1.959	1.943	1.920	1.907
	26	2.609	2.396	2.270	2.185	2.132	2.003	2.047	2.009	1.984	1.962	1.943	1.927	1.912	1.900
	20	2.603	2.389	2.270	2.180	2.123	2.070	2.040	2.003	1.977	1.955	1.936	1.920	1.905	1.892
	28	2.597	2.383	2.258	2.174	2.112	2.065	2.000	1.996	1.971	1.949	1.930	1.913	1.899	1.886
	20	2.591	2.378	2.252	2.168	2.106	2.059	2.021	1.990	1.965	1.943	1.924	1.907	1.893	1.880
	30	2.586	2.373	2.247	2.163	2.101	2.054	2.016	1.985	1.959	1.937	1.918	1.901	1.887	1.874
	40	2.550	2.337	2.211	2.126	2.063	2.015	1.977	1.946	1.919	1.897	1.877	1.860	1.845	1.832
	50	2.528	2.315	2.189	2.104	2.041	1.993	1.954	1.922	1.896	1.873	1.853	1.836	1.820	1.807
	60	2.514	2.301	2.175	2.089	2.026	1.978	1.939	1.907	1.880	1.857	1.837	1.819	1.804	1.790
	70	2.504	2.291	2.164	2.079	2.016	1.967	1.928	1.896	1.869	1.846	1.825	1.808	1.792	1.778
	80	2.496	2.283	2.157	2.071	2.008	1.959	1.920	1.887	1.860	1.837	1.817	1.799	1.783	1.769
	90	2.491	2.277	2.151	2.065	2.002	1.953	1.913	1.881	1.854	1.830	1.810	1.792	1.776	1.762
	100	2.486	2.273	2.146	2.060	1.997	1.948	1.908	1.876	1.849	1.825	1.805	1.787	1.771	1.757
	125	2.478	2.264	2.138	2.051	1.988	1.939	1.899	1.867	1.839	1.816	1.795	1.777	1.761	1.747
	150	2.472	2.259	2.132	2.046	1.982	1.933	1.893	1.861	1.833	1.809	1.789	1.770	1.754	1.740
	175	2.468	2.255	2.128	2.042	1.978	1.929	1.889	1.856	1.828	1.805	1.784	1.766	1.750	1.735
	200	2.465	2.252	2.125	2.039	1.975	1.925	1.886	1.853	1.825	1.801	1.781	1.762	1.746	1.732

 Table 2-4: B-Basis Factors for Small Datasets Using Variability of Corresponding Large Dataset

2.4 Specification Limits

Specification limits are calculated based in the qualification dataset only. In order to compute specification limits we make the following assumptions: a) The qualification dataset represents the population¹ b) In the future we might draw a new sample of size n=5 c) In the future we might run an acceptance test for the new sample statistics (this is a hypothesis testing approach; testing the hypothesis that the sample statistics equal the population parameters with $\alpha = 1\%$). Then, the specification limits are computed as the limits required by the statistics of the future sample to pass the acceptance test. The statistics to be tested are be the modulus mean, the strength mean or the strength minimum individual of the qualification dataset. In the case of modulus mean, a two-tails interval is used. In case of strength mean and strength minimum individual, a one-tail left interval is used.

¹ This is a different assumption than the one required for computing allowables. While computing allowables, we assume that all the future material properties values are the population and the qualification dataset is the sample.

Therefore, in order to compute the specification limits we need to compute the intervals around the mean and minimum individual values from the qualification dataset for some specific material property, according to the following formulas. First, let us assume the following:

x = Some Material Strength Property

 \overline{X} = Mean of x S = Standard Deviation of x

Then we define:

 $W_{mean} = Specification limit for the mean$ $W_{min indiv} = Specification limit for the minimum individual$

We compute these as the following:

$W_{mean} = \overline{X} - k_N^{mean}$. S	Equation 64
$W_{\min indiv} = \overline{X} - k_N^{\min indiv}$. S	Equation 65

Where the tolerance factor k^{mean} is found in table 8.5.17 in CMH-17-1H for n=5 and α =0.01 and tolerance factor $k^{min indiv}$ is found in table 8.5.18 in CMH-17-1H for n=5 and α =0.01

For modulus properties we define:

 W_{lower} = Lower specification limit for the mean of modulus property W_{upper} = Upper specification limit for the mean of modulus property

We compute these as the following:

$W_{lower} = \overline{X} - k.S$	Equation 66
$W_{upper} = \overline{X} + k.S$	Equation 67

Where the tolerance factor k is determined by the following equations:

$k = t_c \cdot \sqrt{\left(\frac{1}{N} + \frac{1}{n}\right)}$	Equation 68
and	

$t_c = t. INV(\alpha, N))$	Equation 69
----------------------------	-------------

Where t.INV is the inverse of the cumulative Student's t-distribution, N=sample size of the qualification dataset, n=5 and α =0.01.

Case study

Consider a simple example using some fictitious data for illustration purposes, assuming we have a dataset with 3 batches, 6 specimens for each batch and two properties: Strength and Modulus. The specification limits may be computed using the equations described above. The input data, the intermediate results (k factors) and the final results (specification limits) are shown in Table 2-5 for Strength property and in Table 2-6 for Modulus property. The results including the data points for the Strength property with its corresponding specification limits are shown in Figure 2-1 and for the Modulus property with its corresponding specification limits are shown in Figure 2-2. Notice that specification limits for Mod CV are more "inclusive" for the data points.

Specimen#	Strength [ksi]
1	26.80
2	22.60
3	22.20
4	24.00
5	26.30
6	24.50
7	24.30
8	27.00
9	26.00
10	25.70
11	26.00
12	24.30
13	22.00
14	22.80
15	24.80
16	22.00
17	24.00
18	26.10
Mean Strength [ksi]	24.52
Std. Dev.	1.637
CV%	6.675
Min	22.00
Max	27.00
Count	18
Kmean	1.1425
Kmin	3.0715
Wmean	22.65
Wmin	19.49

Table 2-5 Data and Specification Limits for Strength

Specimen#	Modulus [Msi]
1	13.90
2	14.50
3	15.80
4	13.80
5	15.50
6	15.90
7	14.20
8	16.30
9	16.20
10	13.80
11	15.00
12	14.00
13	15.80
14	16.50
15	14.50
16	16.00
17	14.20
18	15.20
Mean Modulus [Msi]	15.06
Std. Dev.	0.9298
CV%	6.174
min	13.80
max	16.50
Count	18
Тс	2.8980
К	1.4650
W lower	13.70
W upper	16.42

Table 2-6 Data and Specification Limits for Modulus

Figure 2-1 Specification Limits for Strength

Figure 2-2 Specification Limits for Modulus

3. Summary of Results

The basis values for all tests are summarized in the following tables. The NCAMP recommended B-basis values meet all requirements of CMH-17-1H. However, not all test data meets those requirements. The summary tables provide a complete listing of all computed basis values and estimates of basis values. Data that does not meet the requirements of CMH-17-1H are shown in shaded boxes and labeled as estimates. Basis values computed with the modified coefficient of variation (CV) are presented whenever possible. Basis values and estimates computed without that modification are presented for all tests.

3.1 NCAMP Recommended B-basis Values

The following rules are used in determining what B-basis value, if any, is included in Table 3-1 (BA Lamina), Table 3-2 (BD Lamina), Table 3-3 (UD Lamina) and Table 3-4 (Laminate) of recommended values.

- 1. Recommended values are NEVER estimates. Only B-basis values that meet all requirements of CMH-17-1H are recommended.
- 2. Modified CV basis values are preferred. Recommended values will be the modified CV basis value when available. The CV provided with the recommended basis value will be the one used in the computation of the basis value.
- 3. Only normalized basis values are given for properties that are normalized.
- 4. ANOVA B-basis values are not recommended since only three batches of material are available and CMH-17-1H recommends that no less than five batches be used when computing basis values with the ANOVA method.
- 5. Basis values of 90% or more of the mean value imply that the CV is unusually low and may not be conservative. Caution is recommended with B-Basis values calculated from CMH-17 STATS when the B-basis value is 90% or more of the average value. Such values will be indicated.
- 6. If the data appear questionable (e.g. when the CTA-RTA-ETW trend of the basis values is not consistent with the CTA-RTA-ETW trend of the average values), then the B-basis values will not be recommended.

NCAMP Recommended B-Basis Values for Syensqo PRISM[™] EP2400 toughened epoxy resin All B-Basis values in this table meet the standards for publication in CMH-17-1H Handbook Values are for normalized data unless noted

						IP	S*		
Environment	Statistic	0CLC	0TEN	90CLC	90TEN	0.2% Offset Strength	Strength at 5% Strain	FLEX	SBS*
	B -basis		174.6		199.6	7.187	12.10		8.738
CTA (-65°F)	Mean		196.2		214.1	8.139	13.73		9.876
	CV		6.000		3.431	6.000	6.000		6.565
	B -basis	NA	185.8	87.48	NA: A	5.216	9.244	127.3	8.868
RTA (70°F)	Mean	99.99	207.3	106.5	223.8	5.762	10.21	152.5	10.01
	CV	8.603	6.028	9.253	6.739	6.000	6.000	8.354	6.000
	B -basis	60.37	190.3	67.20	198.1	3.534	6.193		6.458
ETA (180°F)	Mean	74.82	211.5	82.81	228.4	4.079	7.156		7.313
	CV	10.02	6.000	8.983	6.805	6.000	6.000		6.000
	B -basis	61.18	185.4	NA: A	NA	3.235	5.339		5.569
ETW1 (180°F)	Mean	70.81	206.9	80.83	222.9	3.669	6.056		6.317
	CV	6.891	6.000	8.195	6.000	6.000	6.000		6.000

Biaxial Lamina Strength Tests

Notes: The modified CV B-basis value is recommended when available.

The CV provided corresponds with the B-basis value given.

NA implies that tests were run but data did not meet NCAMP's recommended requirements.

NA: A implies ANOVA with three batches.

ETW2 not included as there were no recommended B-Basis values.

* Data is as measured rather than normalized

Table 3-1: NCAMP Recommended B-Basis Values for Biaxial Lamina Strength Tests

NCAMP Recommended B-Basis Values for Syensqo PRISMTM EP2400 toughened epoxy resin All B-Basis values in this table meet the standards for publication in CMH-17-1H Values are for normalized data unless noted

Diulagonal Lamina Strength Tests											
				IP	S*						
Environment	Statistic	OCLC OTEN		0.2% Offset Strength	Strength at 5% Strain	FLEX	SBS*				
	B-basis		188.2	7.618	13.37		9.900				
CTA (-65°F)	Mean		210.4	8.658	15.16		10.85				
	CV		6.113	6.087	6.000		6.000				
	B -basis	94.60	190.8	5.354	9.873	142.3	9.769				
RTA (70°F)	Mean	104.8	213.1	6.101	10.78	161.4	10.72				
	CV	6.569	6.157	6.281	6.059	6.000	6.000				
	B -basis	68.53	188.3	3.827	6.680		6.527				
ETA (180°F)	Mean	78.70	210.7	4.341	7.590		7.478				
	CV	6.978	6.000	6.000	6.000		6.000				
	B -basis	65.34	180.1	3.479	5.567		5.416				
ETW1 (180°F)	Mean	75.45	202.4	3.946	6.477		6.368				
	CV	6.255	6.213	6.000	6.000		6.000				

Bidiagonal Lamina Strength Tests

Notes: The modified CV B-basis value is recommended when available.

The CV provided corresponds with the B-basis value given.

NA implies that tests were run but data did not meet NCAMP's recommended requirements.

ETW2 not included as there were no recommended B-Basis values.

* Data is as measured rather than normalized

Table 3-2: NCAMP Recommended B-Basis Values for Bidiagonal Lamina Strength Tests

NCAMP Recommended B-Basis Values for Syensqo PRISM[™] EP2400 toughened epoxy resin All B-Basis values in this table meet the standards for publication in CMH-17-1H Handbook Values are for normalized data unless noted

					0				
						IP	S*		
Environment	Statistic	0CLC	OTEN	UNC0	UNT0	0.2% Offset Strength	Strength at 5% Strain	FLEX	SBS*
	B -basis		361.1		186.9	7.538	12.74		14.27
CTA (-65°F)	Mean		417.8		209.3	8.551	14.45		16.23
	CV		6.866		6.000	6.000	6.000		6.102
	B -basis	130.1	NA: A	89.94	188.5	NA	9.649	139.3	10.30
RTA (70°F)	Mean	144.7	427.0	99.96	210.8	6.023	10.51	161.3	11.69
	CV	6.599	6.892	6.599	6.747	6.000	6.000	6.896	6.000
	B -basis	NA: A	359.5	NA: A	183.5	3.548	6.065		6.148
ETA (180°F)	Mean	102.3	412.1	72.21	205.8	4.024	6.927		6.974
	CV	5.552	6.462	6.776	6.000	6.000	6.000		6.000
	B -basis	74.46	NA: A	50.42	178.8	3.231	5.029		5.016
ETW1 (180°F)	Mean	89.05	391.6	60.44	201.2	3.659	5.896		5.736
	CV	6.841	7.856	6.841	6.000	6.000	6.000		6.353

Unidirectional Lamina Strength Tests

Notes: The modified CV B-basis value is recommended when available.

The CV provided corresponds with the B-basis value given.

NA implies that tests were run but data did not meet NCAMP's recommended requirements.

NA: A implies ANOVA with three batches.

ETW2 not included as there were no recommended B-Basis values.

* Data is as measured rather than normalized

Table 3-3: NCAMP Recommended B-Basis Values for Unidirectional Lamina Strength Tests

Laminate Strength Tests												
SSB												
Layup	Environment	Statistic	UNT	UNC	SBS*	OHT	FHT	ОНС	FHC	2% Offset Strength	Ultimate Strength	
		B-basis	117.1			77.86	76.98					
	CTA (-65°F)	Mean	131.6			87.33	86.04					
		CV	6.287			6.000	6.000					
si)		B -basis	123.1	78.11	8.442	82.25	76.62	43.49	NA	101.8	121.1	
luas	RTA (70°F)	Mean	137.6	87.41	9.259	97.71	85.68	48.04	69.11	113.1	134.0	
ğ		CV	6.000	7.303	6.000	6.000	6.000	6.212	6.129	6.000	6.000	
25/50/25 (Quasi)		B -basis	124.9	53.26	5.872	81.11	77.53	33.42	47.83	85.76	102.2	
150	ETA (180°F)	Mean	139.3	62.46	6.688	90.57	86.59	37.97	54.43	97.11	115.1	
52		CV	6.000	8.385	6.431	6.000	6.000	6.491	6.142	6.508	6.000	
		B -basis	122.3	46.26	5.188	82.63	78.71	30.75	43.12	88.50	101.4	
	ETW1 (180°F)	Mean	136.7	55.56	6.004	92.05	87.77	35.30	48.96	99.85	114.3	
	(100 F)	CV	6.000	6.959	6.321	6.000	6.000	6.218	6.042	6.118	6.000	
		B -basis	82.68			52.80	62.12					
Ð	CTA (-65°F)	Mean	91.74			59.01	68.77					
Ś		CV	6.000			6.000	6.000					
12.5/75/12.5 (Soft)		B -basis	79.42	55.11		52.04	55.06	34.66	51.20	99.47	123.7	
112	RTA (70°F)	Mean	88.47	60.65		58.25	61.70	38.48	56.38	112.4	137.5	
175		CV	6.000	6.000		6.000	6.000	6.000	6.061	6.000	6.000	
2.5	EVEX /4	B -basis	65.33	30.59		51.82	49.95	25.68	33.56	83.29	99.34	
~	ETW1	Mean	74.38	36.13		58.03	56.60	29.49	38.74	96.20	113.1	
	(180°F)	CV	6.000	6.339		6.000	6.000	6.302	6.000	7.709	6.041	
		B-basis	206.8			NA	114.6					
	CTA (-65°F)	Mean	232.6			146.7	128.6					
rd)		CV	6.189			8.510	6.075					
(Ha		B-basis	213.0	NA		136.4	115.0	55.99	73.34	92.61	117.1	
10	RTA (70°F)	Mean	238.8	109.6		154.9	129.0	61.95	85.16	104.5	130.0	
50/40/10 (Hard)		CV	6.296	11.55		4.470	6.000	6.000	7.031	6.614	6.000	
50/	ETW1	B-basis	192.9	54.70		161.8	122.7	35.66	NA	76.13	92.32	
	(180°F)	Mean	218.7	65.88		179.9	136.7	41.63	56.71	88.02	105.2	
		CV	6.542	8.599		1.956	6.000	6.631	6.000	6.946	6.000	

NA implies that tests were run but data did not meet NCAMP's recommended requirements.

ETW2 not included as there were no recommended B-Basis values.

* Data is as measured rather than normalized

Table 3-4: NCAMP Recommended B-Basis Values for Laminate Strength Tests

3.2 Summary Tables

Reinforcement : Material Specification: Process Specification: Matrix:	Tenax [™] Reinforcement Fab NMS 241/1, NMS 241F/1 and NPS 82401 PRISM [™] EP2400		Syensqo PRISM™ EP2400 with Tenax™ DRNF - Biaxial Lamina Properties Summary
Tg(dry): 314°F	Tg(wet): 275°F	Tg METHOD	: ASTM D7028
Date of fiber manufactur Date of resin manufactur		Apr-Oct 2021 2022 and 2023	

		-				,				
Date of compos	ite manufa	acture			Mar to Dec 202	3				
Date of testing				Ju	uly 2023 to July 2	2024				
Date of analysis	5				August 2024					
					- J					
		BI			ICAL PROPER	TY B-BASIS S				
	Data rep				malized values		• • • • • • • •	zina CPT: 0.0	014 in	
	•			•	meet CMH-17H	•	•	•		
					ation unless sp				~	
Test Condition CTA RTA ETA ETW1 ETW2										
		Modified		Modified		Modified		Modified		Modified
Property	B-Basis	CV B-Basis	B-Basis	CV B-Basis	B-Basis	CV B-Basis	B-Basis	CV B-Basis	B-Basis	CV B-Basis
e tu cuan	167.9	160.3	178.5	170.9	181.9	174.4	178.1	170.5		
F ₁ ^{tu} [ksi]	(183.1)	(174.6)	(190.2)	(185.8)	(196.9)	(190.3)	(192.9)	(185.4)		
e tu cuan	149.7	NIA	150.8	NIA	188.1	183.2	177.4	183.3		
F ₂ ^{tu} [ksi]	(199.6)	NA	(156.1)	NA	(203.4)	(198.1)	(209.5)	(196.2)		
			51.00	NA	55.	68	57.17	55.67	30.16	30.23
F ₁ ^{cu} [ksi]			(8)	2.76)	(60.	37)	(49.35)	(61.18)	(34.69)	(34.76)
			8	3.84	61.	26	60.11		42.87	39.41
F ₂ ^{cu} [ksi]			(90.85)	(87.48)	(67.20)	NA	(49.87)	NA	(48.32)	(44.19)
F ₁₂ ^{s0.2%} [ksi]	7.095			5.216	3.790	3.534	3.306	3.235		
F ₁₂ ^{s5%strain} [ksi]				9.244	6.803	6.193	5.109	5.339		
114				14.3						
FLEX			(99.66)	(127.3)						
SBS	7.827	8.738	9.508	8.868	7.039	6.458	6.142	5.569	3.483	2.744

Notes: NA means basis values were not computed for that combination of property/condition

Basis values are not computed for Interlaminar Tension properties

Shaded empty boxes mean that data was not available for that combination of property/condition

Table 3-5: Summary of B-Basis Values and Estimates for Biaxial Lamina Strength Tests

Reinforcement : Material Specification: Process Specification: Matrix:	Tenax™ Reinforcement Fa NMS 241/2, NMS 241F/2 ar NPS 82401 PRISM™ EP2400		Syensqo PRISM™ EP2400 with Tenax™ DRNF - Bidiagonal Lamina Properties Summary
Tg(dry): 314°F	Tg(wet): 274°F	Tg METHOD:	ASTM D7028
Date of fiber manufactur	e	Apr-Oct 202	1

Date of fiber manufacture	Apr-Oct 2021	
Date of resin manufacture	2022 and 2023	
Date of composite manufacture	Mar to Dec 2023	
Date of testing	July 2023 to July 2024	
Date of analysis	August 2024	

	BIDIAGONAL LAMINA MECHANICAL PROPERTY B-BASIS SUMMARY																	
Da	Data reported: As measured followed by normalized values in parentheses, normalizing CPT: 0.014 in																	
	Values shown in shaded boxes do not meet CMH-17H requirements and are estimates only																	
-	These values may not be used for certification unless specifically allowed by the certifying agency																	
Test Condition	C	СТА	R	TA	E	TA	Ë	TW1	Ë	TW2								
Property	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis								
F ₁ ^{tu} [ksi]	195.7 (193.1)	186.1 (188.2)	197.9 (162.8)	188.4 (190.8)	195.5 (170.4)	185.9 (188.3)	187.4 (148.2)	177.8 (180.1)										
F1 ^{cu} [ksi]			92.71 (96.72)	90.54 (94.60)	68.11 (70.66)	65.94 (68.53)	64.88 (67.46)	62.72 (65.34)	47.52 (48.32)	39.98 (41.26)								
F ₁₂ ^{s0.2%} [ksi] F ₁₂ ^{s5%strain} [ksi]	8.075 11.63	7.618 13.37	5.520 9.914	5.354 9.873	4.074 7.209	3.827 6.680	3.352 5.282	3.479 5.567										
FLEX	143.0 135.9																	
SBS	10.12	9.900	10.01	9.769	7.041	6.527	6.218	5.416	3.536	2.866								
Notes:	Shaded er	mpty boxes m	ean that d	ata was not a	vailable fo	or that combi	nation of p	property/con	dition									
	Basis valu	ies are not co	mputed fo	r Interlamina	r Tension	properties		Notes: Shaded empty boxes mean that data was not available for that combination of property/condition Basis values are not computed for Interlaminar Tension properties										

Table 3-6: Summary of B-Basis Values and Estimates for Bidiagonal Lamina Strength Tests

July 08, 2025

NCP-RP-2024-009 Rev -

Reinforcement : Material Specification: Process Specification: Matrix: Tenax[™] Reinforcement Fabrics - DRWF IM UD NMS 241/2, NMS 241F/2 and NMS 241R/1 NPS 82401 PRISM[™] EP2400

Syensqo PRISM™ EP2400 with Tenax™ DRWF - IM UD Lamina Properties Summary

Tg(dry): 328°F

Tg(wet): 288°F Tg METHOD ASTM D7028

 Date of fiber manufacture
 Apr-Oct 2021

 Date of resin manufacture
 2022 and 2023

 Date of composite manufacture
 Mar to Dec 2023

 Date of testing
 July 2023 to July 2024

 Date of analysis
 August 2024

	UNIDIRECTIONAL LAMINA MECHANICAL PROPERTY B-BASIS SUMMARY											
	Data reporte								7 in			
	Data reported: As measured followed by normalized values in parentheses, normalizing CPT: 0.007 in Values shown in shaded boxes do not meet CMH-17H requirements and are estimates only											
	These values may not be used for certification unless specifically allowed by the certifying agency											
Test Condition	C	ТА	F	RTA	ET	ГА	E	TW1	E	TW2		
Property	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis		
F ₁ ^{tu} [ksi]	276.3	NA	267.6	NA	290.6	NA	223.7	NA	320.3	264.3		
г ₁ [кзі]	(370.5)	(361.1)	(290.6)		(372.0)	(359.5)	(236.3)		(309.6)	(265.8)		
F₁ ^{cu} [ksi]			172.6	168.0	79.90	NA	103.6	99.01		6.62		
			(140.1)	(170.0)	(92.66)	101	(105.2)	(99.28)	(3	4.67)		
UNT0 Strength	197.4	188.3	170.4	190.1	195.3	185.1	178.7	180.3				
[ksi]	(179.0)	(186.9)	(162.5)	(188.5)	(187.4)	(183.5)	(173.6)	(178.8)				
UNC0 Strength			94.29	91.80	43.89	NA	54.14	51.65	1	8.28		
[ksi]			(74.02)	(89.94)	(49.63)	NA	(53.66)	(50.42)	1	7.11		
12 ^{\$0.2%} [ksi]	7.792	7.538	5.848	5.319	3.590	3.548	3.301	3.231				
s5%strain [ksi]	12.45	12.74	9.134	9.536	6.125	5.951	5.624	5.187				
FLEX			141.4	139.3								
FLEX			(142.8)	(139.3)								
SBS	14.88	14.27	10.25	10.30	5.261	6.148	4.022	5.016	2.858	2.591		
Notes:	NA means b	basis values v	vere not co	omputed for th	at combination	on of propert	y/condition	า				
	Shaded em	ptyboxes me	an that dat	a was not avai	lable for that	combination	of proper	ty/condition				

Table 3-7: Summary of B-Basis Values and Estimates for Unidirectional Lamina Strength Tests

July 08, 2025

NCP-RP-2024-009 Rev -

-	nent : pecification: pecification:	NMS 241 s		Fabrics			o PRISM™ E DRNF 8 minate Prope	DRWF			
Tg(dry):	319°F	Tg(wet):	281°F	т	g METHOD:	ASTM D70	28				
Date of res	er manufactur sin manufactu mposite manu sting	re		Apr-Oc 2022 ar Mar to D July 2023 to	id 2023 ec 2023						
Date of ana											
	,			Augus							
LAMINATE MECHANICAL PROPERTY B-BASIS SUMMARY Data reported: As measured followed by normalized values in parentheses, normalizing CPT: 0.007 in Values shown in shaded boxes do not meet CMH-17H requirements and are estimates only These values may not be used for certification unless specifically allowed by the certifying agency											
Tł		-			-				-		
	Layup	25/50/2	5 (Quasi)	12.5/75/	12.5 (Soft)	50/40/1	0 (Hard)	37.5/2	25/37.5		
Property	Test Condition	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis	B-Basis	Modified CV B-Basis		
	RTA	71.71 (78.75)	71.52 (78.11)	44.85 (57.03)	50.70 (55.11)	81.48 (84	81.48 82.41 (84.26)				
UNC	ΕΤΑ	48.95 (53.90)	48.75 (53.26)								
Strength	ETW1	42.90 (46.91)	42.71 (46.26)	31.03 (32.52)	30.01 (30.59)		3.86 4.70)				
	ETW2	21.75 (23.18)	20.99 (22.65)								
	СТА	97.22 (103.5)	110.1 (117.1)	62.66 (73.74)	78.80 (82.68)	214.6 (185.8)	203.6 (206.8)				
UNT	RTA	122.0 (129.7)	115.8 (123.1)	71.30 (84.60)	75.75 (79.42)	219.2 (190.5)	208.7 (213.0)				
Strength	ETA	123.7 (131.5) 121.2	117.5 (124.9) 114.9	66.76 (70.79)	62.24 (65.33)	199.5 (165.3)	190.6 (192.9)				
	ETW1	(128.8)	(122.3)								
	СТА	71.00 (82.79)	72.38 (76.98)	63.70 (58.85)	59.18 (62.12)	118.0 (120.4)	113.8 (114.6)				
FHT	RTA	76.46 (82.43)	71.97 (76.62)	57.26 (55.80)	52.74 (55.06)	106.9 (120.8)	113.8 (115.0)				
Strength	ΕΤΑ	60.65 (68.81)	73.04 (77.53)	52.29 (53.69)	47.78 49.95)	127.6 (128.6)	121.9 (122.7)				
	ETW1	78.89 (84.52)	74.41 (78.71)								
	СТА	77.88 (82.64)	72.71 (77.86)	50.73 (57.54)	50.45 (52.80)	78.40 (90.76)	NA				
онт	RTA	82.25 (87.02)	NA (82.25)	45.51 (52.27)	49.98 (52.04)	104.5 (121.2)	132.9 (136.4)	82.61 (92.22)	70.25 (76.46)		
Strength	ETA	80.59 (85.88)	(81.11)	(02.2.)	(0=.01)	()	(()	(
	ETW1	82.42 (87.38)	77.16 (82.63)	52.58 (55.83)	49.66 (51.82)	148.8 (163.3)	158.9 (161.8)	89.13 (101.1)	87.03 (93.87)		

	Layup	25/50/2	25 (Quasi)	12.5/75/	12.5 (Soft)	50/40/	10 (Hard)	37.5	/25/37.5
Drenarty	Test	B-Basis	Modified CV	B-Basis	Modified CV	B-Basis	Modified CV	B-Basis	Modified CV
Property	Condition	D-Dasis	B-Basis	D-Dasis	B-Basis	D-Dasis	B-Basis	D-Dasis	B-Basis
	RTA	59.08	56.95	49.03	47.27	73.95	72.41		
		(63.22)	(60.63)	(52.93)	(51.20)	(74.97)	(73.34)		
FHC	ЕТА	47.19	45.17						
Strength		(49.83)	(47.83)						
	ETW1	42.43	40.53	34.39	32.71	53.18	NA		
		(45.02)	(43.12)	(35.29)	(33.56)	(53.41)	INA.		
	RTA	41.43	40.55	33.98	33.15	47.84	54.81	35.36	33.12
		(44.37)	(43.49)	(35.96)	(34.66)	(57.89)	(55.99)	(37.83)	(36.25)
	ЕТА	31.99	31.11						
онс	514	(34.30)	(33.42)						
Strength	ETW1	26.36	28.74	23.71	24.39	36.93	34.96	31.28	26.47
		(26.50)	(30.75)	(22.00)	(25.68)	(37.56)	(35.66)	(32.27)	(28.85)
	ETW2	20.99	17.26						
		(23.40)	(18.64)						
SBS1	RTA	8.529	8.442						
Strength	ETA	4.918	5.872						
[ksi]	ETW1	5.490	5.188						
	RTA	100.1	96.98	101.2	96.03	92.64	90.49		
SSB 2%		(105.1)	(101.8)	(105.4)	(99.47)	(94.79)	(92.61)		
Offset	ETA	85.25	82.11						
Strength	L 1A	(89.08)	(85.76)						
ouengui	ETW1	86.64	83.50	60.12	79.98	76.47	74.31		
		(91.82)	(88.50)	(63.70)	(83.29)	(78.31)	(76.13)		
	RTA	122.2	115.4	126.2	119.2	120.9	114.4		
SSB		(128.3)	(121.1)	(130.1)	(123.7)	(123.9)	(117.1)		
Ultimate	ЕТА	104.7	97.81						
Strength		(109.4)	(102.2)						
[ksi]	ETW1	102.5	95.70	102.1	95.16	96.55	90.05		
		(108.7)	(101.4)	(105.8)	(99.34)	(99.14)	(92.32)		
Notes:	NA means bas	is values w	ere not compu	uted for that	t combination	of property	//condition		
	Basis values a								
	Shaded empty	boxes mea	an that data wa	is not availa	able for that c	ombination	of property/co	ondition	

 Table 3-8: Summary of B-Basis Values and Estimates for Laminate Strength Tests

4. Individual Test Summaries, Statistics, Basis Values and Graphs

Test data for fiber dominated properties was normalized according to nominal cured ply thickness. Both normalized and as measured statistics were included in the tables, but only the normalized data values were graphed. Test failures, outliers and explanations regarding computational choices were noted in the accompanying text for each test.

All individual specimen results are graphed for each test by batch and environmental condition with a line indicating the recommended basis values for each environmental condition. The data is jittered (moved slightly to the left or right) in order for all specimen values to be clearly visible. The strength values are always graphed on the vertical axis with the scale adjusted to include all data values and their corresponding basis values. The vertical axis may not include zero. The horizontal axis values will vary depending on the data and how much overlapping there was of the data within and between batches. When there was little variation, the batches were graphed from left to right. The environmental conditions were identified by the shape and color of the symbol used to plot the data. Otherwise, the environmental conditions were graphed from left to right and the batches were identified by the shape and color of the symbol.

When a dataset fails the Anderson-Darling k-sample (ADK) test for batch-to-batch variation, an ANOVA analysis is required. In order for B-basis values to be computed using the ANOVA method, data from five batches are required. Since this qualification dataset has only three batches, the basis values computed using ANOVA are considered estimates only. However, the basis values resulting from the ANOVA method using only three batches may be overly conservative. The ADK test is performed again after a transformation of the data according to the assumptions of the modified CV method (see section 2.1.4 for details). If the dataset still passes the ADK test at this point, modified CV basis values are provided. If the dataset does not pass the ADK test after the transformation, estimates may be computed using the modified CV method per the guidelines of CMH-17-1H section 8.4.4.

4.1 Biaxial 0° Tension (BA - 0TEN)

Biaxial 0° Tension data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA and ETW1.

For the normalized dataset, every acceptable condition combination for pooling failed either the Anderson darling test for normality or the Levene's test for equality of variances, therefore, the single point normal method was used to compute basis values for CTA, ETA and ETW1, and the single point Weibull method was used for RTA. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

For the as measured dataset, there were no diagnostic test failures so all conditions were pooled using both the as measured CV and the modified CV.

There was one statistical outlier. The lowest normalized value in batch three of the RTA environment was an outlier for the environment but not for the batch. It was an outlier in both the normalized RTA dataset and the as measured RTA dataset. It was retained for this analysis.

Statistics, estimates, and basis values are given for the BA 0TEN strength data in Table 4-1 and Table 4-2 and for the modulus data in Table 4-3. The normalized data, B-estimates, and B-basis values are shown graphically in Figure 4-1.

Figure 4-1: Batch Plot for BA 0TEN Normalized Strength

Normalize	d Biaxial OTEN	Strength Basis	Values and St	atistics
Env	СТА	RTA	ETA	ETW1
Mean	196.2	207.3	211.5	206.9
Stdev	6.606	8.407	7.677	7.071
CV	3.368	4.055	3.629	3.418
Mod CV	6.000	6.028	6.000	6.000
Min	184.2	183.5	191.3	190.2
Max	207.0	219.4	223.6	218.3
No. Batches	3	3	3	3
No. Spec.	18	18	21	18
	Basis V	alues and Estim	ates	
B-Basis Value	183.1	190.2	196.9	192.9
A-Estimate	173.9	172.3	186.5	183.1
Method	Normal	Weibull	Normal	Normal
	Modified CV B	asis Values and	Estimates	
B-Basis Value	174.6	185.8	190.3	185.4
A-Estimate	160.5	171.6	176.1	171.2
Method	Pooled	Pooled	Pooled	Pooled

Table 4-1: Normalized Statistics, B-Basis Values and Estimates for BA 0TEN Strength Data

As Measured Biaxial 0TEN Strength Basis Values and Statistics							
As weasur		N Strength bas	is values and a	Statistics			
Env	СТА	RTA	ETA	ETW1			
Mean	180.1	190.7	193.9	190.3			
Stdev	6.631	7.977	6.677	6.680			
CV	3.681	4.183	3.443	3.509			
Mod CV	6.000	6.091	6.000	6.000			
Min	170.2	169.4	179.7	177.0			
Max	192.1	205.5	204.3	202.8			
No. Batches	3	3	3	3			
No. Spec.	18	18	21	18			
	Basis V	alues and Estin	mates				
B-Basis Value	167.9	178.5	181.9	178.1			
A-Estimate	159.9	170.5	173.9	170.1			
Method	Pooled	Pooled	Pooled	Pooled			
	Modified CV B	asis Values an	d Estimates				
B-Basis Value	160.3	170.9	174.4	170.5			
A-Estimate	147.2	157.8	161.3	157.4			
Method	Pooled	Pooled	Pooled	Pooled			

Table 4-2: As Measured Statistics, B-Basis Values and Estimates for BA 0TEN Strength Data

	Biaxial 0TEN Modulus Statistics									
		Norm	alized			As-Me	asured			
Env	СТА	RTA	ETA	ETW1	СТА	RTA	ETA	ETW1		
Mean	12.49	12.49	12.17	12.22	11.47	11.50	11.16	11.24		
Stdev	0.4962	0.3928	0.09238	0.1058	0.5465	0.4751	0.1852	0.2216		
CV	3.972	3.144	0.7590	0.8655	4.763	4.132	1.659	1.971		
Min	11.74	11.63	12.05	12.08	10.68	10.72	10.65	10.97		
Max	13.32	12.99	12.45	12.52	12.30	12.26	11.44	11.82		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	18	18	21	18	18	18	21	18		

Table 4-3: Statistics for BA 0TEN Modulus Data

4.2 Biaxial 0° Compression (BA-0CLC)

Biaxial 0° Compression data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1 and ETW2.

The RTA condition consists of three batches with seventeen specimens, therefore only estimates were computed for RTA. The ETW2 condition consists of one batch with six specimens, therefore only estimates were computed for ETW2.

For the normalized dataset, the ETW1 condition failed the ADK test for batch equivalency, ANOVA was used to compute estimates for ETW1, the single point normal method was used for the remaining environments. Applying the modified CV, ETA resulted in the same values as the as measured CV is greater than 8%. The normal method for modified CV was used for the remaining conditions.

For the as measured dataset, the RTA condition failed the ADK test for batch equivalency, therefore, pooling all conditions was not possible. ANOVA was used to compute estimates for RTA and the single point normal method was used for the remaining conditions. Applying the modified CV, RTA failed the ADK test, therefore pooling across conditions was not possible and basis values could not be calculated for RTA, ETA resulted in the same values as the as measured CV is greater than 8%, and the normal method for modified CV was used for the remaining conditions.

There were no statistical outliers.

Statistics, estimates and basis values are given for the 0CLC strength data in Table 4-4 and Table 4-5 and for the modulus data in Table 4-6. The normalized data, B-estimates and the B-basis values are shown graphically in Figure 4-2.

Figure 4-2: Batch Plot for BA 0CLC Normalized Strength

Normalized Biaxial 0CLC Strength Basis Values and Statistics							
Env	RTA	ETA	ETW1	ETW2			
Mean	99.99	74.82	70.81	47.68			
Stdev	8.602	7.500	4.095	4.290			
CV	8.603	10.02	5.783	8.996			
Mod CV	8.603	10.02	6.891	8.996			
Min	89.63	60.37	62.66	42.29			
Max	114.8	87.89	77.76	54.92			
No. Batches	3	3	3	1			
No. Spec.	17	20	18	6			
	Basis Va	lues and Est	imates				
B-Basis Value		60.37					
B-Estimate	82.76		49.35	34.69			
A-Estimate	70.58	50.10	34.05	25.45			
Method	Normal	Normal	ANOVA	Normal			
Mod	lified CV Ba	sis Values a	nd Estimates	S			
B-Basis Value			61.18				
B-Estimate	82.77			34.76			
A-Estimate	70.61		54.36	25.92			
Method	Normal		Normal	Normal			

Table 4-4: Normalized Statistics, B-Basis Values and Estimates for BA 0CLC Strength Data

As Measured Biaxial 0CLC Strength Basis Values and Statistics								
Env	RTA	ETA	ETW1	ETW2				
Mean	90.30	68.09	64.32	42.76				
Stdev	7.897	6.439	3.624	4.159				
CV	8.745	9.457	5.635	9.728				
Mod CV	8.745	9.457	6.817	9.728				
Min	79.15	55.93	57.79	37.54				
Max	103.3	80.31	70.93	49.34				
No. Batches	3	3	3	1				
No. Spec.	17	20	18	6				
	Basis Va	lues and Esti	mates					
B-Basis Value		55.68	57.17					
B-Estimate	51.00			30.16				
A-Estimate	22.98	46.86	52.10	21.20				
Method	ANOVA	Normal	Normal	Normal				
Мо	dified CV Ba	asis Values an	d Estimates					
B-Basis Value			55.67					
B-Estimate	NA			30.23				
A-Estimate	NA		49.54	21.66				
Method			Normal	Normal				

Table 4-5: As Measured Statistics, B-Basis Values and Estimates for BA 0CLC Strength Data

	Biaxial 0CLC Modulus Statistics									
		Norma	alized			As-Me	asured			
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2		
Mean	11.20	11.08	11.35	11.20	10.12	10.07	10.32	10.04		
Stdev	0.2885	0.3362	0.7030	0.3348	0.2631	0.2749	0.6924	0.3930		
CV	2.576	3.034	6.192	2.990	2.599	2.729	6.711	3.916		
Min	10.65	10.42	10.38	10.78	9.715	9.561	9.369	9.500		
Max	11.92	11.54	12.95	11.62	10.46	10.63	11.96	10.56		
No. Batches	3	3	3	1	3	3	3	1		
No. Spec.	18	18	18	6	18	18	18	6		

Table 4-6: Statistics for BA 0CLC Modulus Data

4.3 Biaxial 90° Tension (BA-90TEN)

Biaxial 90° Tension data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

The ETW1 condition consists of three batches with seventeen specimens, therefore only estimates were computed for ETW1.

For the normalized dataset the RTA condition failed the ADK test for batch equivalency, therefore, pooling all conditions was not possible. ANOVA was used to compute estimates for RTA and the single point normal method was used for the remaining conditions. Applying the modified CV, RTA failed the ADK test, therefore pooling all conditions was not possible and basis values could not be calculated for RTA and the modified CV normal method was used for the remaining conditions.

For the as measured dataset, CTA, RTA and ETW1 failed the ADK test for batch equivalency, therefore pooling across conditions was not acceptable. ANOVA was used to compute estimates for CTA, RTA and ETW1 and the single point normal method was used for ETA. Applying the modified CV, CTA and RTA failed the ADK test, so pooling all conditions was not acceptable and basis values could not be computed for CTA and RTA, and the modified CV normal method was used for ETA and ETW1.

There were two statistical outliers. The lowest normalized value in batch one of the CTA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset and in the as measured dataset. The lowest normalized value in batch three of the CTA condition was an outlier for the environment and for the batch. It was an outlier in the normalized dataset and in the as measured dataset. They were retained for this analysis.

Statistics, basis values and estimates are given for the BA 90TEN strength data in Table 4-7 and Table 4-8 and for the modulus data in Table 4-9. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-3.

Figure 4-3: Batch Plot for BA 90TEN Normalized Strength

Normalized	Normalized Biaxial 90 TEN Strength Basis Values and Statistics							
Env	СТА	RTA	ETA	ETW1				
Mean	214.1	223.8	228.4	222.9				
Stdev	7.345	12.26	12.82	6.723				
CV	3.431	5.477	5.611	3.016				
Mod CV	6.000	6.739	6.805	6.000				
Min	193.9	200.7	211.7	209.7				
Max	222.7	244.3	257.8	234.3				
No. Batches	3	3	3	3				
No. Spec.	18	21	19	17				
	Basis V	alues and Estim	ates					
B-Basis Value	199.6		203.4					
B-estimate		156.1		209.5				
A-Estimate	189.3	107.8	185.7	200.0				
Method	Normal	ANOVA	Normal	Normal				
	Modified CV B	asis Values and	Estimates					
B-Basis Value	188.7		198.1					
B-estimate		NIA		196.2				
A-Estimate	170.8	NA	176.6	177.3				
Method	Normal		Normal	Normal				

Table 4-7: Normalized Statistics, B-Basis Values and Estimates for BA 90TEN Strength Data

As Measured Biaxial 90 TEN Strength Basis Values and Statistics							
AS IVIEASUI			sis values allu				
Env	СТА	RTA	ETA	ETW1			
Mean	198.8	208.6	211.3	208.4			
Stdev	8.857	10.29	11.91	6.812			
CV	4.455	4.934	5.638	3.269			
Mod CV	6.227	6.467	6.819	6.000			
Min	183.2	193.8	191.3	193.8			
Max	210.1	228.7	237.5	218.2			
No. Batches	3	3	3	3			
No. Spec.	18	21	19	17			
	Basis V	alues and Esti	mates				
B-Basis Value			188.1				
B-estimate	149.7	150.8		177.4			
A-Estimate	114.7	109.6	171.6	155.3			
Method	ANOVA	ANOVA	Normal	ANOVA			
	Modified CV B	asis Values an	d Estimates				
B-Basis Value			183.2				
B-estimate	NA	NA		183.3			
A-Estimate	NA	NA	163.3	165.7			
Method			Normal	Normal			

Table 4-8: As Measured Statistics, B-Basis Values and Estimates for BA 90TEN Strength

	Biaxial 90TEN Modulus Statistics									
		Norm	alized			As-Me	asured			
Env	СТА	RTA	ETA	ETW1	СТА	RTA	ETA	ETW1		
Mean	12.74	12.74	12.50	12.52	11.84	11.85	11.56	11.67		
Stdev	0.6298	0.6594	0.4835	0.3724	0.7297	0.6787	0.5060	0.3078		
CV	4.942	5.175	3.868	2.974	6.165	5.728	4.376	2.637		
Min	11.88	11.93	11.84	12.03	10.93	10.84	10.62	11.05		
Max	14.07	14.06	13.65	13.56	13.36	13.59	12.57	12.20		
No. Batches	3	3	3	3	3	3	3	3		
No. Spec.	18	19	19	18	18	19	19	18		

Table 4-9: Statistics for BA 90TEN Modulus Data

4.4 Biaxial 90° Compression (BA-90CLC)

Biaxial 90° Compression data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with seven specimens, therefore only estimates were computed for ETW2.

For the normalized data, the ETW1 condition failed the ADK test for batch equivalency. RTA and ETA were pooled, ANOVA was used to compute estimates for ETW1, and the single point normal method was used for ETW2. Applying the modified CV, ETA and ETW1 failed the ADK test, therefore, basis values could not be computed. The normal method for modified CV was used to compute values and estimates for the remaining conditions.

For the as measured dataset, there were no diagnostic test failures so RTA, ETA and ETW1 were pooled, the modified CV section is grayed out because there was no change to the as measured CV. The normal method was used to compute estimates for ETW2.

There was one statistical outlier. The highest as measured value in batch two of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset, but not in the normalized dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the BA 90CLC strength data in Table 4-10 and Table 4-11 and for the modulus data in Table 4-12. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-4.

Figure 4-4: Batch Plot for BA 90CLC Normalized Strength

Normalized Biaxial 90 CLC Strength Basis Values and Statistics							
Env	RTA	ETA	ETW1	ETW2			
Mean	106.5	82.81	80.83	56.81			
Stdev	9.850	7.439	6.624	3.059			
CV	9.253	8.983	8.195	5.384			
Mod CV	9.253	8.983	8.195	8.000			
Min	84.80	73.43	68.48	52.31			
Max	123.4	96.13	89.05	60.00			
No. Batches	3	3	3	1			
No. Spec.	20	20	19	7			
	Basis Va	lues and Estim	ates				
B-Basis Value	90.85	67.20					
B-estimate			49.87	48.32			
A-Estimate	80.16	56.51	27.79	42.34			
Method	Pooled	Pooled	ANOVA	Normal			
Мо	dified CV Ba	sis Values and	Estimates				
B-Basis Value	87.48						
B-estimate		NA	NIA	44.19			
A-Estimate	74.00	NA	NA	35.31			
Method	Normal			Normal			

 Table 4-10: Normalized Statistics, B-Basis Values and Estimates for BA 90CLC Strength Data

As Measur	As Measured Biaxial 90 CLC Strength Basis Values and Statistics						
Env	RTA	ETA	ETW1	ETW2			
Mean	96.44	73.86	72.78	50.66			
Stdev	8.826	6.511	5.964	2.807			
CV	9.152	8.814	8.195	5.541			
Mod CV	9.152	8.814	8.195	8.000			
Min	76.87	64.97	61.06	46.24			
Max	112.2	84.50	81.65	53.59			
No. Batches	3	3	3	1			
No. Spec.	20	20	19	7			
	Basis \	alues and Esti	mates				
B-Basis Value	83.84	61.26	60.11				
B-estimate				42.87			
A-Estimate	75.35	52.78	51.64	37.38			
Method	Pooled	Pooled	Pooled	Normal			
	Mod	ified CV Estima	tes	-			
B-estimate				39.41			
A-Estimate				31.49			
Method				Normal			

Table 4-11: As Measured Statistics, B-Basis Values and Estimates for BA 90CLC Strength Data

	Bixial 90CLC Modulus Statistics									
	Normalized					As-Mea	asured			
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2		
Mean	11.36	11.98	11.71	11.07	10.30	10.71	10.55	9.901		
Stdev	0.4605	0.9228	0.4270	0.7324	0.4216	0.7921	0.4965	0.4962		
CV	4.053	7.702	3.645	6.617	4.092	7.397	4.708	5.012		
Min	10.72	10.99	11.22	10.32	9.707	9.587	10.01	9.333		
Max	12.73	14.33	12.74	12.04	11.19	12.82	11.66	10.69		
No. Batches	3	3	3	1	3	3	3	1		
No. Spec.	18	19	18	6	18	19	18	6		

Table 4-12: Statistics for BA 90CLC Modulus Data

4.5 Biaxial In-Plane Shear (BA-IPS)

In Plane Shear data is not normalized. Test results were available for 0.2% offset strength and strength at 5% strain in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the 0.2% Offset Strength dataset, the CTA and ETW1 conditions failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA and ETW1. Batches for RTA and ETA were pooled. Applying the modified CV, the normal method for modified CV was used for CTA and ETW1 and RTA and ETA were pooled.

For the Strength at 5% Strain dataset, CTA, RTA, and ETW1 failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA, RTA and ETW1. The single point normal method was used for ETA. Applying the modified CV, the normal method for modified CV was used for CTA and ETW1, and RTA and ETA were pooled.

There were no statistical outliers.

Statistics, basis values and estimates are given for the BA IPS strength data in Table 4-13 and Table 4-14 and for the modulus data in Table 4-15. The as measured data, B-basis values and B-estimates are shown graphically for Strength at 5% Strain in Figure 4-5 and for 0.2% Offset Strength in Figure 4-6.

Figure 4-5: Batch Plot for BA IPS As Measured Strength at 5% Strain

Figure 4-6: Batch Plot for BA IPS 0.2% Offset As Measured Strength

Biaxial IPS 0.2 % Offset Strength Basis Values and Statistics As Measured Values				
Env	СТА	RTA	ETA	ETW1
Mean	8.139	5.762	4.079	3.669
Stdev	0.2226	0.1873	0.1244	0.07952
CV	2.735	3.251	3.051	2.167
Mod CV	6.000	6.000	6.000	6.000
Min	7.692	5.494	3.858	3.467
Max	8.508	6.061	4.345	3.808
No. Batches	3	3	3	3
No. Spec.	19	18	18	18
Basis Values and Estimates				
B-Basis Value		5.472	3.790	
B-Estimate	7.095			3.306
A-Estimate	6.351	5.275	3.593	3.048
Method	ANOVA	Pooled	Pooled	ANOVA
Modified CV Basis Values and Estimates				
B-Basis Value	7.187	5.216	3.534	3.235
A-Estimate	6.512	4.845	3.163	2.927
Method	Normal	Pooled	Pooled	Normal

Table 4-13: Statistics, B-Basis Values and Estimates for BA IPS 0.2% Offset Strength Data

Biaxial IPS Strength at 5% Strain Basis Values and Statistics As				
Measured Values				
Env	СТА	RTA	ETA	ETW1
Mean	13.73	10.21	7.156	6.056
Stdev	0.3671	0.2398	0.1787	0.1675
CV	2.674	2.350	2.497	2.765
Mod CV	6.000	6.000	6.000	6.000
Min	13.00	9.890	6.790	5.714
Max	14.23	10.60	7.434	6.347
No. Batches	3	3	3	3
No. Spec.	18	18	18	18
Basis Values and Estimates				
B-Basis Value			6.803	
B-Estimate	11.64	8.814		5.109
A-Estimate	10.15	7.820	6.553	4.433
Method	ANOVA	ANOVA	Normal	ANOVA
Modified CV Basis Values and Estimates				
B-Basis Value	12.10	9.244	6.193	5.339
A-Estimate	10.95	8.589	5.537	4.832
Method	Normal	Pooled	Pooled	Normal

Table 4-14: Statistics, B-Basis Values and Estimates for BA IPS Strength at 5% Strain Data

Biaxial IPS Modulus Statistics				
Env	СТА	RTA	ETA	ETW1
Mean	0.7199	0.5770	0.4282	0.3935
Stdev	0.02102	0.02193	0.01512	0.01109
CV	2.920	3.801	3.531	2.818
Min	0.6798	0.5406	0.4030	0.3628
Max	0.7552	0.6106	0.4583	0.4085
No. Batches	3	3	3	3
No. Spec.	19	18	18	18

Table 4-15: Statistics for BA IPS Modulus Data

4.6 Biaxial Lamina Short Beam Strength (BA-SBS)

The Short Beam Strength data is not normalized. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with six specimens, therefore only estimates were computed for ETW2.

The CTA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA. The single point normal method was used to compute values and estimates for the remaining conditions. Applying the modified CV, CTA and RTA were pooled and the normal method for modified CV was used for the remaining conditions.

There was one statistical outlier. The lowest value in batch one in the ETW1 condition was an outlier for the condition but not for the batch. It was retained for this analysis.

Statistics, basis values and estimates are given for the BA Lamina SBS strength data in Table 4-16. The as measured data, B-basis values and B-estimates are shown graphically in Figure 4-7.

Figure 4-7: Batch Plot for BA SBS As Measured Strength

Biaxial Short Beam Strength (SBS) As Measured Basis Values and Statistics						
Env	СТА	RTA	ETA	ETW1	ETW2	
Mean	9.876	10.01	7.313	6.317	3.622	
Stdev	0.5066	0.2527	0.1408	0.08882	0.04565	
CV	5.130	2.526	1.926	1.406	1.261	
Mod CV	6.565	6.000	6.000	6.000	6.000	
Min	9.042	9.626	6.989	6.075	3.569	
Max	10.76	10.41	7.624	6.428	3.684	
No. Batches	3	3	3	3	1	
No. Spec.	18	18	19	18	6	
	Basis Value and Estimates					
B-Basis Value		9.508	7.039	6.142		
B-Estimate	7.287				3.483	
A-Estimate	5.441	9.154	6.844	6.017	3.385	
Method	ANOVA	Normal	Normal	Normal	Normal	
Modified CV Basis Value and Estimates						
B-Basis Value	8.738	8.868	6.458	5.569		
B-Estimate					2.744	
A-Estimate	7.963	8.094	5.852	5.039	2.120	
Method	Pooled	Pooled	Normal	Normal	Normal	

Table 4-16: Statistics, B-Basis Values and Estimates for BA SBS Strength Data

4.7 Biaxial Flexural Strength (BA-FLEX)

The Biaxial FLEX data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Test were conducted in the following environmental condition: RTA.

For both normalized and as measured dataset, the single point normal method was used to compute basis values and estimates. Applying the modified CV, the normal method for modified CV was used to compute basis values and estimates.

There were no statistical outliers.

Statistics, basis values and estimates are given for the BA FLEX strength data in Table 4-17. The normalized data and B-basis values are shown graphically in Figure 4-8.

Figure 4-8: Batch Plot for BA FLEX Normalized Strength

Biaxial FLEX Strength Basis Values and Statistics				
	Normalized	As-Measured		
Env	RTA	RTA		
Mean	152.5	136.3		
Stdev	12.74	11.16		
CV	8.354	8.185		
Mod CV	8.354	8.185		
Min	136.3	122.7		
Max	184.3	164.9		
No. Batches	3	3		
No. Spec.	18	18		
Basis Values and Estimates				
B-Basis Value		114.3		
B-Estimate	99.66			
A-Estimate	62.04	98.67		
Method	ANOVA	Normal		
Modified CV Basis Values and Estimates				
B-Basis Value	127.3			
A-Estimate	109.5			
Method	Normal			

Table 4-17: Statistics, B-Basis Values and Estimates for BA FLEX Strength Data
4.8 Bidiagonal 0° Tension (BD-0TEN)

The BD 0° Tension data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the normalized dataset, the RTA, ETA and ETW1 conditions failed the ADK test for batch equivalency, therefore pooling all conditions was not possible. ANOVA was used to compute estimates for RTA, ETA and ETW1, and the single point normal method was used for CTA. Applying the modified CV, there were no diagnostic test failures so all the conditions were pooled.

For the as measured dataset, there were no diagnostic test failures so all the conditions were pooled.

There was one statistical outlier. The highest normalized value of batch one in the ETW1 condition was an outlier for the batch but nor for the condition. It was an outlier in the normalized dataset but not in the as measured dataset.

Statistics, estimates, and basis values are given for the BD 0TEN strength data in Table 4-18 and Table 4-19 and for the modulus data in Table 4-20. The normalized data, B-estimates, and B-basis values are shown graphically in Figure 4-9.

Figure 4-9: Batch Plot for BD 0TEN Normalized Strength

Normalized Bidiagonal 0TEN Strength Basis Values and Statistics							
Env	СТА	RTA	ETA	ETW1			
Mean	210.4	213.1	210.7	202.4			
Stdev	8.893	9.194	7.270	8.958			
CV	4.226	4.313	3.451	4.426			
Mod CV	6.113	6.157	6.000	6.213			
Min	193.7	193.2	199.1	188.5			
Max	224.2	228.0	221.2	216.0			
No. Batches	3	3	3	3			
No. Spec.	19	18	18	18			
	Basis Va	alues and Est	imates				
B-Basis Value	193.1						
B-Estimate		162.8	170.4	148.2			
A-Estimate	180.8	127.0	141.7	109.6			
Method	Normal	ANOVA	ANOVA	ANOVA			
M	Modified CV Basis Values and Estimates						
B-Basis Value	188.2	190.8	188.3	180.1			
A-Estimate	173.5	176.1	173.6	165.4			
Method	Pooled	Pooled	Pooled	Pooled			

Table 4-18: Normalized Statistics, B-Basis Values and Estimates for BD 0TEN Strength Data

As Measured Bidiagonal 0TEN Strength Basis Values and Statistics						
СТА	RTA	ETA	ETW1			
207.8	210.1	207.7	199.6			
8.991	7.437	5.363	5.310			
4.327	3.539	2.582	2.661			
6.164	6.000	6.000	6.000			
192.5	193.2	199.1	190.7			
221.3	224.0	215.6	206.3			
3	3	3	3			
19	18	18	18			
Basis \	/alues and Es	stimates				
195.7	197.9	195.5	187.4			
187.6	189.9	187.5	179.4			
Pooled	Pooled	Pooled	Pooled			
Modified CV E	Basis Values a	and Estimates	8			
186.1	188.4	185.9	177.8			
171.8	174.0	171.6	163.5			
Pooled	Pooled	Pooled	Pooled			
	CTA 207.8 8.991 4.327 6.164 192.5 221.3 3 19 Basis V 195.7 187.6 Pooled Modified CV E 186.1 171.8	CTARTA207.8210.18.9917.4374.3273.5396.1646.000192.5193.2221.3224.0331918Basis Values and Es195.7197.9187.6189.9PooledPooledModified CV Basis Values and 188.4171.8174.0	CTARTAETA207.8210.1207.78.9917.4375.3634.3273.5392.5826.1646.0006.000192.5193.2199.1221.3224.0215.6333191818Basis Values and Estimates195.7197.9195.5187.6189.9187.5PooledPooledPooledModified CV Basis Values and Estimates186.1188.4185.9171.8174.0171.6			

Table 4-19: As Measured Statistics, B-Basis Values and Estimates for BD 0TEN Strength Data

NCP-RP-2024-009 Rev -

Bidiagonal 0TEN Modulus Statistics								
		Norm	alized			As-Measured		
Env	СТА	RTA	ETA	ETW1	СТА	RTA	ETA	ETW1
Mean	12.37	12.20	12.22	12.33	12.22	12.03	12.05	12.17
Stdev	0.5797	0.3589	0.2183	0.2160	0.6495	0.5053	0.3085	0.2464
CV	4.686	2.943	1.787	1.751	5.314	4.200	2.560	2.025
Min	11.62	11.43	11.89	11.99	11.37	10.95	11.49	11.68
Max	14.10	12.75	12.61	12.77	14.22	12.80	12.56	12.55
No. Batches	3	3	3	3	3	3	3	3
No. Spec.	18	18	18	18	18	18	18	18

Table 4-20: Statistics for BD 0TEN Modulus Data

4.9 Bidiagonal 0° Compression (BD-0CLC)

Bidiagonal 0° Compression data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1 and ETW2.

ETW2 consists of one batch with six specimens, therefore only estimates were computed for ETW2.

For both the normalized and as measured datasets, the RTA, ETA, and ETW1 conditions were pooled using the as measured CV and modified CV, and the normal method was used for ETW2.

There was one statistical outliers. The highest normalized value in batch one of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in both the normalized and the as measured dataset. It was retained for this analysis.

Statistics, estimates and basis values are given for the BD 0CLC strength data in Table 4-21 and Table 4-22, and for the modulus data in Table 4-23. The normalized data, B-estimates and the B-basis values are shown graphically in Figure 4-10.

Figure 4-10: Batch Plot for BD 0CLC Normalized Strength

Normalized Bidiagonal 0CLC Strength Basis Values and Statistics						
Env	RTA	ETA	ETW1	ETW2		
Mean	104.8	78.70	75.45	54.36		
Stdev	5.384	4.688	3.402	1.995		
CV	5.139	5.957	4.509	3.669		
Mod CV	6.569	6.978	6.255	6.000		
Min	93.76	70.08	70.00	51.04		
Max	113.4	87.96	82.82	57.18		
No. Batches	3	3	3	1		
No. Spec.	18	18	19	6		
	Basis V	alues and Esti	mates			
B-Basis Value	96.72	70.66	67.46			
B-Estimate				48.32		
A-Estimate	91.36	65.30	62.09	44.02		
Method	Pooled	Pooled	Pooled	Normal		
I	Aodified CV B	asis Values an	d Estimates			
B-Basis Value	94.60	68.53	65.34			
B-Estimate				41.26		
A-Estimate	87.82	61.75	58.55	32.30		
Method	Pooled	Pooled	Pooled	Normal		

Table 4-21: Normalized Statistics, B-Basis Values and Estimates for BD 0CLC Strength Data

			<u> </u>	
As Measured	Bidiagonal 0	CLC Strength	Basis Values	and Statistics
Env	RTA	ETA	ETW1	ETW2
Mean	100.2	75.56	72.29	52.67
Stdev	5.244	3.887	3.332	1.702
CV	5.236	5.144	4.609	3.231
Mod CV	6.618	6.572	6.305	6.000
Min	88.87	68.35	66.14	50.35
Max	109.7	82.11	80.97	55.35
No. Batches	3	3	3	1
No. Spec.	18	18	19	6
	Basis V	Values and Es	stimates	
B-Basis Value	92.71	68.11	64.88	
B-Estimate				47.52
A-Estimate	87.74	63.14	59.90	43.85
Method	Pooled	Pooled	Pooled	Normal
	Modified CV I	Basis Values	and Estimates	S
B-Basis Value	90.54	65.94	62.72	
B-Estimate				39.98
A-Estimate	84.12	59.52	56.29	31.29
Method	Pooled	Pooled	Pooled	Normal

Table 4-22: As Measured Statistics, B-Basis Values and Estimates for BD CLC Strength Data

NCP-RP-2024-009 Rev -

Bidiagonal 0CLC Modulus Statistics								
		Norma	alized			As-Me	asured	
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2
Mean	11.43	11.56	11.88	11.44	10.93	11.11	11.38	11.08
Stdev	0.3455	0.5938	0.5223	0.4224	0.4544	0.6668	0.5994	0.3318
CV	3.024	5.134	4.397	3.692	4.158	6.003	5.266	2.993
Min	11.08	10.40	10.99	10.85	10.49	10.02	10.66	10.60
Max	12.28	12.29	12.62	11.89	12.05	12.39	12.58	11.51
No. Batches	3	3	3	1	3	3	3	1
No. Spec.	18	19	18	6	18	19	18	6

Table 4-23: Statistics for BD 0CLC Modulus Data

4.10 Bidiagonal In-Plane Shear (BD-IPS)

In Plane Shear data is not normalized. Test results were available for 0.2% offset strength and strength at 5% strain in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the 0.2% Offset Strength dataset, the ETW1 condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for ETW1. The single point normal method was used for ETA, and the remaining conditions were pooled. Applying the modified CV, every acceptable combination for pooling failed either the test for normality or the test for equality of variances so the normal method for modified CV was used to compute values for all conditions.

For the Strength at 5% Strain dataset, CTA and ETW1 failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA and ETW1, and the single point normal method was used for RTA and ETA, as pooling both failed the equality of variances test. Applying the modified CV, the normal method for modified CV was used for CTA, and the remaining conditions were pooled.

There were two statistical outliers. The lowest values in batch three of the ETW1 condition for 0.2% offset strength dataset was an outlier for the condition but not for the batch. The lowest value in batch three of the ETW1 condition for the strength at 5% strain dataset was an outlier for the condition but not for the batch. They were retained for this analysis.

Statistics, basis values and estimates are given for the BD IPS strength data in Table 4-24 and Table 4-25 and for the modulus data in Table 4-26. The as measured data, B-basis values and B-estimates are shown graphically for Strength at 5% Strain in Figure 4-11 and for 0.2% Offset Strength in Figure 4-12.

Figure 4-11: Batch Plot for BD IPS As Measured Strength at 5% Strain

Figure 4-12: Batch Plot for BD IPS As Measured 0.2% Offset Strength

Bidiagonal IP	Bidiagonal IPS 0.2% Offset Strength Basis Values and Statistics - As Measured Values						
Env	СТА	RTA	ETA	ETW1			
Mean	8.658	6.101	4.341	3.946			
Stdev	0.3613	0.2783	0.1351	0.1213			
CV	4.173	4.561	3.112	3.073			
Mod CV	6.087	6.281	6.000	6.000			
Min	7.878	5.649	4.075	3.610			
Max	9.239	6.731	4.592	4.111			
No. Batches	3	3	3	3			
No. Spec.	18	19	18	18			
	Basis V	alues and Estim	ates				
B-Basis Value	8.075	5.520	4.074				
B-estimate				3.352			
A-Estimate	7.678	5.123	3.885	2.929			
Method	Pooled	Pooled	Normal	ANOVA			
	Modified CV B	asis Values and	Estimates				
B-Basis Value	7.618	5.354	3.827	3.479			
A-Estimate	6.882	4.825	3.463	3.148			
Method	Normal	Normal	Normal	Normal			

Table 4-24: Statistics, B-Basis Values and Estimates for BD IPS 0.2% Offset Strength DataPage 82 of 182

Bidiagonal IPS Strength at 5% Strain Basis Values and Statistics - As Measured Values							
Env	СТА	RTA	ΕΤΑ	ETW1			
Mean	15.16	10.78	7.590	6.477			
Stdev	0.5834	0.4438	0.1928	0.2342			
CV	3.848	4.118	2.540	3.615			
Mod CV	6.000	6.059	6.000	6.000			
Min	14.35	10.20	7.195	5.803			
Max	16.00	11.75	7.967	6.798			
No. Batches	3	3	3	3			
No. Spec.	18	19	18	18			
	Basis V	alues and Estin	mates				
B-Basis Value		9.914	7.209				
B-estimate	11.63			5.282			
A-Estimate	9.115	9.299	6.940	4.430			
Method	ANOVA	Normal	Normal	ANOVA			
	Modified CV Basis Values and Estimates						
B-Basis Value	13.37	9.873	6.680	5.567			
A-Estimate	12.10	9.266	6.073	4.960			
Method	Normal	Pooled	Pooled	Pooled			

Table 4-25: Statistics, B-Basis Values and Estimates for BD IPS Strength a 5% Strain Data

Bidiagonal IPS Modulus Statistics							
Env	СТА	RTA	ETA	ETW1			
Mean	0.7740	0.6197	0.4582	0.4262			
Stdev	0.04848	0.03640	0.01643	0.01439			
CV	6.264	5.873	3.587	3.377			
Min	0.6681	0.5509	0.4204	0.3870			
Max	0.8277	0.6869	0.4833	0.4462			
No. Batches	3	3	3	3			
No. Spec.	18	19	18	18			

 Table 4-26: Statistics for BD IPS Modulus Data

4.11 Bidiagonal Lamina Short Beam Strength (BD-SBS)

The Bidiagonal Short Beam Strength data is not normalized. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with six specimens, therefore only estimates were computed for ETW2.

The single point non parametric method was used to compute values and estimates for ETA and the single point normal method was used for the remaining conditions. Applying the modified CV, the normal method for modified CV was used to compute estimates for ETW2 and the remaining conditions were pooled.

There were three statistical outliers. The lowest value in batch one of the RTA condition was an outlier for the batch for not for the condition. The highest value in batch one of the ETA condition was an outlier for the batch and for the condition. The highest value in batch one of the ETW2 condition was an outlier for the batch and for the condition. They were retained for this analysis.

Statistics, basis values and estimates are given for the BD Lamina SBS strength data in Table 4-27. The as measured data, B-basis values and B-estimates are shown graphically in Figure 4-13.

Figure 4-13: Batch Plot for BD As Measured SBS

Bidiagonal Short Beam Strength (SBS) As Measured Basis Values and Statistics								
Env	СТА	RTA	ETA	ETW1	ETW2			
Mean	10.85	10.72	7.478	6.368	3.776			
Stdev	0.3723	0.3604	0.2028	0.07579	0.07909			
CV	3.431	3.364	2.711	1.190	2.095			
Mod CV	6.000	6.000	6.000	6.000	6.000			
Min	9.884	9.944	7.138	6.232	3.723			
Max	11.47	11.37	8.136	6.474	3.929			
No. Batches	3	3	3	3	1			
No. Spec.	18	19	18	18	6			
		Basis Values	and Estimates					
B-Basis Value	10.12	10.01	7.041	6.218				
B-Estimate					3.536			
A-Estimate	9.596	9.514	5.868	6.112	3.366			
Method	Normal	Normal	Non-Parm.	Normal	Normal			
	Modif	ied CV Basis V	alues and Estima	ites				
B-Basis Value	9.900	9.769	6.527	5.416				
B-Estimate					2.866			
A-Estimate	9.273	9.141	5.899	4.789	2.243			
Method	Pooled	Pooled	Pooled	Pooled	Normal			

Table 4-27: Statistics, B-Basis Values and Estimates for BD SBS Strength Data

4.12 Bidiagonal Flexural Strength (BD-Flex)

The Bidiagonal FLEX data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Test were conducted in the following environmental condition: RTA.

For both the normalized dataset and the as measured dataset, the single point normal method was used to compute basis values and estimates. Applying the modified CV, the normal method for modified CV was used to compute basis values and estimates.

There were no statistical outliers.

Statistics, basis values and estimates are given for the BD-FLEX strength data in Table 4-28. The normalized data and B-basis values are shown graphically in Figure 4-14.

Figure 4-14: Batch Plot for BD FLEX Normalized Strength

Γ

Bidiagonal FLEX Strength Basis Values and Statistics						
	Normalized	As-Measured				
Env	RTA	RTA				
Mean	161.4	154.2				
Stdev	6.127	5.664				
CV	3.797	3.674				
Mod CV	6.000	6.000				
Min	150.9	143.8				
Max	170.5	163.6				
No. Batches	3	3				
No. Spec.	18	18				
Basis	Values and Estim	nates				
B-Basis Value	149.3	143.0				
A-Estimate	140.7	135.1				
Method	Normal	Normal				
Modified CV	Basis Values and	Estimates				
B-Basis Value	142.3	135.9				
A-Estimate	128.7	123.0				
Method	Normal	Normal				

Table 4-28: Statistics, B-Basis Values and Estimates for BD FLEX Strength Data

4.13 UD Woven 0/90° Unnotched Tension (UD-UNT0)

The UD-UNT0 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the normalized dataset, all the conditions failed the ADK test for batch equivalency. ANOVA was used to compute estimates for all conditions. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

For the as measured dataset, RTA and ETW1 failed the ADK test for batch equivalency. ANOVA was used to compute estimates for RTA and ETW1, the single point Weibull method was used for CTA and the single point normal method was used for ETA. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

There were three statistical outliers. The lowest normalized value in batch one for the CTA condition was an outlier for the condition but not for the batch. It was an outlier in the normalized dataset and in the as measured dataset. The lowest as measured value in batch two for the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The highest normalized value in batch four for the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. They were retained for this analysis.

Statistics, basis values and estimates are given for the UD-UNT0 strength data in Table 4-29 and Table 4-30 and for the modulus data in Table 4-31. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-15.

Figure 4-15: Batch Plot UD UNT0 Normalized Strength

Normalized Unidirectional UNT0 Strength Basis Values and Statistics							
Env	СТА	RTA	ETA	ETW1			
Mean	209.3	210.8	205.8	201.2			
Stdev	8.228	11.58	5.348	6.257			
CV	3.932	5.493	2.599	3.110			
Mod CV	6.000	6.747	6.000	6.000			
Min	186.0	187.6	195.5	190.9			
Max	219.6	225.1	216.9	208.5			
No. Batches	4	4	4	4			
No. Spec.	18	18	19	18			
	Basis Va	lues and Est	imates				
B-Estimate	179.0	162.5	187.4	173.6			
A-Estimate	157.9	128.9	174.6	154.4			
Method	ANOVA	ANOVA	ANOVA	ANOVA			
Modified CV Basis Values and Estimates							
B-Basis Value	186.9	188.5	183.5	178.8			
A-Estimate	172.2	173.7	168.8	164.1			
Method	Pooled	Pooled	Pooled	Pooled			

Table 4-29: Normalized Statistics, B-Basis Values and Estimates for UD UNT0 Strength Data

As Measure	As Measured Unidirectional UNT0 Strength Basis Values and Statistics								
Env	СТА	RTA	ETA	ETW1					
Mean	210.5	212.3	207.2	202.5					
Stdev	6.879	10.33	6.115	6.276					
CV	3.267	4.865	2.951	3.099					
Mod CV	6.000	6.433	6.000	6.000					
Min	189.2	192.4	192.6	191.6					
Max	219.5	229.9	216.0	212.7					
No. Batches	4	4	4	4					
No. Spec.	18	18	19	18					
	Basis V	alues and Estir	nates						
B-Basis Value	197.4		195.3						
B-Estimate		170.4		178.7					
A-Estimate	183.2	141.3	186.8	162.2					
Method	Weibull	ANOVA	Normal	ANOVA					
N	lodified CV B	asis Values and	d Estimates						
B-Basis Value	188.3	190.1	185.1	180.3					
A-Estimate	173.7	175.4	170.5	165.7					
Method	Pooled	Pooled	Pooled	Pooled					

Table 4-30: As Measured Statistics, B-Basis Values and Estimates for UD UNT0 Strength Data

			Unidirectiona	I UNT0 Modu	lus Statistics			
		Norm	alized			As-Me	asured	
Env	СТА	RTA	ETA1	ETW1	СТА	RTA	ETA1	ETW1
Mean	12.15	12.06	11.95	11.98	12.23	12.14	12.01	12.06
Stdev	0.2572	0.1756	0.1807	0.1279	0.3120	0.2599	0.3129	0.2293
CV	2.116	1.456	1.512	1.068	2.551	2.140	2.604	1.901
Min	11.76	11.77	11.71	11.82	11.55	11.59	11.37	11.66
Max	12.62	12.39	12.39	12.25	12.71	12.54	12.59	12.48
No. Batches	4	4	4	4	4	4	4	4
No. Spec.	18	18	20	18	18	18	20	18

Table 4-31: Statistics for UD UNT0 Modulus Data

4.14 UD Woven 0/90° Unnotched Compression (UD-UNC0)

The UD-UNC0 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with ten specimens, therefore only estimates were computed for ETW2.

For the normalized dataset, RTA and ETA failed the ADK test for batch equivalency, ANOVA was used to compute estimates for RTA and ETA and the single point normal method was used for the remaining conditions. Applying the modified CV, ETA failed the ADK test so values were not computed for ETA, RTA and ETW1 were pooled, and the normal method for modified CV was used for ETW2.

For the as measured dataset, the ETA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for ETA, and RTA and ETW1 were pooled, and the single point normal method was used for ETW2. Applying the modified CV, ETA failed the ADK test, so values were not computed for ETA. RTA and ETW1 were pooled, and the normal method for modified CV was used for ETW2.

There was one statistical outlier. The highest normalized value in batch one for the ETA condition was an outlier for the batch for not for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the UD-UNC0 normalized strength data in Table 4-32 and Table 4-33 and for the modulus data in Table 4-34. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-16.

Figure 4-16: Batch Plot for UD UNC0 Normalized Strength

Normalize	Normalized Unidirectional UNC0 Strength Basis Values and Statistics							
Env	RTA	ETA	ETW1	ETW2				
Mean	99.96	71.21	60.44	29.12				
Stdev	5.196	3.954	3.435	5.079				
CV	5.198	5.552	5.683	17.44				
Mod CV	6.599	6.776	6.841	17.44				
Min	89.40	63.78	54.40	22.20				
Max	107.4	81.01	65.90	36.68				
No. Batches	3	3	3	1				
No. Spec.	18	18	18	10				
	Basis V	alues and Est	imates					
B-Basis Value			53.66					
B-Estimate	74.02	49.63		17.11				
A-Estimate	55.52	34.23	48.86	8.718				
Method	ANOVA	ANOVA	Normal	Normal				
N	lodified CV B	asis Values a	nd Estimates					
B-Basis Value	86.94		52.28					
A-Estimate	77.71	NA	46.49					
Method	Normal		Normal					

 Table 4-32: Normalized Statistics, B-Basis Values and Estimates for UD UNC0 Strength Data

As Measure	As Measured Unidirectional UNC0 Strength Basis Values and Statistics							
Env	RTA	ETA	ETW1	ETW2				
Mean	101.5	72.38	61.36	29.72				
Stdev	4.528	4.597	3.310	4.841				
CV	4.460	6.351	5.393	16.29				
Mod CV	6.230	7.175	6.697	16.29				
Min	91.39	64.82	56.20	23.25				
Мах	110.2	82.04	66.34	37.15				
No. Batches	3	3	3	1				
No. Spec.	18	18	18	10				
	Basis	Values and E	Estimates					
B-Basis Value	92.58		54.83					
B-Estimate		43.89		18.28				
A-Estimate	86.24	23.56	50.20	10.28				
Method	Normal	ANOVA	Normal	Normal				
М	odified CV	Basis Values	and Estimates					
B-Basis Value	89.03		53.25					
A-Estimate	80.18	NA	47.50					
Method	Normal		Normal					

Table 4-33: As Measured Statistics, B-Basis Values and Estimates for UD UNC0 Strength Data

Unidirectional UNC0 Modulus Statistics										
	Normalized					As-Mea	asured			
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2		
Mean	11.05	11.24	10.89	10.34	11.21	11.42	11.06	10.56		
Stdev	0.2912	0.5050	0.4250	0.9894	0.3046	0.4374	0.4578	0.8624		
CV	2.636	4.492	3.902	9.569	2.717	3.831	4.138	8.164		
Min	10.55	10.49	10.12	9.296	10.62	10.60	10.19	9.629		
Max	11.58	12.23	11.68	12.12	11.67	12.29	11.90	12.08		
No. Batches	3	3	3	1	3	3	3	1		
No. Spec.	18	18	18	10	18	18	18	10		

Table 4-34: Statistics for UD UNC0 Modulus Data

4.15 UD Woven 0° Tabbed Tension (UD-0TEN)

The Unidirectional 0° Tabbed Tension data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with six specimens, therefore only estimates were computed for ETW2.

For the normalized dataset, the RTA and ETW1 conditions failed the ADK test for batch equivalency, therefore, pooling all environments was not possible. ANOVA was used to compute estimates for RTA and ETW1, and the single point normal method was used for the remaining conditions. Applying the modified CV, RTA and ETW1 failed the ADK test so values were not computed for those conditions. The normal method for modified CV was used for the remaining conditions,

For the as measured dataset, CTA, RTA, ETA and ETW1 failed the ADK test for batch equivalency, therefore, pooling all environments was not possible. The single point normal method was used to compute estimates for ETW2 and ANOVA was used to compute estimates for the remaining conditions. Applying the modified CV, CTA, RTA, ETA and ETW1 failed the ADK test so values were not computed for those conditions, and the normal method for modified CV was used for ETW2.

There were no statistical outliers.

Statistics, basis values and estimates are given for the UD-0TEN strength data in Table 4-35 and Table 4-36, and for the modulus data in Table 4-37. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-17.

Figure 4-17: Batch Plot for UD 0TEN Normalized Strength

Normalized Unidirectional 0TEN Strength Basis Values and Statistics							
Env	СТА	RTA	ETA	ETW1	ETW2		
Mean	417.8	427.0	412.1	391.6	350.8		
Stdev	23.95	24.69	20.29	30.20	13.60		
CV	5.733	5.784	4.924	7.713	3.878		
Mod CV	6.866	6.892	6.462	7.856	8.000		
Min	379.1	372.4	376.5	344.8	334.0		
Max	453.5	459.4	442.5	442.4	367.7		
No. Batches	3	3	3	3	1		
No. Spec.	18	18	18	18	6		
	B	asis Values an	d Estimates				
B-Basis Value	370.5		372.0				
B-Estimate		290.6		236.3	309.6		
A-Estimate	337.0	193.3	343.6	125.5	280.3		
Method	Normal	ANOVA	Normal	ANOVA	Normal		
	Modified	I CV Basis Valu	ies and Estim	nates			
B-Basis Value	361.1		359.5				
B-Estimate		NA		NA	265.8		
A-Estimate	321.1	NA	322.3	NA	205.3		
Method	Normal		Normal		Normal		

Table 4-35: Normalized Statistics, B-Basis Values and Estimates for UD 0TEN Strength Data

As Me	As Measured Unidirectional 0TEN Strength Estimates and Statistics							
Env	СТА	RTA	ETA	ETW1	ETW2			
Mean	415.6	421.9	409.8	390.4	348.9			
Stdev	25.42	26.15	20.09	29.58	9.417			
CV	6.117	6.198	4.902	7.576	2.699			
Mod CV	7.058	7.099	6.451	7.788	8.000			
Min	374.5	371.6	376.7	344.3	338.6			
Max	464.4	455.1	438.1	440.8	361.0			
No. Batches	3	3	3	3	1			
No. Spec.	18	18	18	18	6			
		Estima	tes					
B-Estimate	276.3	267.6	290.6	223.7	320.3			
A-Estimate	177.0	157.5	205.6	104.8	300.1			
Method	ANOVA	ANOVA	ANOVA	ANOVA	Normal			
		Modified CV E	Estimates					
B-Estimate					264.3			
A-Estimate	NA	NA	NA	NA	204.2			
Method					Normal			

Table 4-36: As Measured Statistics, B-Basis Values and Estimates for UD 0TEN Strength Data

	Unidirectional 0TEN Modulus Statistics									
			Normalized					As-Measured	ł	
Env	СТА	RTA	ETA	ETW1	ETW2	СТА	RTA	ETA	ETW1	ETW2
Mean	23.39	23.08	23.19	23.80	23.34	23.26	22.80	23.06	23.73	23.22
Stdev	0.7917	0.5988	0.5887	0.8723	1.008	0.7897	0.8205	0.7878	0.8932	0.9114
CV	3.385	2.595	2.539	3.666	4.319	3.395	3.598	3.416	3.764	3.925
Min	22.60	22.15	22.25	22.46	22.18	22.41	21.35	21.96	22.46	22.33
Max	26.08	24.34	24.26	25.24	24.44	25.01	24.84	24.83	25.20	24.38
No. Batches	3	3	3	3	1	3	3	3	3	1
No. Spec.	18	18	18	18	6	18	18	18	18	6

Table 4-37: Statistics for UD 0TEN Modulus Data

4.16 UD Woven 0° Compression Modulus (UD-0CLC)

The Unidirectional Woven 0° Compression strength normalized and as measured data was computed using the backout factor from UNC0. Both normalized and as measured statistics are provided. Tests were performed in the following environmental conditions: RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with ten specimens, therefore only estimates were computed for ETW2.

For the normalized dataset, the RTA and ETA conditions failed the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for RTA and ETA and the single point normal method was used for the remaining environments. Using the modified CV, the ETA condition failed the ADK test, therefore basis values were not computed for ETA. RTA and ETW1 were pooled and the normal method for modified CV was used for ETW2.

For the as measured dataset, the ETA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for ETA, RTA and ETW1 were pooled and the single point normal method was used for ETW2. Similarly, using the modified CV, the ETA condition failed the ADK test, therefore basis values were not computed for ETA. RTA and ETW1 were pooled and the normal method for modified CV was used for ETW2.

There was one statistical outlier. The highest normalized value in batch for of the ETA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the UD 0CLC strength data in Table 4-38 and Table 4-39, and for the modulus data in Table 4-40 the normalized data, B-Basis values and B-estimates are shown graphically in Figure 4-18.

Figure 4-18: Batch Plot for UD 0CLC Normalized Strength

Normalized Unidirectional 0CLC Strength Basis Values and Statistics							
Env	RTA	ETA	ETW1	ETW2			
Mean	189.2	133.0	118.4	59.02			
Stdev	9.832	7.382	6.731	10.29			
CV	5.198	5.552	5.683	17.44			
Mod CV	6.599	6.776	6.841	17.44			
Min	169.2	119.1	106.6	45.00			
Max	203.2	151.3	129.1	74.35			
No. Batches	3	3	3	1			
No. Spec.	18	18	18	10			
	Basis V	alues and Est	imates				
B-Basis Value			105.2				
B-estimate	140.1	92.66		34.67			
A-Estimate	105.1	63.92	95.74	17.67			
Method	ANOVA	ANOVA	Normal	Normal			
N	lodified CV B	asis Values a	nd Estimates				
B-Basis Value	164.5		102.5				
A-Estimate	147.1	NA	91.11				
Method	Normal		Normal				

Table 4-38: Normalized Statistics, B-Basis Values and Estimates for 0CLC Strength Data

As Measured Unidirectional 0CLC Strength Basis Values and									
	Statistics								
Env	RTA	ETA	ETW1	ETW2					
Mean	186.1	131.8	117.0	59.55					
Stdev	8.298	8.368	6.312	9.698					
CV	4.460	6.351	5.393	16.29					
Mod CV	6.230	7.175	6.697	16.29					
Min	167.5	118.0	107.2	46.57					
Max	202.0	149.4	126.5	74.42					
No. Batches	3	3	3	1					
No. Spec.	18	18	18	10					
	Basis Va	alues and Est	imates						
B-Basis Value	169.7		104.6						
B-estimate		79.90		36.62					
A-Estimate	158.1	42.89	95.74	20.60					
Method	Normal	ANOVA	Normal	Normal					
N	lodified CV B	asis Values ai	nd Estimates						
B-Basis Value	163.2		101.56						
A-Estimate	147.0	NA	90.60						
Method	Normal		Normal						

 Table 4-39: As Measured Statistics B-Basis Values and Estimates for 0CLC Strength Data

Unidirectional 0CLC Modulus Statistics								
		Norm	alized			As-Me	asured	
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2
Mean	20.91	20.99	21.35	20.96	20.55	20.79	21.10	21.16
Stdev	0.3784	0.6052	0.4889	0.7887	0.9729	0.9365	1.274	0.9636
CV	1.810	2.883	2.290	3.763	4.734	4.505	6.041	4.553
Min	20.08	19.99	20.39	19.85	18.41	18.57	18.14	19.68
Max	21.60	22.23	22.47	22.03	21.99	22.47	23.03	22.68
No. Batches	4	4	4	1	4	4	4	1
No. Spec.	18	18	18	6	18	18	18	6

Table 4-40: Statistics for UD 0CLC Modulus Data

4.17 UD Woven In-Plane Shear (UD-IPS)

In Plane Shear data is not normalized. Test results were available for 0.2% offset strength and strength at 5% strain in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the 0.2% Offset Strength dataset, CTA, ETA, and ETW1 failed the ADK test for batch equivalency. ANOVA was used to compute estimates for those conditions. The single point non-parametric method was used for RTA. Applying the modified CV, CTA, RTA, and ETA were pooled and the normal method for modified CV was used for ETW1.

For the Strength at 5% Strain dataset, the ETW1 condition consists of three batches with 17 specimens, therefore only estimates were computed for ETW1. CTA, RTA and ETA failed the ADK test for batch equivalency. ANOVA was used to compute estimates for those conditions and the single point normal method was used to compute estimates for ETW1. Applying the modified CV, RTA and ETA were pooled, and the normal method for modified was used for the remaining conditions.

There were two statistical outliers. The highest value in batch three for the RTA condition of the 0.2% offset strength dataset was an outlier for the condition but not for the batch. The highest value in batch three for the RTA condition of the strength at 5% strain dataset was an outlier for the condition but not for the batch. They were retained for this analysis.

Statistics, basis values and estimates are given for the UD-IPS strength data in Table 4-41 and Table 4-42, and for the modulus data in Table 4-43. The as measured data, B-basis values and B-estimates are shown graphically for Strength at 5% Strain in Figure 4-19 and for 0.2% Offset Strength in Figure 4-20.

Figure 4-19: Batch Plot for UD IPS As Measured Strength at 5% Strain

Figure 4-20: Batch Plot for UD IPS As Measured 0.2% Offset Strength

Page 105 of 182

Unidirectional IPS 0.2 % Offset Strength Basis Values and Statistics - As Measured Values							
Env	СТА	RTA	ETA	ETW1			
Mean	8.551	6.023	4.024	3.659			
Stdev	0.1828	0.1344	0.08309	0.07062			
CV	2.138	2.231	2.065	1.930			
Mod CV	6.000	6.000	6.000	6.000			
Min	8.207	5.876	3.898	3.515			
Max	8.969	6.387	4.172	3.809			
No. Batches	3	3	3	3			
No. Spec.	18	19	18	19			
	Basis V	alues and Estim	nates				
B-Basis Value		5.848					
B-estimate	7.792		3.590	3.301			
A-Estimate	7.251	5.217	3.279	3.045			
Method	ANOVA	Non-Parm.	ANOVA	ANOVA			
	Modified CV B	asis Values and	Estimates				
B-Basis Value	7.865	5.341	3.338	3.231			
A-Estimate	7.408	4.883	2.881	2.928			
Method	Pooled	Pooled	Pooled	Normal			

Table 4-41: Statistics, B-Basis Values and Estimates for UD IPS 0.2% Offset Strength Data

Unidirectional IPS Strength at 5% Strain Basis Values and Statistics - As Measured Values						
Env	СТА	RTA	ETA	ETW1		
Mean	14.45	10.51	6.927	5.896		
Stdev	0.3610	0.3165	0.1354	0.1358		
CV	2.498	3.012	1.954	2.304		
Mod CV	6.000	6.000	6.000	6.000		
Min	13.97	10.21	6.706	5.683		
Max	15.39	11.37	7.164	6.100		
No. Batches	3	3	3	3		
No. Spec.	18	19	18	17		
Estimates						
B-Estimate	12.45	9.134	6.125	5.624		
A-Estimate	11.03	8.154	5.552	5.431		
Method	ANOVA	ANOVA	ANOVA	Normal		
Modified CV Basis Values and Estimates						
B-Basis Value	12.74	9.536	5.951			
B-Estimate				5.187		
A-Estimate	11.53	8.872	5.289	4.688		
Method	Normal	Pooled	Pooled	Normal		

Table 4-42: Statistics, B-Basis Values and Estimates for UD IPS Strength at 5% Strain Data

Unidirectional IPS Modulus Statistics					
Env	СТА	RTA	ETA	ETW1	
Mean	0.7621	0.6100	0.4282	0.3980	
Stdev	0.01448	0.01341	0.008769	0.007975	
CV	1.899	2.198	2.048	2.004	
Min	0.7410	0.5926	0.4135	0.3830	
Max	0.7977	0.6489	0.4466	0.4143	
No. Batches	3	3	3	3	
No. Spec.	18	19	18	19	

Table 4-43: Statistics for UD IPS Modulus Data

4.18 UD Woven Lamina Short Beam Strength (UD-SBS)

The Bidiagonal Short Beam Strength data is not normalized. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with six specimens, therefore only estimates were computed for ETW2. The RTA, ETA and ETW1 conditions failed the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for RTA, ETA and ETW1, and the single point normal method was used for CTA and ETW2. Applying the modified CV, the normal method for modified CV was used to compute values and estimates for all conditions.

There were no statistical outliers.

Statistics, basis values and estimates are given for the UD-SBS strength data in Table 4-44. The as measured data, B-basis values and B-estimates are shown graphically in Figure 4-21.

Figure 4-21: Batch Plot for UD As Measured SBS
Unidirectional	Unidirectional Short Beam Strength (SBS) As Measured Basis Values and								
Env	СТА	RTA	ETA	ETW1	ETW2				
Mean	16.23	11.69	6.974	5.736	3.419				
Stdev	0.6821	0.2748	0.2728	0.2700	0.1853				
CV	4.203	2.351	3.911	4.707	5.419				
Mod CV	6.102	6.000	6.000	6.353	8.000				
Min	14.79	11.17	6.497	5.185	3.175				
Max	17.43	12.11	7.503	6.047	3.650				
No. Batches	3	3	3	3	1				
No. Spec.	18	18	18	18	6				
	Ba	sis Values a	nd Estimates	S					
B-Basis Value	14.88								
B-Estimate		10.25	5.261	4.022	2.858				
A-Estimate	13.93	9.228	4.038	2.798	2.459				
Method	Normal	ANOVA	ANOVA	ANOVA	Normal				
	Modified	CV Basis Va	lues and Est	imates					
B-Basis Value	14.27	10.30	6.148	5.016					
B-Estimate					2.591				
A-Estimate	12.89	9.323	5.563	4.507	2.002				
Method	Normal	Normal	Normal	Normal	Normal				

Table 4-44: Statistics, B-Basis Values and Estimates for UD SBS Strength Data

4.19 UD Woven Flexural Strength (UD-FLEX)

The Unidirectional FLEX data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Test were conducted in the following environmental condition: RTA.

For both normalized and as measured dataset, the single point normal method was used to compute basis values. Applying the modified CV, the normal method for modified CV was used to compute basis values.

There were no statistical outliers.

Statistics, basis values and estimates are given for the BD-FLEX strength data in Table 4-45. The normalized data and B-basis values are shown graphically in Figure 4-22.

Figure 4-22: Batch Plot for UD FLEX Normalized Strength

Unidirectional FLEX Strength Basis Values and Statistics						
	Normalized	As-Measured				
Env	RTA	RTA				
Mean	161.3	162.9				
Stdev	9.340	10.87				
CV	5.792	6.675				
Mod CV	6.896	7.337				
Min	142.4	141.7				
Max	174.6	178.0				
No. Batches	3	3				
No. Spec.	18	18				
Basis	Values and Est	imates				
B-Basis Value	142.8	141.4				
A-Estimate	129.8	126.2				
Method	Normal	Normal				
Modified CV	Modified CV Basis Values and Estimates					
B-Basis Value	139.3	139.3				
A-Estimate	123.8	122.6				
Method	Normal	Normal				

 Table 4-45: Statistics, B-Basis Values and Estimates for UD FLEX Strength Data

4.20 Unnotched Tension 1 (UNT1)

The UNT1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For both the normalized and the as measured datasets, the CTA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA. The RTA, ETA and ETW1 conditions were pooled. Applying the modified CV, all conditions were pooled

There were no statistical outliers.

Statistics, basis values and estimates are given for the UNT1 strength data in Table 4-46 and Table 4-47 and for the modulus data in Table 4-48. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-23.

Figure 4-23: Batch Plot for UNT1 Normalized Strength

Normalized U	Normalized Unnotched Tension 1 (UNT1) Basis Values and Statistics							
Env	СТА	RTA	ETA	ETW1				
Mean	131.6	137.6	139.3	136.7				
Stdev	6.017	4.373	4.924	4.022				
CV	4.574	3.178	3.534	2.941				
Mod CV	6.287	6.000	6.000	6.000				
Min	117.5	127.0	129.1	127.8				
Max	138.7	143.5	146.5	143.5				
No. Batches	3	3	3	3				
No. Spec.	No. Spec. 18		18	18				
	Basis V	alues and Estim	ates					
B-Basis Value		129.7	131.5	128.8				
B-Estimate	103.5							
A-Estimate	83.57	124.4	126.2	123.6				
Method	ANOVA	Pooled	Pooled	Pooled				
	Modified CV Basis Values and Estimates							
B-Basis Value	117.1	123.1	124.9	122.3				
A-Estimate	107.6	113.6	115.4	112.8				
Method	Pooled	Pooled	Pooled	Pooled				

Table 4-46: Normalized Statistics, B-Basis Values and Estimates for UNT1 Strength Data

As Measured	As Measured Unnotched Tension 1 (UNT1) Basis Values and Statistics								
Env	СТА	RTA	ETA	ETW1					
Mean	123.6	129.3	131.0	128.5					
Stdev	5.381	4.048	4.426	3.888					
CV	4.352	3.132	3.377	3.026					
Mod CV	6.176	6.000	6.000	6.000					
Min	113.5	121.4	121.9	120.3					
Max	132.2	135.4	137.9	136.3					
No. Batches	3	3	3	3					
No. Spec.	18	18	18	18					
	Basis V	alues and Estir	nates						
B-Basis Value		122.0	123.7	121.2					
B-Estimate	97.22								
A-Estimate	78.37	117.1	118.9	116.3					
Method	ANOVA	Pooled	Pooled	Pooled					
	Modified CV Basis Values and Estimates								
B-Basis Value	110.1	115.8	117.5	114.9					
A-Estimate	101.2	106.8	108.6	106.0					
Method	Pooled	Pooled	Pooled	Pooled					

Table 4-47: As Measured Statistics, B-Basis Values and Estimates for UNT1 Strength Data

	Unnotched Tension 1 (UNT1) Modulus Statistics										
	Normalized					As-N	leasured				
Env	СТА	RTA	ETA	ETW1	СТА	RTA	ETA	ETW1			
Mean	8.875	8.669	8.480	8.459	8.342	8.145	7.975	7.948			
Stdev	0.2061	0.1488	0.1479	0.1738	0.1905	0.1368	0.1422	0.1620			
CV	2.322	1.716	1.744	2.055	2.284	1.680	1.783	2.039			
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000			
Min	8.504	8.452	8.275	8.277	7.859	7.787	7.753	7.786			
Max	9.267	9.046	8.740	8.930	8.753	8.335	8.195	8.422			
No. Batches	3	3	3	3	3	3	3	3			
No. Spec.	18	18	18	18	18	18	18	18			

Table 4-48: Statistics for UNT1 Modulus Data

4.21 Unnotched Tension 2 (UNT2)

The UNT2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, and ETW1.

For the normalized dataset, the CTA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA. The single point Weibull method was used for RTA and the single point non-parametric method was used for ETW1. Applying the modified CV, all conditions were pooled.

For the as measured dataset, the CTA and RTA conditions failed the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for CTA and RTA, and the single point log normal method was used for ETW1. Applying the modified CV, all conditions were pooled.

There was one outlier. The highest normalized value in batch three of the ETW1 condition was an outlier for the batch and for the environment. It was an outlier in the normalized dataset and in the as measured dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the UNT2 strength data in Table 4-49 and for the modulus data in Table 4-50. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-24.

Figure 4-24: Batch Plot for UNT2 Normalized Strength

Unnotched Tension 2 (UNT2) Basis Values and Statistics									
		Normalized		As-Measured					
Env	СТА	RTA	ETW1	СТА	RTA	ETW1			
Mean	91.74	88.47	74.38	87.67	84.63	71.12			
Stdev	3.234	2.080	2.508	4.198	2.473	2.296			
CV	3.525	2.351	3.372	4.788	2.922	3.228			
Mod CV	6.000	6.000	6.000	6.394	6.000	6.000			
Min	86.59	83.00	71.55	81.01	80.14	68.17			
Max	98.23	90.59	81.70	96.13	88.57	76.41			
No. Batches	3	3	3	3	3	3			
No. Spec.	18	18	18	18	18	18			
		Basis Va	alues and Esti	imates					
B-Basis Value		84.60	70.79			66.76			
B-Estimate	73.74			62.66	71.30				
imate	60.90	80.28	58.66	44.81	61.79	63.86			
Method	ANOVA	Weibull	Non-Parm.	ANOVA	ANOVA	Log Normal			
	М	odified CV Ba	asis Values ar	nd Estimates					
B-Basis Value	82.68	79.42	65.33	78.80	75.75	62.24			
A-Estimate	76.65	73.38	59.29	72.87	69.83	56.32			
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled			

Table 4-49: Statistics, B-Basis Values and Estimates for UNT2 Strength Data

	Unnotched Tension 2 (UNT2) Modulus Statistics										
		Normalized		As-Measured							
Env	СТА	RTA	ETW1	СТА	RTA	ETW1					
Mean	6.426	6.117	5.717	6.139	5.851	5.466					
Stdev	0.09540	0.08344	0.1906	0.1410	0.1211	0.1745					
CV	1.485	1.364	3.334	2.296	2.070	3.192					
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000					
Min	6.230	5.963	5.507	5.872	5.618	5.230					
Max	6.565	6.264	6.214	6.443	6.036	5.812					
No. Batches	3	3	3	3	3	3					
No. Spec.	18	18	18	18	18	18					

Table 4-50: Statistics for UNT2 Modulus Data

4.22 Unnotched Tension 3 (UNT3)

The UNT3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETW1.

For the normalized dataset, all conditions fail the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for all conditions. Applying the modified CV, all conditions were pooled.

For the as measured dataset, the single point normal method was used to compute values for CTA, and the RTA and ETW1 conditions were pooled. Applying the modified CV, the normal method for modified CV was used to compute values for all conditions.

There were no statistical outliers.

Statistics, basis values and estimates are given for the UNT3 strength data in Table 4-51 and for the modulus data in Table 4-52. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-25.

Figure 4-25: Batch Plot for UNT3 Normalized Strength

Unnotched Tension 3 (UNT3) Basis Values and Statistics									
	Normalized			As-Measured					
Env	СТА	RTA	ETW1	СТА	RTA	ETW1			
Mean	232.6	238.8	218.7	231.0	237.2	217.5			
Stdev	10.18	10.97	11.12	8.319	9.898	9.830			
CV	4.377	4.592	5.083	3.602	4.173	4.519			
Mod CV	6.189	6.296	6.542	6.000	6.087	6.260			
Min	214.5	218.4	195.1	216.4	219.5	198.0			
Max	251.9	254.5	233.8	246.2	252.2	232.5			
No. Batches	3	3	3	3	3	3			
No. Spec.	18	18	18	18	18	18			
		Basis Valu	es and Estir	nates		•			
B-Basis Value				214.6	219.2	199.5			
B-Estimate	185.8	190.5	165.3						
A-Estimate	152.4	156.1	127.2	202.9	207.0	187.3			
Method	ANOVA	ANOVA	ANOVA	Normal	Pooled	Pooled			
	Modified CV Basis Values and Estimates								
B-Basis Value	206.8	213.0	192.9	203.6	208.7	190.6			
A-Estimate	189.5	195.8	175.6	184.3	188.5	171.6			
Method	Pooled	Pooled	Pooled	Normal	Normal	Normal			

Table 4-51: Statistics, B-Basis Values and Estimates for UNT3 Strength Data

	Unnotched Tension 3 (UNT3) Modulus Statistics									
		Normalized		As-Measured						
Env	СТА	RTA	ETW1	СТА	RTA	ETW1				
Mean	13.80	13.63	13.09	13.71	13.54	13.01				
Stdev	0.5346	0.4089	0.2856	0.5489	0.4228	0.3963				
CV	3.873	3.873 3.000		4.003	3.123	3.047				
Mod CV	6.000	6.000	6.000	6.001	6.000	6.000				
Min	13.12	13.12	12.43	13.01	12.58	12.12				
Max	14.76	14.76 14.54 13.49		14.89	14.28	13.56				
No. Batches	3	3	3	3	3	3				
o. Spec.	18	18	19	18	18	19				

Table 4-52: Statistics for UNT3 Modulus Data

4.23 Unnotched Compression 1 (UNC1)

The UNC1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1, and ETW2.

The ETW2 condition consists of one batch with ten specimens. The single point normal method was used to compute estimates for the ETW2 condition for both the normalized and as measured datasets.

There were no diagnostic test failures within the remaining conditions, therefore the RTA, ETA, and ETW1 conditions were pooled in both the normalized and as measured datasets.

There were two statistical outliers. The lowest normalized value in batch two of the RTA condition was an outlier for the batch but no for the condition. It was an outlier in the normalized dataset and in the as measured dataset. The lowest as measured value in batch three of the RTA condition was an outlier for the batch but not for the environment. It was an outlier in the as measured dataset but not in the normalized dataset. They were retained for this analysis.

Statistics, basis values and estimates are given for the UNC1 strength data in Table 4-53 and Table 4-54, and for the modulus data in Table 4-55. The normalized data and B-basis values are shown graphically in Figure 4-26.

Figure 4-26: Batch Plot for UNC1 Normalized Strength

Normalized Un	Normalized Unnotched Compression 1 (UNC1) Basis Values and Statistics								
Env	RTA	ETA	ETW1	ETW2					
Mean	87.41	62.46	55.56	27.94					
Stdev	5.774	5.237	3.288	2.012					
CV	6.606	8.385	5.918	7.202					
Mod CV	7.303	8.385	6.959	8.000					
Min	75.00	49.28	49.30	24.83					
Max	97.56	70.83	60.90	31.39					
No. Batches	s 3 3		3	1					
No. Spec.	18	20	18	10					
	Basis Val	ues and Estim	ates						
B-Basis Value	78.75	53.90	46.91						
B-Estimate				23.18					
A-Estimate	72.99	48.11	41.14	19.86					
Method	Pooled	Pooled	Pooled	Normal					
Мо	dified CV Ba	sis Values and	Estimates						
B-Basis Value	78.11	53.26	46.26						
B-Estimate				22.65					
A-Estimate	71.91	47.05	40.07	18.96					
Method	Pooled	Pooled	Pooled	Normal					

Table 4-53: Normalized Statistics, B-Basis Values and Estimates for UNC1 Strength Data

As Measur	ed Unnotched (Compression 1 Statistics	(UNC1) Basis V	/alues and
Env	RTA	ETA	ETW1	ETW2
Mean	80.39	57.54	51.58	25.89
Stdev	6.265	4.413	3.768	1.751
CV	7.793	7.670	7.305	6.764
Mod CV	7.896	7.835	7.652	8.000
Min	67.46	46.02	46.18	23.15
Max	90.38	64.68	57.65	28.75
No. Batches	3	3	3	1
No. Spec.	18	20	18	10
	Basis	alues and Est	imates	
B-Basis Value	71.71	48.95	42.90	
B-Estimate				21.75
A-Estimate	65.93	43.15	37.12	18.85
Method	Pooled	Pooled	Pooled	Normal
	Modified CV	Basis Values ar	nd Estimates	
B-Basis Value	71.52	48.75	42.71	
B-Estimate				20.99
A-Estimate	65.61	42.83	36.80	17.57
Method	Pooled	Pooled	Pooled	Normal

Table 4-54: As Measured Statistics, B-Basis Values and Estimates for UNC1 Strength Data

NCP-RP-2024-009 Rev -

	Unnotched Compression 1 (UNC1) Modulus Statistics										
	Normalized					As-N	leasured				
Env	RTA	ETA	ETW1	ETW2	RTA	ETA	ETW1	ETW2			
Mean	7.974	7.811	7.551	6.141	7.335	7.185	7.018	5.689			
Stdev	0.1905	0.5572	0.4160	0.4983	0.3735	0.6815	0.5827	0.4288			
CV	2.389	7.133	5.509	8.114	5.092	9.485	8.303	7.537			
Min	7.566	7.068	6.824	5.341	6.466	6.026	5.860	4.998			
Max	8.307	9.402	8.447	6.758	7.777	8.714	8.144	6.158			
No. Batches	3	3	3	1	3	3	3	1			
No. Spec.	18	18	18	10	18	18	18	10			

Table 4-55: Statistics for UNC1 Modulus Data

4.24 Unnotched Compression 2 (UNC2)

The UNC2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the normalized dataset, there were no diagnostic test failures, therefore both conditions were pooled. Similarly, applying the modified CV, both conditions were pooled.

Fort the as measured dataset, the RTA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for RTA and the single point normal method was used for ETW1. Applying the modified CV, pooling was not possible because the pooled dataset failed the test for equality of variances so the normal method for modified CV was used to compute values for both conditions.

There were no statistical outlies.

Statistics, basis values and estimates are given for the UNC2 strength data in Table 4-56 and for the modulus data in Table 4-57. The normalized data and B-basis values are shown graphically in Figure 4-27.

Figure 4-27: Batch Plot for UNC2 Normalized Strength

Unnotched Compression 2 (UNC2) Basis Values and Statistics						
	Norn	nalized	As-Measured			
Env	RTA	ETW1	RTA	ETW1		
Mean	60.65	36.13	57.56	34.43		
Stdev	2.239	1.690	2.348	1.724		
CV	3.691	4.679	4.079	5.006		
Mod CV	6.000	6.339	6.039	6.503		
Min	56.10	33.26	52.74	31.62		
Max	64.28	38.72	61.94	37.62		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis V	alues and Estir	nates			
B-Basis Value	57.03	32.52		31.03		
B-Estimate			44.85			
A-Estimate	54.58	30.06	35.79	28.62		
Method	Pooled	Pooled	ANOVA	Normal		
Modified CV Basis Values and Estimates						
B-Basis Value	55.11	30.59	50.70	30.01		
A-Estimate	51.34	26.83	45.84	26.89		
Method	Pooled	Pooled	Normal	Normal		

Table 4-56: Statistics, B-Basis Values and Estimates for UNC2 Strength Data

Unnotched Compression 2 (UNC2) Modulus Statistics						
	Norm	alized	As-Me	asured		
Env	RTA	ETW1	RTA	ETW1		
Mean	5.684	5.496	5.394	5.236		
Stdev	0.1255	0.1881	0.1489	0.1577		
CV	2.208	3.422	2.761	3.012		
Min	5.505	5.176	5.159	4.828		
Max	5.977	5.793	5.756	5.501		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		

Table 4-57: Statistics for UNC2 Modulus Data

4.25 Unnotched Compression 3 (UNC3)

The UNC3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

The RTA condition consists of three batches with seventeen specimens. Therefore, the values computed for RTA are estimates.

For the normalized and the as measured dataset, both conditions have coefficients of variation larger than 8% therefore, modified CV results are the same as as measured CV results.

For the normalized dataset, pooling both conditions was not possible because the pooled dataset failed the test for equality of variances so the single point normal method was used to compute estimates and values for both conditions.

For the as measured dataset, pooling both conditions was not possible because the pooled dataset failed the test for equality of variances so the single point Weibull method was used to compute estimates for RTA and the single point normal method was used for ETW1.

There were no statistical outliers.

Statistics, basis values and estimates are given for the UNC3 strength data in Table 4-58 and for the modulus data in Table 4-59. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-28.

Figure 4-28: Batch Plot for UNC3 Normalized Strength

Unnotched Compression 3 (UNC3) Basis Values and Statistics					
	Norm	nalized	As-Measured		
Env	RTA	ETW1	RTA	ETW1	
Mean	109.6	65.88	107.8	64.91	
Stdev	12.66	5.665	12.66	5.598	
CV	11.55	8.599	11.75	8.624	
Mod CV	11.55	8.599	11.75	8.624	
Min	87.42	56.11	85.54	54.91	
Max	130.3	76.64	126.3	74.23	
No. Batches	3	3	3	3	
No. Spec.	17	18	17	18	
	Basis Va	alues and Estir	nates		
B-Basis Value		54.70		53.86	
B-Estimate	84.26		81.48		
A-Estimate	66.33	46.77	59.45	46.03	
Method	Normal	Normal	Weibull	Normal	
M	odified CV Ba	asis Values and	d Estimates		
B-Basis Value		54.70		53.86	
B-Estimate	84.26		82.41		
A-Estimate	66.38	46.79	64.52	46.04	
Method	Normal	Normal	Normal	Normal	

Table 4-58: Statistics, B-Basis Values and Estimates for UNC3 Strength Data

Unnotched Compression 3 (UNC3) Modulus Statistics					
	Norm	alized	As-Me	asured	
Env	RTA	ETW1	RTA	ETW1	
Mean	12.42	12.55	12.20	12.36	
Stdev	0.5001	0.5647	0.5696	0.6312	
CV	4.025	4.501	4.669	5.105	
Mod CV	6.012	6.251	6.335	6.552	
Min	12.05	11.58	11.67	11.34	
Max	13.58	13.44	13.75	13.48	
No. Batches	3	3	3	3	
No. Spec.	18	18	18	18	

Table 4-59: Statistics for UNC3 Modulus Data	
--	--

4.26 Laminate Short-Beam Strength (SBS1)

The Laminate Short Beam Strength data is not normalized. Tests were conducted in the following environmental conditions: RTA, ETA and ETW1.

The ETA condition failed the ADK test for batch equivalency. The single point normal method was used for RTA, ANOVA was used to compute estimates for ETA and the single point Weibull method was used for ETW1. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

There were two statistical outliers. The lowest value in batch one of the RTA condition was an outlier for the condition but not for the batch. The lowest value in batch two of the ETW1 condition was an outlier for the condition but not for the batch. They were retained for this analysis.

Statistics, basis values and estimates are given for the SBS1 data in Table 4-60. The as measured data, B-estimates and B-basis values are shown graphically in Figure 4-29.

Figure 4-29: Batch Plot for As Measured SBS1

Laminate Short Beam Strength (SBS1)						
As Measured Basis Values and Statistics						
			1			
Env	RTA	ETA	ETW1			
Mean	9.259	6.688	6.004			
Stdev	0.3696	0.3251	0.2787			
CV	3.992	4.861	4.642			
Mod CV	6.000	6.431	6.321			
Min	8.179	6.084	5.073			
Max	9.767	7.283	6.338			
No. Batches	3	3	3			
No. Spec.	18	18	18			
Bas	sis Values a	and Estimate	S			
B-Basis Value	8.529		5.490			
B-Estimate		4.918				
A-Estimate	8.012	3.655	4.951			
Method	Normal	ANOVA	Weibull			
Modified (CV Basis Va	alues and Est	timates			
B-Basis Value	8.442	5.872	5.188			
A-Estimate	7.898	5.327	4.643			
Method	Pooled	Pooled	Pooled			

Table 4-60: Statistics, B-Basis Values and Estimates for SBS1 Strength Data

4.27 Open-Hole Tension 1 (OHT1)

The OHT1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

There were no diagnostic test failures in either the normalized dataset nor the as measured dataset using the as measured CV so all conditions were pooled. Applying the modified CV, all conditions were pooled for the normalized dataset, but for the as measured dataset, the RTA condition failed the normality test, therefore basis values were not computed for it and the normal method for modified CV was used for the remaining conditions.

There were three statistical outliers. The lowest as measured value in batch one of the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The highest as measured value in batch five of the ETA condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The highest as measured value in batch one of the ETW1 condition was an outlier for the batch but no for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The highest as measured value in batch one of the ETW1 condition was an outlier for the batch but no for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. They were retained for this analysis.

Statistics, basis values and estimates are given for the OHT1 strength data in Table 4-61 and Table 4-62. The normalized data, B-basis values and B-estimates are shown graphically in Figure 4-30.

Figure 4-30: Batch Plot for OHT1 Normalized Strength

Normalized Open Hole Tension 1 (OHT1) Strength Basis Values and Statistics						
Env	СТА	RTA	ETA	ETW1		
Mean	87.33	91.71	90.57	92.05		
Stdev	3.418	2.613	2.481	2.100		
CV	3.914	2.849	2.740	2.281		
Mod CV	6.000	6.000	6.000	6.000		
Min	83.29	86.54	85.98	89.00		
Max	93.04	95.12	96.86	95.61		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	19		
	Basis V	alues and Estin	nates			
B-Basis Value	82.64	87.02	85.88	87.38		
A-Estimate	79.55	83.93	82.79	84.29		
Method	Pooled	Pooled	Pooled	Pooled		
Modified CV Basis Values and Estimates						
B-Basis Value	77.86	82.25	81.11	82.63		
A-Estimate	71.62	76.01	74.87	76.39		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-61: Normalized Statistics, B-Basis Values and Estimates for OHT1 Strength Data

As Measured Open Hole Tension 1 (OHT1) Strength Basis Values and Statistics					
Env	СТА	RTA	ETA	ETW1	
Mean	82.87	87.24	85.58	87.38	
Stdev	3.672	2.938	2.547	2.095	
CV	4.431	3.367	2.976	2.398	
Mod CV	6.215	6.000	6.000	6.000	
Min	77.61	81.06	81.79	84.08	
Max	88.84	91.11	91.44	91.38	
No. Batches	3	3	3	3	
No. Spec.	18	18	18	19	
	Basis Val	lues and Est	imates		
B-Basis Value	77.88	82.25	80.59	82.42	
A-Estimate	74.59	78.96	77.30	79.12	
Method	Pooled	Pooled	Pooled	Pooled	
Мос	lified CV Bas	sis Values a	nd Estimates	S	
B-Basis Value	72.71		75.44	77.16	
A-Estimate	65.51	NA	68.27	69.92	
Method	Normal		Normal	Normal	

Table 4-62: As Measured Statistics, B-Basis Values and Estimates for OHT1 Strength Data

4.28 Open-Hole Tension 2 (OHT2)

The OHT2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, and ETW1.

For the normalized dataset, the RTA condition failed the ADK test for batch equivalency, therefore pooling was not possible. The single point normal method was used to compute values for CTA and ETW1, and ANOVA was used to compute estimates for RTA. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

For the as measured dataset, the CTA and RTA conditions failed the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for CTA and RTA, and the single point normal method was used for ETW1. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

There was one statistical outlier. The highest normalized value in batch five of the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset and in the as measured dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the OHT2 strength data in Table 4-63. The normalized data and B-basis values are shown graphically in Figure 4-31.

Figure 4-31	: Batch	Plot for	OHT2	Normalized	Strength
-------------	---------	----------	------	------------	----------

Ċ	Open Hole Te	ension 2 (OHT2) Strength Ba	asis Values a	nd Statistics	
	Normalized				As-Measured	
Env	СТА	RTA	ETW1	СТА	RTA	ETW1
Mean	59.01	58.25	58.03	56.39	55.93	55.60
Stdev	0.7466	1.516	1.113	1.130	1.818	1.534
CV	1.265	2.602	1.919	2.003	3.250	2.758
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000
Min	57.61	55.75	56.05	54.72	53.10	52.46
Max	60.42	61.99	59.98	58.86	60.01	58.14
No. Batches	3	3	3	3	3	3
No. Spec.	18	18	18	18	18	18
		Basis Va	lues and Est	imates		
B-basis Value	57.54		55.83			52.58
B-Estimate		52.27		50.73	45.51	
A-Estimate	56.49	48.01	54.27	46.70	38.08	50.43
Method	Normal	ANOVA	Normal	ANOVA	ANOVA	Normal
Modified CV Basis Values and Estimates						
B-basis Value	52.80	52.04	51.82	50.45	49.98	49.66
A-Estimate	48.66	47.90	47.68	46.48	46.02	45.69
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled

Table 4-63: Statistics, B-Basis Values and Estimates for OHT2 Strength Data

Page 136 of 182

4.29 Open-Hole Tension 3 (OHT3)

The OHT3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, and ETW1.

For both, the normalized and as measured dataset, using the original CV the three conditions failed the ADK test for batch equivalency, therefore the ANOVA method was used and since they consist of 3 batches, only estimates could be computed. Applying the modified CV, for both datasets the CTA condition failed the ADK test, therefore basis values were not computed for CTA, while the remaining conditions were pooled.

There were no statistical outliers.

Statistics, basis values and estimates are given for the OHT3 strength data in Table 4-64. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-32.

Figure 4-32: Batch Plot for OHT3 Normalized Strength

Open Hole Tension 3 (OHT3) Strength Basis Values and Statistics							
Property	Normalized				As Measured		
Env	СТА	RTA	ETW1	СТА	RTA	ETW1	
Mean	149.3	154.9	179.9	146.7	151.6	177.2	
Stdev	11.46	6.926	3.519	12.49	8.110	4.673	
CV	7.678	4.470	1.956	8.510	5.349	2.638	
Mod CV	7.839	6.235	6.000	8.510	6.674	6.000	
Min	131.2	146.8	172.1	127.8	141.9	168.1	
Max	168.9	169.2	186.8	167.3	168.7	185.2	
No. Batches	3	3	3	3	3	3	
No. Spec.	18	18	24	18	18	24	
			Estimates				
B-Estimate	90.76	121.2	163.3	78.40	104.5	148.8	
A-Estimate	49.01	97.19	151.4	29.66	70.94	128.5	
Method	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	ANOVA	
Modified CV Basis Values and Estimates							
B-Basis Value		136.4	161.8		132.9	158.9	
A-Estimate	NA	123.8	149.2	NA	120.3	146.1	
Method		Pooled	Pooled		Pooled	Pooled	

Table 4-64: Statistics, B-Basis Values and Estimates for OHT3 Strength Data

4.30 Open-Hole Tension 4 (OHT4)

The OHT4 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

Both conditions tested consist of one batch with six specimens, therefore, only estimates are provided.

For both the normalized dataset and the as measured dataset, the single point normal method was used to compute estimates using the original cv and the normal method for modified CV was used to compute estimates using the modified CV.

There was one statistical outlier. The lowest normalized value of the ETW1 condition was an outlier for the batch and for the condition. It was an outlier in the normalized dataset but not in the as measured dataset.

Statistics and estimates are given for the OHT4 strength data in Table 4-65. The normalized data and B-estimates are shown graphically in Figure 4-33.

Figure 4-33: Batch Plot for OHT4 Normalized Strength

Open Hole Tension 4 (OHT4) Strength Basis Values and Statistics							
		nalized	As-Me	asured			
Env	RTA	ETW1	RTA	ETW1			
Mean	100.9	123.9	92.71	114.9			
Stdev	2.871	7.518	3.337	8.497			
CV	2.845	6.068	3.599	7.398			
Mod CV	8.000	8.000	8.000	8.000			
Min	98.00	109.2	88.96	98.89			
Max	105.9	129.4	97.28	121.6			
No. Batches	1	1	1	1			
No. Spec.	6	6	6	6			
	E	Estimates					
B-Estimate	92.22	101.1	82.61	89.13			
A-Estimate	86.04	84.93	75.42	70.83			
Method	Normal	Normal	Normal	Normal			
	Modified CV Estimates						
B-Estimate	76.46	93.87	82.61	89.13			
A-Estimate	59.08	72.52	75.42	70.83			
Method	Normal	Normal	Normal	Normal			

Table 4-65: Statistics and Estimates for OHT4 Strength Data

4.31 Filled-Hole Tension 1 (FHT1)

The FHT1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, ETA, and ETW1.

For the normalized dataset, the ETA condition failed the ADK test for batch equivalency. There were no other test failures. ANOVA was used to compute estimates for ETA and the remaining conditions were pooled. Applying the modified CV, there were no diagnostic test failure so all conditions were pooled.

For the as measured dataset, the CTA and ETA conditions failed the ADK test for batch equivalency. ANOVA was used to compute estimates for CTA and ETA and the remaining conditions were pooled. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

There was one statistical outlier. The lowest normalized value in batch five of the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the FHT1 strength data in Table 4-66 and Table 4-67. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-34.

Figure 4-34: Batch Plot for FHT1 Normalized Strength

Normalized Filled Hole Tension 1 (FHT1) Strength Basis Values and Statistics						
Env	СТА	RTA	ETA	ETW1		
Mean	86.04	85.68	86.59	87.77		
Stdev	1.938	1.925	2.872	1.626		
CV	2.253	2.246	3.316	1.853		
Mod CV	6.000	6.000	6.000	6.000		
Min	82.82	82.79	82.51	85.26		
Max	89.53	89.57	92.72	91.16		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
Basis Values and Estimates						
B-Basis Value	82.79	82.43		84.52		
B-Estimate			68.81			
A-Estimate	80.62	80.26	56.12	82.35		
Method	Pooled	Pooled	ANOVA	Pooled		
Modified CV Basis Values and Estimates						
B-Basis Value	76.98	76.62	77.53	78.71		
A-Estimate	71.01	70.65	71.55	72.74		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-66: Normalized Statistics, B-Basis Values and Estimates for FHT1 Strength Data

As Measured Filled Hole Tension 1 (FHT1) Strength Basis Values and Statistics						
Env	СТА	RTA	ETA	ETW1		
Mean	80.95	80.55	81.61	82.98		
Stdev	1.929	2.285	3.429	2.208		
CV	2.383	2.836	4.201	2.661		
Mod CV	6.000	6.000	6.000	6.000		
Min	77.92	77.02	77.02	79.72		
Max	83.97	85.21	89.57	88.28		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
Basis Values and Estimates						
B-Basis Value		76.46		78.89		
B-Estimate	71.00		60.65			
A-Estimate	63.90	73.67	45.69	76.11		
Method	ANOVA	Pooled	ANOVA	Pooled		
Modified CV Basis Values and Estimates						
B-Basis Value	72.38	71.97	73.04	74.41		
A-Estimate	66.73	66.32	67.39	68.76		
Method	Pooled	Pooled	Pooled	Pooled		

 Table 4-67: As Measured Statistics, B-Basis Values and Estimates for FHT1 Strength Data
4.32 Filled-Hole Tension 2 (FHT2)

The FHT2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, and ETW1.

For the normalized dataset, all conditions failed the ADK test for batch equivalency. ANOVA was used to compute estimates for all conditions. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

For the as measured dataset, there were no diagnostic test failures so all conditions were pooled with the as measured CV and with the modified CV.

There was one statistical outlier. The lowest normalized value in batch one of the ETW1 conditions was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset and in the as measured dataset. It was retained for analysis.

Statistics, basis values and estimates are given for the FHT2 strength data in Table 4-68. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-35.

Figure 4-35: Batch plot for FHT2 Normalized Strength

	Filled-Hole Te	ension 2 (FHT2) Strength Ba	asis Values ai	nd Statistics	
		Normalized			As-Measured	
Env	СТА	RTA	ETW1	СТА	RTA	ETW1
Mean	68.77	61.70	56.60	65.53	59.09	54.13
Stdev	1.867	1.289	0.7041	1.326	0.8098	0.8979
CV	2.716	2.090	1.244	2.024	1.371	1.659
Mod CV	6.000	6.000	6.000	6.000	6.000	6.000
Min	65.07	59.18	54.83	63.12	57.64	52.93
Мах	72.38	63.38	57.51	68.91	60.79	55.35
No. Batches	3	3	3	3	3	3
No. Spec.	18	18	18	18	18	18
		Basis Va	lues and Est	imates		
B-Basis Value				63.70	57.26	52.29
B-Estimate	58.85	55.80	53.69			
A-Estimate	51.78	51.59	51.62	62.47	56.03	51.07
Method	ANOVA	ANOVA	ANOVA	Pooled	Pooled	Pooled
Modified CV Basis Values and Estimates						
B-Basis Value	62.12	55.06	49.95	59.18	52.74	47.78
A-Estimate	57.69	50.62	45.52	54.94	48.51	43.54
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled

Table 4-68: Statistics, B-Basis Values and Estimates for FHT2 Strength Data

4.33 Filled-Hole Tension 3 (FHT3)

The FHT3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: CTA, RTA, and ETW1.

For the normalized dataset, there were no diagnostic test failures so all conditions were pooled with the as measured CV and with the modified CV.

For the as measured dataset, the RTA condition failed the ADK test for batch equivalency, therefore pooling was not possible. ANOVA was used to compute estimates for RTA and the single point normal method was used for the remaining conditions. Applying the modified CV, there were no diagnostic test failures so all conditions were pooled.

There were no statistical outliers.

Statistics, basis values and estimates are given for the FHT3 strength data in Table 4-69. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-36.

Figure 4-36: Batch plot for FHT3 Normalized Strength

	Filled-Hole Te	ension 3 (FHT3) Strength Ba	asis Values ai	nd Statistics	
		Normalized			As-Measured	
Env	СТА	RTA	ETW1	СТА	RTA	ETW1
Mean	128.6	129.0	136.7	127.6	127.7	135.7
Stdev	5.336	4.367	4.084	4.900	4.293	4.099
CV	4.150	3.386	2.987	3.839	3.362	3.020
Mod CV	6.075	6.000	6.000	6.000	6.000	6.000
Min	119.2	122.1	131.1	121.2	121.4	128.2
Max	138.3	135.8	143.8	139.3	135.2	143.5
No. Batches	3	3	3	3	3	3
No. Spec.	18	18	18	18	18	18
		Basis Va	lues and Est	imates		
B-Basis Value	120.4	120.8	128.6	118.0		127.6
B-Estimate					106.9	
A-Estimate	114.9	115.3	123.1	111.1	92.01	121.9
Method	Pooled	Pooled	Pooled	Normal	ANOVA	Normal
	I	Modified CV Ba	sis Values a	nd Estimates		
B-Basis Value	114.6	115.0	122.7	113.8	113.8	121.9
A-Estimate	105.2	105.6	113.4	104.5	104.6	112.6
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled

Table 4-69: Statistics, B-Basis Values and Estimates for FHT3 Strength Data

4.34 Open-Hole Compression 1 (OHC1)

The OHC1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, ETW1 and ETW2.

The ETW2 condition consists of one batch with six specimens, therefore only estimates could be computed for ETW2.

For both the normalized dataset and the as measured dataset, the ETW1 condition failed the ADK test for batch equivalency. The RTA and ETA conditions were pooled, ANOVA was used to compute estimates for ETW1 and the single point normal method was used for ETW2. Applying the modified CV, the normal method for modified CV was used for ETW2 and the remaining conditions were pooled.

There were no statistical outliers.

Statistics, basis values and estimates are given for the OHC1 strength data in Table 4-70 and Table 4-71. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-37.

Figure 4-37: Batch Plot for OHC1 Normalized Strength

Page 149 of 182

Normalized Open Hole Compression 1 (OHC1) Strength Basis Values and Statistics						
Env	RTA	ETA	ETW1	ETW2		
Mean	48.04	37.97	35.30	24.60		
Stdev	2.125	1.891	1.566	0.3955		
CV	4.424	4.982	4.436	1.608		
Mod CV	6.212	6.491	6.218	8.000		
Min	44.33	34.33	32.29	24.14		
Max	51.33	42.26	38.34	25.12		
No. Batches	3	3	3	1		
No. Spec.	18	18	18	6		
	Basis Val	ues and Estima	ates			
B-basis Value	44.37	34.30				
B-Estimate			26.50	23.40		
A-Estimate	41.88	31.81	20.22	22.55		
l ethod	Pooled	Pooled	ANOVA	Normal		
Мо	dified CV Ba	sis Values and	Estimates			
B-basis Value	43.49	33.42	30.75			
B-Estimate				18.64		
A-Estimate	40.46	30.38	27.72	14.40		
N ethod	Pooled	Pooled	Pooled	Normal		

Table 4-70: Normalized Statistics, B-Basis Values and Estimates for OHC1 Strength Data

As Measured Open Hole Compression 1 (OHC1) Strength Basis Values and Statistics						
Env	RTA	ETA	ETW1	ETW2		
Mean	44.71	35.27	32.90	22.77		
Stdev	1.735	1.864	1.279	0.5887		
CV	3.881	5.285	3.886	2.585		
Mod CV	6.000	6.643	6.000	8.000		
Min	41.94	31.85	30.42	22.12		
Max	48.37	39.72	35.69	23.63		
No. Batches	3	3	3	1		
No. Spec.	18	18	18	6		
	Basis V	alues and Estin	mates			
B-basis Value	41.43	31.99				
B-Estimate			26.34	20.99		
A-Estimate	39.20	29.76	21.67	19.72		
Method	Pooled	Pooled	ANOVA	Normal		
	Modified CV	Basis Values an	d Estimates			
B-basis Value	40.55	31.11	28.74			
B-Estimate				17.26		
A-Estimate	37.77	28.33	25.96	13.33		
Method	Pooled	Pooled	Pooled	Normal		

Table 4-71: As Measured Statistics, B-Basis Values and Estimates for OHC1 Strength Data

4.35 Open-Hole Compression 2 (OHC2)

The OHC2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For both the normalized dataset and the as measured dataset, the ETW1 condition failed the ADK test for batch equivalency. The single point normal method was used to compute values and estimates for RTA, and ANOVA was used to compute estimates for ETW1. Applying the modified CV, there were no diagnostic test failures so both conditions were pooled.

There was one statistical outlier. The lowest as measured value in batch one of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. It was retained for this analysis.

Statistics, basis values and estimates are given for the OHC2 strength data in Table 4-72. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-38.

Figure 4-38: Batch Plot for OHC2 Normalized Strength

Open Hole Compression 2 (OHC2) Strength Basis Values and Statistics					
	Norm	alized	As-Me	asured	
Env	RTA	ETW1	RTA	ETW1	
Mean	38.48	29.49	36.72	27.96	
Stdev	1.275	1.358	1.388	0.8734	
CV	3.314	4.605	3.779	3.124	
Mod CV	6.000	6.302	6.000	6.000	
Min	36.50	26.27	34.17	25.86	
Max	40.62	31.59	38.66	29.47	
No. Batches	3	3	3	3	
No. Spec.	18	18	18	18	
	Basis Valu	ues and Est	imates	•	
B-basis Value	35.96		33.98		
B-Estimate		22.00		23.71	
A-Estimate	34.18	16.65	32.04	20.68	
Method	Normal	ANOVA	Normal	ANOVA	
Modi	fied CV Bas	sis Values a	nd Estimate	S	
B-basis Value	34.66	25.68	33.15	24.39	
A-Estimate	32.06	23.08	30.73	21.96	
Method	Pooled	Pooled	Pooled	Pooled	

Т	able 4-72: Statistic	s. B-Basis Va	lues and Estin	nates for OHC	2 Strength Data
		3, D-Dasis va			

4.36 Open-Hole Compression 3 (OHC3)

The OHC3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the normalized dataset, there were no diagnostic test failures so both conditions were pooled using the as measured CV and the modified CV.

For the as measured dataset, the RTA condition failed the ADK test for batch equivalency. ANOVA was used to compute estimates for RTA and the single point normal method was used for ETW1. Applying the modified CV, there were no diagnostic test failures so both conditions were pooled.

There were no statistical outliers.

Statistics, basis values and estimates are given for the OHC3 strength data in Table 4-73. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-39.

Figure 4-39: Batch Plot for OHC3 Normalized Strength

Open Hole Compression 3 (OHC3) Strength Basis Values and Statistics						
		alized	As-Mea	asured		
Env	RTA	ETW1	RTA	ETW1		
Mean	61.95	41.63	60.71	40.85		
Stdev	2.275	2.190	2.635	1.986		
CV	3.672	5.262	4.340	4.862		
Mod CV	6.000	6.631	6.170	6.431		
Min	58.66	38.03	57.05	37.38		
Max	66.72	46.04	66.47	44.34		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis Valu	ues and Est	imates			
B-basis Value	57.89	37.56		36.93		
B-Estimate			47.84			
A-Estimate	55.12	34.79	38.66	34.15		
Method	Pooled	Pooled	ANOVA	Normal		
Modified CV Basis Values and Estimates						
B-basis Value	55.99	35.66	54.81	34.96		
A-Estimate	51.93	31.61	50.81	30.95		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-73: Statistics, B-Basis Values and Estimates for OHC3 Strength Data

4.37 Open-Hole Compression 4 (OHC4)

The OHC4 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

Both conditions tested consist of one batch with six specimens, therefore, only estimates are provided.

For both the normalized and as measured datasets, the single point normal method was used to compute estimates for both conditions and applying the modified CV, the normal method for modified CV was used to compute estimates for both conditions.

There were no statistical outliers.

Statistics and estimates are given for the OHT4 strength data in Table 4-74. The normalized data and B-estimates are shown graphically in Figure 4-40.

Figure 4-40: Batch Plot for OHC4 Normalized Strength

Open Hole Compression 4 (OHC4) Strength Basis Values and							
		Statistics	1				
	Norm	nalized	As-Mea	asured			
Env	RTA	ETW1	RTA	ETW1			
Mean	47.84	38.08	43.71	34.94			
Stdev	3.304	1.918	2.758	1.208			
CV	6.906	5.037	6.310	3.458			
Mod CV	8.000	8.000	8.000	8.000			
Min	42.43	35.78	38.93	33.44			
Max	52.61	40.44	47.46	36.88			
No. Batches	1	1	1	1			
No. Spec.	6	6	6	6			
	E	Estimates					
B-Estimate	37.83	32.27	35.36	31.28			
A-Estimate	30.72	28.14	29.42	28.67			
lethod	Normal	Normal	Normal	Normal			
	Modified CV Estimates						
B-Estimate	36.25	28.85	33.12	26.47			
A-Estimate	28.01	22.29	25.59	20.45			
lethod	Normal	Normal	Normal	Normal			

Table 4-74: Statistics and Estimates for OHC4 Strength Data

4.38 Filled-Hole Compression 1 (FHC1)

The FHC1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA and ETW1.

The RTA condition consists of three batches and seventeen specimens, therefore pooling was not possible and only estimates are provided for RTA.

For both the normalized and the as measured datasets, the single point normal method was used to compute estimates for RTA and basis values and estimates for ETA and ETW1, using the as measured CV and the modified CV.

There were two statistical outliers. The highest normalized value in batch one of the RTA condition was an outlier for the condition but not for the batch. It was an outlier in the normalized dataset but not in the as measured dataset. The highest normalized values in batch three of the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. They were retained for analysis.

Statistics, basis values and estimates are given for the FHC1 strength data in Table 4-75. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-41.

Figure 4-41: Batch plot for FHC1 Normalized Strength

Filled-Hole Compression 1 (FHC1) Strength Basis Values and Statistics							
	•	Normalized			As-Measured		
Env	RTA	ETA	ETW1	RTA	ETA	ETW1	
Mean	69.11	54.43	48.96	65.27	51.25	45.98	
Stdev	2.943	2.331	2.000	3.094	2.060	1.800	
CV	4.258	4.283	4.085	4.740	4.018	3.915	
Mod CV	6.129	6.142	6.042	6.370	6.009	6.000	
Min	64.28	50.51	45.47	59.76	47.55	42.07	
Max	77.17	58.72	53.43	73.24	54.10	49.45	
No. Batches	3	3	3	3	3	3	
No. Spec.	17	18	18	17	18	18	
		Basis Va	lues and Es	timates			
B-Basis Value		49.83	45.02		47.19	42.43	
B-Estimate	63.22			59.08			
A-Estimate	59.05	46.56	42.22	54.70	44.31	39.91	
Method	Normal	Normal	Normal	Normal	Normal	Normal	
	Мо	dified CV Ba	sis Values a	and Estimate	es		
B-Basis Value		47.83	43.12		45.17	40.53	
B-Estimate	60.63			56.95			
A-Estimate	54.65	43.16	38.99	51.07	40.87	36.68	
Method	Normal	Normal	Normal	Normal	Normal	Normal	

Table 4-75: Statistics, B-Basis Values and Estimates for FHC1 Strength Data

4.39 Filled-Hole Compression 2 (FHC2)

The FHC2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the normalized dataset, using the as measured CV and the modified CV, there were no diagnostic test failures, therefore both conditions were pooled.

For the as measured dataset, using the as measured CV and the modified CV, pooling was not possible because in both instances the pooled dataset failed the Levene's test for equality of variances, therefore the single point normal method and the normal method for modified CV were used for both conditions.

There was one statistical outlier. The highest normalized value in batch two of the RTA condition was an outlier for the batch and for the environment. It was an outlier in the normalized dataset and in the as measured dataset. It was retained for this analysis.

Statistics are given for the FHC2 strength data in Table 4-76. The normalized specimen data are shown graphically in Figure 4-42.

Page 161 of 182

Filled-Hole Compression 2 (FHC2) Strength Basis Values and Statistics						
Property	Norma	alized	As Mea	asured		
Env	RTA	ETW1	RTA	ETW1		
Mean	56.38	38.74	53.70	36.93		
Stdev	2.324	1.475	2.454	1.333		
CV	4.121	3.807	4.570	3.610		
Mod CV	6.061	6.000	6.285	6.000		
Min	53.57	35.70	50.66	34.47		
Max	63.65	41.81	61.13	39.48		
No. Batches	3	3	3	3		
No. Spec.	21	21	21	21		
	Basis Va	lues and Est	imates			
B-Basis Value	52.93	35.29	49.03	34.39		
A-Estimate	50.56	32.92	45.69	32.58		
Method	Pooled	Pooled	Normal	Normal		
Mo	odified CV Ba	sis Values ai	nd Estimates			
B-Basis Value	51.20	33.56	47.27	32.71		
A-Estimate	47.64	30.00	42.69	29.70		
Method	Pooled	Pooled	Normal	Normal		

Table 4-76: Statistics, B-Basis Values and Estimates for FHC2 Strength Data

4.40 Filled-Hole Compression 3 (FHC3)

The FHC3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the normalized dataset, pooling was not possible because the pooled dataset failed the Levene's test for equality of variances. The single point normal method was used to compute values and estimates for both conditions. Applying the modified CV, pooling was not possible because the pooled dataset failed the normality test, so the normal method for modified CV was used to compute values and estimates for both conditions.

For the as measured dataset, pooling was not possible because the pooled dataset failed the Levene's test for equality of variances. The single point normal method was used for RTA and the single point Weibull method was used for ETW1. Applying the modified CV, pooling was not possible because the pooled dataset failed the normality test, so the normal method for modified CV was used to compute values and estimates for both conditions.

There were three statistical outliers. The lowest normalized value in batch one of the RTA condition was an outlier for the batch but not for the condition. It was an outlier in the normalized dataset and in the as measured dataset. The lowest as measured value in batch one of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The lowest as measured value in batch three of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The lowest as measured value in batch three of the ETW1 condition was an outlier for the batch but not for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. They were retained for this analysis.

Statistics, basis values and estimates are given for the FHC3 strength data in Table 4-77. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-43.

Figure 4-43: Batch Plot for FHC3 Normalized Strength

Filled-Hole Compression 3 (FHC3) Strength Basis Values						
		d Statistics				
	NOTIN	alized	As-Mea	asureu		
Env	RTA	ETW1	RTA	ETW1		
Mean	85.16	56.71	84.17	56.00		
Stdev	5.163	1.671	5.180	1.471		
CV	6.062	2.947	6.154	2.627		
Mod CV	7.031	6.000	7.077	6.000		
Min	74.23	53.06	74.18	52.33		
Max	91.60	59.01	91.07	57.62		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis Val	ues and Est	imates			
B-Basis Value	74.97	53.41	73.95	53.18		
A-Estimate	67.75	51.08	66.70	50.07		
Method	Normal	Normal	Normal	Weibull		
Modified CV Basis Values and Estimates						
B-Basis Value	73.34	50.00	72.41	49.36		
A-Estimate	64.98	45.24	64.09	44.67		
Method	Normal	Normal	Normal	Normal		

Table 4-77: Statistics, B-Basis Values and Estimates for FHC3 Strength Data

4.41 Single-Shear Bearing 1 (SSB1)

The SSB1 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA, ETA, and ETW1.

For the properties tested, 2% offset strength and ultimate strength, for both the normalized dataset and the as measured dataset, there were no diagnostic test failures encountered. All conditions were pooled for each of the two properties using the as measured CV and the modified CV.

There was one statistical outlier. The lowest normalized value in batch one of the ETW1 condition for ultimate strength was an outlier for the batch and for the condition. It was an outlier in the normalized dataset but not in the as-measure dataset.

Statistics, basis values and estimates are given for the SSB1 strength data in Table 4-78 and Table 4-79. The normalized data, B-estimates and B-basis values are shown graphically for 2% Offset Strength in Figure 4-44 and for Ultimate Strength in Figure 4-45.

Figure 4-44: Batch Plot for SSB1 Normalized 2% Offset Strength

Figure 4-45: Batch Plot for SSB1 Normalized Ultimate Strength

Normalized Single Shear Bearing 1 (SSB1) Strength Basis Values and Statistics						
Property	2%	Offset Stren	gth	ι	Jltimate Strer	ngth
Env	RTA	ETA	ETW1	RTA	ETA	ETW1
Mean	113.1	97.11	99.85	134.0	115.1	114.3
Stdev	4.489	4.870	4.230	3.606	3.295	2.664
CV	3.968	5.015	4.236	2.692	2.863	2.330
Mod CV	6.000	6.508	6.118	6.000	6.000	6.000
Min	103.8	89.47	88.76	126.8	110.3	106.8
Max	119.3	106.9	107.9	140.4	122.7	118.9
No. Batches	3	3	3	3	3	3
No. Spec.	18	18	18	18	18	18
		Basis V	alues and Es	stimates		
B-Basis Value	105.1	89.08	91.82	128.3	109.4	108.7
A-Estimate	99.74	83.72	86.46	124.5	105.6	104.9
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled
	Ν	lodified CV B	asis Values a	and Estimate	s	
B-Basis Value	101.8	85.76	88.50	121.1	102.2	101.4
A-Estimate	94.21	78.18	80.92	112.5	93.56	92.83
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled

Table 4-78: Normalized Statistics, B-Basis Values and Estimates for SSB1 Strength Data

As Meas	As Measured Single Shear Bearing 1 (SSB1) Strength Basis Values and Statistics							
Property	2%	Offset Stren	gth	Ultimate Strength				
Env	RTA	ETA	ETW1	RTA	ETA	ETW1		
Mean	107.8	92.91	94.30	127.6	110.1	108.0		
Stdev	4.360	4.585	4.006	3.538	3.076	2.523		
CV	4.045	4.934	4.248	2.772	2.794	2.336		
Mod CV	6.022	6.467	6.124	6.000	6.000	6.000		
Min	100.7	85.92	84.71	120.5	105.8	102.0		
Max	114.9	101.9	99.96	133.8	117.0	112.7		
No. Batches	3	3	3	3	3	3		
No. Spec.	18	18	18	18	18	18		
		Basis V	alues and Es	timates				
B-Basis Value	100.1	85.25	86.64	122.2	104.7	102.5		
A-Estimate	95.02	80.15	81.53	118.6	101.0	98.91		
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled		
	Modified CV Basis Values and Estimates							
B-Basis Value	96.98	82.11	83.50	115.4	97.81	95.70		
A-Estimate	89.78	74.90	76.29	107.2	89.62	87.51		
Method	Pooled	Pooled	Pooled	Pooled	Pooled	Pooled		

Table 4-79: As Measured Statistics, B-Basis Values and Estimates for SSB1 Strength Data

4.42 Single-Shear Bearing 2 (SSB2)

The SSB2 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the 2% offset strength, pooling was not possible for either the normalized nor the as measured datasets because the pooled datasets failed the test for normality. For both the normalized and as measured datasets, the single point normal method was used to compute values and estimates for RTA and the single point non parametric method was used to compute values and estimates for ETW1. Applying the modified CV, both conditions were pooled in both the normalized and as measured datasets.

For ultimate strength, there were no diagnostic test failures for any of the properties in either the normalized nor the as measured datasets, therefore both conditions were pooled.

There were three statistical outliers. The lowest normalized value in batch three of the ETW1 condition for 2% offset strength was an outlier for the batch and for the condition. It was an outlier in the normalized dataset and in the as measured dataset. The highest as measured value in batch one of the RTA condition for ultimate strength was an outlier for the batch but not for the conditions. It was an outlier in the as measured dataset but not in the normalized dataset. The lowest as measured value in batch three of the ETW1 condition for ultimate strength was an outlier for the batch and outlier for the batch and for the condition. It was an outlier in the as measured dataset but not in the normalized dataset. The lowest as measured value in batch three of the ETW1 condition for ultimate strength was an outlier for the batch and for the condition. It was an outlier in the as measured dataset. The normalized dataset. They were retained for analysis,

Statistics, basis values and estimates are given for the SSB2 strength data in Table 4-80 and Table 4-81. The normalized data, B-estimates and B-basis values are shown graphically in Figure 4-46.

Figure 4-46: Batch Plot for SSB2 Normalized Strength

Normalized Single Shear Bearing 2 (SSB2) Strength Basis Values and Statistics						
Property	2%Offset	Strength	Ultimate	Strength		
Env	RTA	ETW1	RTA ETW1			
Mean	112.4	96.20	137.5	113.1		
Stdev	3.550	7.137	3.398	4.619		
CV	3.159	7.419	2.471	4.083		
Mod CV	6.000	7.709	6.000	6.041		
Min	106.8	71.10	131.3	101.5		
Max	117.7	105.8	144.0	120.8		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis Va	lues and Est	imates			
B-Basis Value	105.4	63.70	130.1	105.8		
A-Estimate	100.4	39.21	125.1	100.7		
Method	Normal	Non-Parm.	Pooled	Pooled		
Mo	odified CV Ba	sis Values ar	nd Estimates			
B-Basis Value	99.47	83.29	123.7	99.34		
A-Estimate	90.69	74.51	114.3	89.96		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-80: Normalized Statistics, B-Basis Values and Estimates for SSB2 Strength Data

As Measured Single Shear Bearing 2 (SSB2) Strength Basis Values and Statistics						
Property	2% Offse	et Strength	Ultimate	Strength		
Env	RTA	ETW1	RTA	ETW1		
Mean	108.2	92.15	132.4	108.4		
Stdev	3.522	6.356	3.255	3.592		
CV	3.255	6.897	2.458	3.314		
Mod CV	6.000	7.449	6.000	6.041		
Min	101.7	69.20	126.4	98.83		
Max	114.1	98.26	137.7	115.3		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis Va	lues and Esti	mates			
B-Basis Value	101.2	60.12	126.2	102.1		
A-Estimate	96.32	40.94	121.9	97.90		
Method	Normal	Non-Parm.	Pooled	Pooled		
Mo	dified CV Ba	isis Values an	d Estimates			
B-Basis Value	96.03	79.98	119.2	95.16		
A-Estimate	87.75	71.70	110.2	86.17		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-81: As Measured Statistics, B-Basis Values and Estimates for SSB2 Strength Data

4.43 Single-Shear Bearing 3 (SSB3)

The SSB3 data is normalized by cured ply thickness. Both normalized and as measured statistics are provided. Tests were conducted in the following environmental conditions: RTA and ETW1.

For the properties tested, 2% offset strength and ultimate strength, for both the normalized dataset and the as measured dataset, there were no diagnostic test failures encountered. All conditions were pooled for each of the two properties using the as measured CV and the modified CV.

There were two statistical outliers. The lowest as measured value in batch two of the RTA condition for 2% offset strength was an outlier for the condition but not for the batch. It was an outlier in the as measured dataset but not in the normalized dataset. The highest value in batch two of the ETW1 condition for ultimate strength was an outlier for the batch and for the condition. It was an outlier in the normalized dataset but not in the as measured dataset. They were retained for analysis.

Statistics, basis values and estimates are given for the SSB3 strength data in Table 4-82 and Table 4-83. The normalized data and B-basis values are shown graphically in Figure 4-47.

Figure 4-47: Batch Plot for SSB3 Normalized Strength

Page 173 of 182

Normalized Single Shear Bearing 3 (SS32) Strength Basis Values and Statistics						
Property	2%Offset	Strength	Ultimate	Strength		
Env	RTA	ETW1	RTA	ETW1		
Mean	104.5	88.02	130.0	105.2		
Stdev	5.464	5.186	3.873	2.733		
CV	5.229	5.892	2.979	2.597		
Mod CV	6.614	6.946	6.000	6.000		
Min	90.52	78.70	123.9	101.1		
Max	114.4	98.2	137.0	112.9		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis Va	lues and Est	imates			
B-Basis Value	94.79	78.31	123.9	99.14		
A-Estimate	88.19	71.71	119.7	94.99		
Method	Pooled	Pooled	Pooled	Pooled		
Mo	odified CV Ba	sis Values ai	nd Estimates			
B-Basis Value	92.61	76.13	117.1	92.32		
A-Estimate	84.52	68.05	108.3	83.53		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-82: Normalized Statistics, B-Basis Values and Estimates for SSB3 Strength Data

As Measured Single Shear Bearing 3 (SSB3) Strength Basis Values and Statistics						
Property	2%Offse	et Strength	Ultimate	Strength		
Env	RTA	ETW1	RTA	ETW1		
Mean	102.1	85.87	127.0	102.7		
Stdev	5.086	5.243	3.844	2.791		
CV	4.983	6.106	3.027	2.718		
Mod CV	6.492	7.053	6.000	6.000		
Min	87.28	77.61	119.5	97.73		
Max	110.2	95.0	133.2	109.2		
No. Batches	3	3	3	3		
No. Spec.	18	18	18	18		
	Basis V	alues and Estir	nates			
B-Basis Value	92.64	76.47	120.9	96.55		
A-Estimate	86.24	70.07	116.7	92.39		
Method	Pooled	Pooled	Pooled	Pooled		
N	lodified CV B	asis Values and	d Estimates			
B-Basis Value	90.49	74.31	114.4	90.05		
A-Estimate	82.63	66.45	105.8	81.47		
Method	Pooled	Pooled	Pooled	Pooled		

Table 4-83: As Measured Statistics, B-Basis Values and Estimates for SSB3 Strength Data

4.44 Compression After Impact 1 (CAI1)

The CAI1 data is normalized by cured ply thickness. Basis values are not computed for this property. Testing was done in RTA and ETW1 environmental conditions. Only one batch of material was tested. There was no statistical analysis. Summary statistics are presented in Table 4-84 and the data are displayed graphically in Figure 4-48.

Compression After Impact (CAI1) Strength (ksi) Statistics						
	Norm	alized	As-Me	asured		
Env	RTA	ETW1	RTA	ETW1		
Mean	37.81	30.12	35.63	28.36		
Stdev	1.309	1.318	1.294	1.216		
CV	3.462	4.377	3.632	4.286		
Min	35.53	28.65	33.39	26.97		
Max	39.53	31.67	37.31	29.79		
No. Batches	1	1	1 1			
No. Spec.	6	6	6	6		

Table 4-84: Statistics for CAI1 Strength Data

4.45 Interlaminar Tension Strength (ILT) and Curved Beam Strength (CBS)

The ILT data is not normalized. Data is reported on two properties: Interlaminar Tension Strength and Curved Beam Strength. Testing was done in the CTA, RTA and ETW1 environmental conditions. Only one batch of material was tested. There was no statistical analysis. Basis values are not computed for these properties. Summary statistics are presented for Bidiagonal ILT in Table 4-85 and Biaxial ILT in Table 4-86 and the as measured data are displayed graphically for Bidiagonal ILT in Figure 4-49 and for Biaxial ILT in Figure 4-50.

Bidiagonal Interlaminar Tension (ILT) Strength Statistics								
	Interlaminar Tension Strength (ksi)			Curveo	Beam Stren	gth (lb)		
Env	СТА	RTA	ETW1	СТА	RTA	ETW1		
Mean	7.414	6.214	6.995	538.0	460.1	514.5		
Stdev	0.6060	0.9006	0.3600	40.12	67.30	23.78		
CV	8.173	14.49	5.147	7.457	14.63	4.623		
Min	6.533	4.740	6.461	479.9	347.6	480.3		
Max	7.861	7.174	7.447	564.7	528.5	546.7		
No. Batches	1	1	1	1	1	1		
No. Spec.	4	5	5	4	5	5		

Table 4-85: Statistics for BD ILT Strength Data

Page 178 of 182

Figure 4-50	Batch	Plot for	BA As	Measured	ILT and CBS
-------------	-------	----------	--------------	----------	-------------

Biaxial Interlaminar Tension (ILT) Strength Statistics								
	Interlamina	r Tension St	rength (ksi)	Curve	d Beam Stren	gth (lb)		
Env	СТА	RTA	ETW1	СТА	RTA	ETW1		
Mean	8.852	6.804	8.551	583.6	458.0	570.4		
Stdev	0.4907	1.464	0.2730	26.74	94.47	20.99		
CV	5.543	21.52	3.193	4.581	20.62	3.681		
Min	8.336	4.726	8.289	545.9	323.7	545.4		
Max	9.450	8.100	8.969	609.5	536.3	599.9		
No. Batches	1	1	1	1	1	1		
No. Spec.	5	6	5	5	6	5		

Table 4-86: Statistics for BA ILT Strength Data

5. Outliers

Outliers were identified according to the standards documented in section 2.1.5, which are in accordance with the guidelines developed in section 8.3.3 of CMH-17-1H. An outlier may be an outlier in the normalized data, the as measured data, or both. A specimen may be an outlier for the batch only (before pooling the three batches within a condition together) or for the condition (after pooling the three batches within a condition together) or both.

Approximately 5 out of 100 specimens will be identified as outliers due to the expected random variation of the data. This test is used only to identify specimens to be investigated for a cause of the extreme observation. Outliers that have an identifiable cause are removed from the dataset as they inject bias into the computation of statistics and basis values. Specimens that are outliers for the condition and in both the normalized and as measured data are typically more extreme and more likely to have a specific cause and be removed from the dataset than other outliers. Specimens that are outliers only for the batch, but not the condition and specimens that are identified as outliers only for the normalized data or the as measured data but not both, are typical of normal random variation.

All outliers identified were investigated to determine if a cause could be found. Outliers with causes were removed from the dataset and the remaining specimens were analyzed for this report. Information about specimens that were removed from the dataset along with the cause for removal is documented in the material property data report, NCAMP Test Report CAM-RP-2024-020 Rev N/C. Outliers for which no causes could be identified are listed in Table 5-1. These outliers were included in the analysis for their respective test properties.

July 08, 2025

NCP-RP-2024-009 Rev -

OUTLIERS									
Test	Environmental	Batch	Specimen	As Measured	Normalized	High/Low	Batch		
	Condition		•	Value	Value	0	Outlier	Outlier	
Biaxial OTEN	RTA	3	BA-0TEN-C-C1-1-1A	169.4	183.5	Low	N	Y	
Biaxial 90CLC	ETW1	2	BA-90CLC-B-C1-1-4D	81.65	Not an Outlier	High	Y	N	
Biaxial 90TEN	СТА	1	BA-90TEN-A-C2-1-2B	200.3	211.0	Low	Y	N	
Biaxial 90TEN	СТА	3	BA-90TEN-C-C2-1-2B	183.8	193.9	Low	Y	Y	
Biaxial SBS	ETW1	1	BA-SBS-A-C1-1-1D	6.075	NA	Low	N	Y	
Bidiagonal 0CLC	ETW1	1	BD-0CLC-A-C1-1-2D	80.97	82.82	High	Y	N	
Bidiagonal 0TEN	ETW1	1	BD-0TEN-A-C1-1-3C	Not an Outlier	212.8	High	Y	N	
Bidiagonal IPS 0.2% Offset Strength	ETW1	3	BD-IPS-C-C2-1-1D	3.610	NA	Low	N	Y	
Bidiagonal IPS Strength at 5% Strain	ETW1	3	BD-IPS-C-C2-1-1D	5.803	NA	Low	N	Y	
Bidiagonal SBS	RTA	1	BD-SBS-A-C1-1-1A	10.22	NA	Low	Y	N	
Bidiagonal SBS	ETA	1	BD-SBS-A-C1-1-1C	8.136	NA	High	Y	Y	
Bidiagonal SBS	ETW2	1	BD-SBS-A-C2-1-3F	3.929	NA	High	Y	Y	
FHC1	RTA	1	M-FHC1-A-C2-1-3A	Not an Outlier	77.17	High	Ν	Y	
FHC1	RTA	3	M-FHC1-C-C1-1-2A	Not an Outlier	69.27	High	Y	N	
FHC2	RTA	2	M-FHC2-B-C2-1-4A	61.13	63.65	High	Y	Y	
FHC3	RTA	1	M-FHC3-A-C1-1-2A	79.46	80.30	Low	Y	N	
FHC3	ETW1	1	M-FHC3-A-C1-1-2D	52.90	Not an Outlier	Low	Y	N	
FHC3	ETW1	3	M-FHC3-C-C1-1-4D	52.33	Not an Outlier	Low	Y	N	
FHT1	RTA	5	M-FHT1-E-C1-1-1A	Not an Outlier	85.01	Low	Y	N	
FHT2	ETW1	1	M-FHT2-A-C1-1-1D	53.11	54.83	Low	Y	N	
OHC2	ETW1	1	M-OHC2-A-C1-1-2D	25.86	Not an Outlier	Low	Y	N	
OHT1	RTA	1	M-OHT1-A-C1-1-1A	82.66	Not an Outlier	Low	Y	N	
OHT1	ETA	5	M-OHT1-E-C1-1-1C	91.44	Not an Outlier	High	Y	N	
OHT1	ETW1	1	M-OHT1-A-C2-1-3D	91.38	Not an Outlier	High	Y	N	
OHT2	RTA	5	M-OHT2-E-C2-1-1A	60.01	61.99	High	Y	N	
OHT4	ETW1	1	M-OHT4-A-C2-1-1D	Not an Outlier	109.2	Low	Ý	Y	
SBS1	RTA	1	M-SBS1-A-C2-M-3A	8.179	NA	Low	N	Ý	
SBS1	ETW1	2	M-SBS1-B-C1-M-5D	5.073	NA	Low	N	Ŷ	
SSB1 Utimate Strength	ETW1	1	M-SSB1-A-C1-1-3D	Not an Outlier	106.8	Low	Y	Ŷ	
SSB2 2% Offset Strength	ETW1	3	M-SSB2-C-C1-1-3D	69.20	71.10	Low	Y	Y	
SSB2 Ultimate Strength	RTA	1	M-SSB2-A-C1-1-1A	137.7	Not an Outlier	High	Y	N	
SSB2 Ultimate Strength	ETW1	3	M-SSB2-C-C1-1-3D	98.83	Not an Outlier	Low	Y	Y	
SSB3 2% Offset Strength	RTA	2	M-SSB3-B-C2-1-2A	87.28	Not an Outlier	Low	N	Y	
SSB3 Ultimate Strength	ETW1	2	M-SSB3-B-C1-1-3D	Not an Outlier	112.9	High	Y	Y	
UNC1	RTA	2	M-UNC1-B-C2-1-2A	69.60	75.00	Low	Y	N N	
UNC1	RTA	2	M-UNC1-C-C2-1-3A	69.60	Not an Outlier	Low	Y	N	
UNT2	ETW1	3	M-UNT2-C-C1-1-2D	76.41	81.70	High	Y	Y N	
Unidirectional 0CLC	ETA	1	UD-UNC0-A-C1-1-1C	Not an Outlier	116.4	High	Y	r N	
		3						N Y	
Unidirectional IPS 0.2% Offset Strength	RTA	-	UD-IPS-C-C1-1-3A	6.387	NA NA	High	N N	Y Y	
Unidirectional IPS 0Strength at 5% Strain	RTA	3	UD-IPS-C-C1-1-2A	11.37		High			
Unidirectional UNCO	ETA	1	UD-UNCO-A-C1-1-1C	Not an Outlier	81.01	High	Y	N	
Unidirectional UNTO	CTA	1	UD-UNTO-A-C1-1-3B	189.2	186.0	Low	N	Y	
Unidirectional UNTO	RTA	2	UD-UNTO-B-C1-1-3A	218.8	Not an Outlier	Low	Y	N	
Unidirectional UNTO	ETW1	4	UD-UNT0-D-C2-1-1D	Not an Outlier	204.9	High	Y	N	
NA: Property not normalized									

Table 5-1: List of Outliers

6. References

- 1. Snedecor, G.W. and Cochran, W.G., *Statistical Methods*, 7th ed., The Iowa State University Press, 1980, pp. 252-253.
- 2. Stefansky, W., "Rejecting Outliers in Factorial Designs," *Technometrics*, Vol. 14, 1972, pp. 469-479.
- 3. Scholz, F.W. and Stephens, M.A., "K-Sample Anderson-Darling Tests of Fit," *Journal of the American Statistical Association*, Vol. 82, 1987, pp. 918-924.
- 4. Lehmann, E.L., *Testing Statistical Hypotheses*, John Wiley & Sons, 1959, pp. 274-275.
- 5. Levene, H., "Robust Tests for Equality of Variances," in *Contributions to Probability and Statistics*, ed. I. Olkin, Palo, Alto, CA: Stanford University Press, 1960.
- 6. Lawless, J.F., *Statistical Models and Methods for Lifetime Data*, John Wiley & Sons, 1982, pp. 150, 452-460.
- 7. *Metallic Materials and Elements for Aerospace Vehicle Structures*, MIL-HDBK-5E, Naval Publications and Forms Center, Philadelphia, Pennsylvania, 1 June 1987, pp. 9-166,9-167.
- 8. Hanson, D.L. and Koopmans, L.H., "Tolerance Limits for the Class of Distribution with Increasing Hazard Rates," *Annals of Math. Stat.*, Vol 35, 1964, pp. 1561-1570.
- 9. Vangel, M.G., "One-Sided Nonparametric Tolerance Limits," Communications in Statistics: Simulation and Computation, Vol. 23, 1994, p. 1137.
- 10. Vangel, M.G., "New Methods for One-Sided Tolerance Limits for a One-Way Balanced Random Effects ANOVA Model," *Technometrics*, Vol 34, 1992, pp. 176-185.
- 11. Odeh, R.E. and Owen, D.B., *Tables of Normal Tolerance Limits, Sampling Plans and Screening*, Marcel Dekker, 1980.
- 12. Tomblin, John and Seneviratne, Waruna, *Laminate Statistical Allowable Generation for Fiber-Reinforced Composites Material: Lamina Variability Method*, U.S. Department of Transportation, Federal Aviation Administration, May 2006.
- 13. Tomblin, John, Ng, Yeow and Raju, K. Suresh, *Material Qualification and Equivalency* for Polymer Matrix Composite Material Systems: Updated Procedure, U.S. Department of Transportation, Federal Aviation Administration, September 2003.
- 14. CMH-17 Rev H, Volume 1, 2022. SAE International, 400 Commonwealth Drive, Warrendale, PA 15096