

2nd Joint Coordination Meeting

November 12-21, 2024

Fall Virtual Meeting

TABLE OF CONTENTS

JOINT COORDINATION MEETING SCHEDULE	3
CONNECTING VIRTUALLY	4
NEW MEMBER ORIENTATION / VIRTUAL ATTENDANCE INSTRUCTIONS	. 10
OPENING COORDINATION AGENDA	. 10
FORUM	. 10
EQUIVALENCY PROCESS & BEST PRACTICES MINI TUTORIAL	. 10
CLOSING COORDINATION AGENDA	. 11
JOINT GROUPS TECHNICAL WORKING GROUPS	. 14
ADDITIVE MANUFACTURING TECHNICAL WORKING AND TASK GROUPS	. 16
CERAMIC MATRIX COMPOSITES TECHNICAL WORKING AND TASK GROUPS	. 18
POLYMER MATRIX COMPOSITES TECHNICAL WORKING AND TASK GROUPS	. 20
CRASHWORTHINESS WORKING GROUP	. 20
WORKING GROUP AND SESSION AGENDAS (LISTED CHRONOLOGICALLY)	. 23
PMC CRASHWORTHINESS	. 23
JOINT STATISTICS	. 23
AM TESTING	. 23
PMC SANDWICH	. 24
AM DESIGN & ANALYSIS	. 24
PMC DATA REVIEW	. 24
CMC TESTING	. 25
PMC DESIGN	. 25
AM GUIDELINES	. 25
PMC MATERIALS & PROCESSING	. 26
PMC GUIDELINES	. 29
SUPPORTABILITY	. 29
AM MATERIALS & PROCESSING	. 30
PMC DAMAGE TOLLERANCE	. 30
RESULTS OF YELLOW PAGE VOTING	. 32
AM SPRING YP1 RESULTS	. 32
CMC SPRING YP1 RESULTS	. 32
AM SPRING YP2 RESULTS	. 33
CMC SRPING YP2 RESULTS	. 33

ALL YP COMMENTS CAN BE FOUND AT CMH17.ORG	33
VOLUME OUTLINE	34
INFORMATION ACCESS	82
PRELIMINARY ATTENDANCE LIST	84
CMH-17 COORDINATORS	90
AM WORKING GROUP	91

JOINT COORDINATION MEETING SCHEDULE

November 12-14 and November 19-21, 2024 – Virtual

SCHEDULE

Time (EST)	Tuesday 11/12	Wednesday 11/13	Thursday 11/14
10:00 am - 12:00 pm	1 hour: New member orientation and virtual attendance instruction 1 hour: Opening coordination	Forum: Emerging Applications	WG/TG sessions 3 and 4 AM Testing Sandwich
		Break	
1:00 pm - 3:00 pm	Opening Coordination (continued)	WG/TG sessions 1 and 2 Crashworthiness Joint Statistics	WG/TG sessions 5 and 6 AM D&A PMC Data Review

Time (EST)	Tuesday 11/19	Wednesday 11/20	Thursday 11/21			
10:00 am - 12:00 pm	Mini Tutorial:	WG/TG sessions 9 and 10	WG/TG Sessions 13 and 14			
	Equivalency Process & Best	AM Guidelines	AM M&P			
Practices		PMC M&P	PMC Damage Tolerance			
	Break					
1:00 pm -	WG/TG sessions 7 and 8	WG/TG sessions 11 and 12	Closing Coordination			
3:00 pm	CMC Testing	PMC Guidelines				
	PMC Design	Supportability				

D&A = Design and Analysis

M&P = Materials and Processing

CONNECTING VIRTUALLY

All Meetings Held Virtually

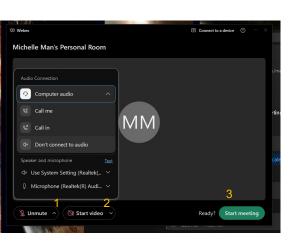
Link	https://wichitastateuniversity.webex.com/wichitastat euniversity/j.php?MTID=m4ed93e891d461edf2161 70c342e47e96		
Meeting	Access code: 2559 022 0820		
Number	Password: fall2024		
	1-650-479-3208		
Mobile device	Access code: 2870 744 2310		
	Password: 32552024		

Meetings will be hosted on Webex with the login information above. WebEx Breakout Sessions will be utilized and instructions are in following pages.

WebEx Guide

Joining a Meeting

4


рвоок

5

00	
Join the meeting	
If you're the meeting host, sign in to start the meeting.	
Marcus X	
Email address Marcus@hotmail.com X	
Remember me	
Join as a guest	
<u>Sign in</u>	
webex	

- To **Join** the meeting, click on the link provided to you.
- Enter your First/Last Name and Email.
- Please enter your name and contact so we can keep track of attendees/participants

Calling Into a Meeting

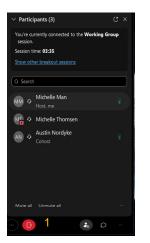
• Make sure you are muted (1) and video is disabled(2).

СМ Н 17

- Both icons should be red.
- Select the computer audio if you would like to via your computer
- When joining with a phone use the audio option to select the Call-In or call me option.
- Then select (3) Join meeting

General Guide and Reminders

- Join the meeting 5-10 minutes early
- All attendees will be muted upon entering.
- Please disable video. This will reduce bandwidth use and provide a smoother experience.
 - You may enable video when speaking.
- Use the raise hand or chat/comment function if you have comments or questions (unless noted otherwise by speaker).



JOINING AND NAVIGATING A BREAKOUT SESSION

<text><image><image><image>

Leaving a Breakout Session

 The meeting host/moderator will announce when the breakout session is ending.

СМНЯ

- To return to the main meeting, select (1) – 'door' icon
- You will now leave the session and return to the main meeting.

20

овоок

COMPOSITE MATERIALS HANDBOOK 17

JOINT COORDINATION AGENDA

NEW MEMBER ORIENTATION / VIRTUAL ATTENDANCE INSTRUCTIONS

Tuesday, Nov 12, 2024

10:00 am – 11:00 am

- Introducing CMH-17 Organization Michelle Man
 - Our Mission
 - The Coordination Group
 - What does the Secretariat do?
 - Websites we use
- Participating in CMH-17 Cindy Ashforth, FAA
 - Handbook Goals
 - How to get involved
 - FAA Guidance Philosophy and Role of CMH-17
- Continue with Open Coordination Meeting

OPENING COORDINATION AGENDA

Tuesday, Nov 12, 2024 11:00 am – 12:00 pm / 1:00 pm – 3:00 pm

11:00-11:15 Welcome, Larry Ilcewicz and John Tomblin
11:15-12:00 Secretariat Update, Michelle Man
1:00-1:15 JGWG Updates (Goals, Vision & Mission. etc.), Carl Rousseau and Rick Cole
1:15-2:55 WG Updates, WG Chairs
2:55-3:00 Closing

FORUM

Wednesday, Nov 13, 2024 10:00 am – 12:00 pm • FAA Introduction (CMH-17 Knowledge Transfer [Tutorials and Case Studies] for Advanced High-Rate Mfg./Product Scaling),

Larry Ilcewicz, FAA (20 Minutes)

• Thermoplastic Fuselage Structure Product Readiness Jan Waleson, GKN/Fokker (60 Minutes)

Technology Development for Hi-Rate Composite Aircraft Manufacturing (HiCAM) Randy Wilkerson, The Boeing Company, Technical Fellow Michel van Tooren, Collins Aerospace, Senior Technical Fellow (40 Minutes)

EQUIVALENCY PROCESS & BEST PRACTICES MINI TUTORIAL

Tuesday, November 19, 2024

10:00 am – 12:00 pm

Part 1

- Introduction of myself and NIAR 5 minutes
- Introduction of Material Qualification and NCAMP 10 minutes
- Introduction of Equivalency Process 10 minutes
- Test Matrices and Conformity Process for Equivalency 15 minutes
- Equivalency Statistics 10 minutes
- Question and Answer 5 minutes
- Switch over to Greg and Teodor.

Part 2

- Introduction and overview of the presentation (with the call-out to the specific regulatory guidance) - 3 min
- Equivalency result scatter 3 min
- Pathway to the equivalency: Lilium example and test matrix 5 min
- An example of Lilium's equivalency strategy 5 min
- De-risking and Keys to a successful equivalency campaign 5 min
- Test panel prep 5 minutes
- Testing specifics 10 minutes
- Measurements and conditioning 5 minutes 9. Evaluating results 5 minutes
- Conclusion and questions

CLOSING COORDINATION AGENDA

Thursday, Nov 21, 2024

1:00 pm – 3:00 pm

- Secretariate Report Out
- WG and Tutorial Report Out
- Discussion
 - Info on Ballot Voting
 - WG/TG Structure (and new tasks)
- Spring Meeting Planning

COMPOSITE MATERIALS HANDBOOK 17

TECHNICAL WORKING GROUPS

EXECUTIVE LEADERSHIP

CMH-17 HANDBOOK CO-CHAIR

Ms. Cindy Ashforth, FAA Dr. Ahmet Oztekin, FAA

CMH-17 INDUSTRY LEADER

AM: Mr. Rick Cole, NRC CMC: Mr. Doug Kiser, NASA PMC: Dr. Carl Q. Rousseau, Lockheed Martin Aeronautics PMC: Mr. Stephen H. Ward, Consultant

CMH-17 SENIOR ADVISORS

Dr. Larry Ilcewicz, FAA Dr. John Tomblin, NIAR

JOINT GROUPS TECHNICAL WORKING GROUPS

GUIDELINES

Ms. Amanda Bastian, Joby Mr. Rick Cole, National Research Council Canada Dr. Carl Q. Rousseau, Lockheed Martin Aeronautics

WG Goal: To keep alignment between the different guidelines working groups that are working to develop and document generic guidance information and data which is essential for the adequate design, certification or qualification, and production of composite parts and assemblies.

STATISTICS

Mr. Jorge Chavez-Salas, NIAR Mr. Stefan Kloppenborg,

Analyzes and/or develops statistical procedures for composite materials evaluation and quality control, and provides other statistical support to the Handbook as requested.

Currently, the Statistics Working Group is addressing methodology for setting specification requirement values, and is also considering new, revised, and alternate methods of calculating material basis values. Statistics is working in close coordination with the Data Review Working Group relative to this latter subject.

ENGINE APPLICATIONS

Mr. James Finlayson, Rolls Royce Dr. Scott Finn, Retired

Charter

Improve the usefulness of CMH17 to the aircraft engine technical community by:

- developing new CMH17 content specific to aircraft engines for both rotating and stationary parts (excluding nacelles and pylons);
- summarizing how existing CMH17 content applies to typical design, materials, manufacturing, maintenance, and certification activities for aircraft engine composite parts;
- documenting industry best practices for the use of composites in aircraft engines; and
- ensuring consistent content across PMC and CMC volumes.

SPACECRAFT

Mr. Jeffrey D. Eichinger, Boeing

Mr. Jeremy Jacobs, NASA Johnson Space Center

The Spacecraft WG addresses the special concerns related to the application of polymer matrix composites in a space environment, including the introduction of additional physical property measurements into the handbook. In addition, the group will encourage the inclusion of material property data of interest to the spacecraft community.

SPECIFICALLY:

- ✓ To develop guidance on the qualification and usage of polymer matrix composites for spacecraft applications.
- ✓ To differentiate development methodologies employed for spacecraft vs aircraft certification.
- ✓ To influence spacecraft certification authorities to mature technical requirements
- ✓ To share "lessons learned" unique to spacecraft development challenges.

ADDITIVE MANUFACTURING TECHNICAL WORKING AND TASK GROUPS

DATA REVIEW WORKING GROUP

Facilitated by Michelle Man, NIAR

Objectives:

- Develop data table formats including recommended reduced data for presentation.
- Data reduction and draft data tables for the Handbook.
- Work with potential data sources for the Handbook and review documentation/pedigree of potential data sets.
- Maintain data section of the CMH17 AM volume.
- Work with Statistics Working Group to ensure the methods used for data analysis are captured in the Statistics chapter.

DESIGN AND ANAYLSIS WORKING GROUP

Ms. Elisa Buckner, Northrop Grumman Dr. Sung Park, Northrop Grumman

Objectives:

- Establish design and analysis guidelines, methodologies, and basic engineering requirements to increase first-time success and enable substantiation and predictive capabilities for parts fabricated with polymer based additive manufacturing processes.
- The early focus of the working group will be broad generalizations, followed by details unique to a select number of specific processes.
- When used as intended, this guidance will ensure consistent application of best practices for the design and analysis of products to be manufactured with the stated material and processes.

GUIDELINES WORKING GROUP

Mr. Rick Cole, National Research Council Canada Dr. Bijan Deris, Boeing

Objectives:

- Provide guidance to AM Working Groups to identify and resolve overlaps and gaps in handbook content.
- Coordinate AM Volume outline / Table of Contents to ensure rational organization of handbook content.
- Prepare introductory and overview content for the AM Volume to establish guidelines for handbook users.

MATERIALS AND PROCESSES WORKING GROUP

Dr. Fei Liang, Gulfstream Mr. Eric Moyer, Boeing

Objectives:

- Provide an outline critical relating to M&P for polymer AM.
- Outline to encompass all the work completed until now, while leaving room for more complex materials in the future.
- Content completion of outline based on work done to date.
- Identify gaps in current completed work to identify additions for the nth qualification and other areas of research.
- Maintenance of the sections as new qualifications are performed as well as updates to already established quals. Closed feedback loop to accommodate.

TESTING WORKING GROUP

- Mr. Joe Costanzo, Boeing
- Mr. Brian Kitt, Spirit AeroSystems
- Mr. Royal Lovingfoss, NIAR

Objectives:

- Give guidance on appropriate test methods and test conditions for use with AM materials while taking into account, material type, machine capabilities, process information, industry desired data, statistical analysis requirements, and available standards.
- Test standard creation and/or appropriate changes may be necessary by working with applicable industry leaders and standards organizations to ensure the test method is understood, usable, appropriate, and repeatable for use with AM materials.
- Working with other groups of the CMH17 AM community to ensure proposed test methods are applicable for their purposes and can help in harmonizing all aspects that control a data set prior to submission and inclusion into the CMH17 AM volume.

CERAMIC MATRIX COMPOSITES TECHNICAL WORKING AND TASK GROUPS

DATA REVIEW WORKING GROUP

Dr. Rajiv Naik, University of Connecticut

Vision Statement

To provide the final technical/editorial review of all data prior to review by the full Coordination Group; provide a review of the application of the data documentation requirements to the actual data being supplied; develop formats for data presentation in the handbook; and establish the data documentation requirements for the handbook.

Goals

- Formulate guidelines and requirements for data submission, data documentation, data analysis, and data review for all CMC data that is submitted for inclusion in the handbook.
- Review the data and the data analysis of data sets that are submitted for inclusion in the handbook.
- Develop formats for data presentation in the handbook and for storage of data in electronic databases.
- Develop and document statistical methods for data pooling and data analysis of CMC data.

DESIGN AND ANAYLSIS WORKING GROUP

Dr. Arun Bhattacharya, Boeing Mr. Kevin Rugg, Pratt & Whitney

Vision Statement

To be an authoritative source for design, analysis, and verification information for the validation and certification of CMC engineered structures.

Goals

- To provide information on design and analysis certification methods and options, the level of substantiation information required, and formats required in validation and certification processes.
- To specify material property and performance input and validation data needed for design and analysis of CMC components
- To identify test parameters to produce those data, and identify analysis considerations in interpreting such data, and to ensure compatibility with design needs
- To identify approach options for the design and analysis of CMC structures and joints
- To ensure future relevancy of the handbook by maintaining an up to date survey of the current state of the art capabilities within the design, analysis and lifing communities for CMCs

MATERIALS AND PROCESSES WORKING GROUP

Mr. Doug Kiser, NASA Ms. Leanne Lehman, Boeing

Charter

Improve the usefulness of CMH17 to the aircraft engine technical community by: developing new CMH17 content specific to aircraft engines for both rotating and stationary parts (excluding nacelles and pylons);

summarizing how existing CMH17 content applies to typical design, materials, manufacturing, maintenance, and certification activities for aircraft engine composite parts;

documenting industry best practices for the use of composites in aircraft engines; and ensuring consistent content across PMC and CMC volumes.

Goals

- To define the essential elements of information on composition, structure, and processing of CMCs necessary to design, select, fabricate, and utilize CMC structures.
- To specify the methods and procedures to be used in the characterization of ceramic matrix composites and their constituents.
- To provide a comprehensive overview of ceramic matrix composite technology, outlining the history, applications, benefits, ceramic composite systems, methods of fabrication, quality control, and supportability.

TESTING WORKING GROUP

Mr. Matt Opliger, NIAR Dr. Bob Zhou, GE Aerospace

Vision Statement

To be the primary and authoritative source for recommended/required methods for testing and characterization of CMCs and their constituent materials.

Goals

- To identify appropriate existing consensus standard test methods for CMCs and their constituent materials.
- To assist in the development of appropriate standard test methods for CMCs and their constituent materials, where no such standards exist

POLYMER MATRIX COMPOSITES TECHNICAL WORKING AND TASK GROUPS

CRASHWORTHINESS WORKING GROUP

Dr. Mostafa Rassaian

The newly formed Working Group will provide the support for the development of a new, selfcontained section of the handbook on composite Crashworthiness and Energy Management for vehicle safety certification. The Work Group will also attempt to address the needs of the composites and aeronautics community at large, and to provide a unique forum of discussion for those working in industry, research institutions, and government agencies. Through a close interaction with ASTM Committee D-30, the Work Group will try to develop standards for the characterization of the energy-absorbing characteristics of composite material systems, such as the axial crushing of column-like members and of thin-wall tubular structures, representative of aircraft sub-floors and automotive-sized rails. In general, it will try to present, for the first time in a concise and comprehensive fashion, some recommended design guidelines and practices for the experimental and numerical characterization of the crash resistance of advanced composite structures.

DAMAGE TOLERANCE WORKING GROUP

Dr. Douglas S. Cairns, Montana State University Mr. Patrick Enjuto, Boeing Mr. Allen Fawcett, Boeing Mr. Mike Smeets, Fokker Landing Gear Dr. Simon Waite, European Aviation Safety Agency (EASA)

Significant Contributors

Mr. DM Hoyt, NSE Composites Dr. Larry Ilcewicz, FAA

DATA REVIEW WORKING GROUP

Mr. Michael Hempowicz, Toray CMA Mr. Royal Lovingfoss, NIAR

Establishes data documentation requirements, develops formats for data presentation, and provides the final technical and editorial review of all data prior to inclusion in the Handbook.

Data Review Working Group (DRWG) performs data review according to a set of published procedures that have been developed by the working group To facilitate the data review process, the DRWG has established an electronic voting protocol that allows data reviews between CMH-17 formal meetings. DRWG works closely with NCAMP in order that the data generated by that organization meets the requirements of CMH-17. Future tasks will address data requirements and formats for data presentation for adhesives.

DESIGN

Mr. Patrick Enjuto, Boeing Dr. Larry Ilcewicz, FAA

The objective of the Design Task Group is to develop an appreciation for the many phases of design from the start of product development through life cycle challenges, including product value assessments of related costs and other performance objectives essential to certifiable applications. This efforts will start with an introduction to Composite Design Criteria, Requirements and Other Constraints as related to design development and structural substantiation. The principles of size and product scaling efforts will be applied resulting in the necessary success criteria to attain product readiness and complete product definition, certification, production and service needs during the product lifecycle.

GUIDELINES WORKING GROUP

Ms. Amanda Bastian, Joby Dr. Carl Q. Rousseau, Lockheed Martin Aeronautics

Develops and documents generic guidance information and data which is essential for the adequate design, certification or qualification, and production of composite parts and assemblies. The Guidelines Working Group also provides leadership and recommendations regarding the scope, responsibilities, and future direction of the Handbook.

The current focus is on characterization test procedures and philosophy, materials property data, statistical analysis requirements, general design and analysis methodology, design data usage and quality assurance practices.

MATERIALS & PROCESS WORKING GROUP

Dr. Margaret E. Roylance, Nano Tech Labs Mr. Daniel R. Ruffner

Provides guidelines, descriptions and case studies of material types and processing options for the characterization and fabrication of polymer matrix composite materials.

Current efforts are focused on revising Volume 3, Chapter 5 (Materials & Processes), preparing a new section in Volume 1, Chapter 5, which addresses test planning, and establishing guidelines for qualification of composite materials.

SAFETY MANAGEMENT WORKING GROUP

Ms. Cindy Ashforth, FAA Aircraft Certification Service, Policy & Innovation Division Dr. Larry Ilcewicz, FAA Aircraft Certification Service, Policy & Innovation Division

The objective of the Safety Management Working Group is to provide the basis for assessing and managing risk by various means to assure and improve aircraft safety. The group is

leading the development of the chapter in Volume 3 - Chapter 17 "Structural Safety Management". Chapter 17 includes considerations, analysis procedures and practical applications of safety management. In addition, the Safety Management Working Group is coordinating current initiatives involving the structural safety task group and efforts by the damage tolerance and disbond & delamination task groups.

SANDWICH WORKING GROUP

- Mr. Lawrence A. Gintert, Independent Consultant
- Dr. Zhi Ming Chen, The Aerospace Corporation

The Sandwich Working Group is responsible for Volume 6, Structural Sandwich Composites. Volume 6 includes information on core, adhesive, and face sheet materials, and on testing, design, analysis, fabrication, quality control, and supportability of sandwich structure.

Current efforts are focused on developing a long-term approach to data for core and adhesives, updating the volume with new information, and coordinating the content with other volumes of the Handbook.

SUPPORTABILITY WORKING GROUP

Dr. Joseph Rakow, Exponent Failure Analysis Associates Mr. Stephen Starnes, US Navy

The objective of the Supportability Working Group is to provide the guidelines needed for postproduction support of composite structures including inspection, repair, design, facilities, maintenance and disposal. The group is leading the development of two chapters in Volume 3 -Chapter 13 "Defects, Damage and Inspection" and Chapter 14 "Supportability, Maintenance, and Repair" which are intended for inclusion in Revision G of the handbook.

TESTING WORKING GROUP

- Dr. Daniel Adams, University of Utah
- Mr. John Moylan, Element Materials Technology

Offers descriptive and guidance information relating to the usage of chemical, physical and mechanical test methods for polymer matrix composites and their constituents.

Currently, sections on failure modes, matrix test methods, prepreg characterization, tensile testing, damage tolerance testing, multi-axial testing, strain measurement, glass transition temperature, void volume analysis, and density determination are being prepared or rewritten (Volume 1, Chapters 4, 5 and 6).

WORKING GROUP AND SESSION AGENDAS

(LISTED CHRONOLOGICALLY)

PMC CRASHWORTHINESS

Wednesday, Nov 13, 2024

1:00 pm – 3:00 pm

- Opening Discussion
- Post Rev. H Tasks
- AAM Vehicle Crashworthiness Update (Joseph) Tentative
- PDFA Methods Applications for Aircraft Crashworthiness..., NASA Tech Memo (Mike)

JOINT STATISTICS

Wednesday, Nov 13, 2024	1:00 pm – 3:00 pm
	1.00 pm – 5.00 pm

Item	Speaker	Time
Call to order and introductions	S. Kloppenborg	10 min
Review of minutes from Scottsdale meeting	S. Kloppenborg	5 min
Update on Vol 7 (AM) statistics content	S. Kloppenborg	5 min
Statistics Tasking		
P24-073: Improved computational flowchart	J. Chavez- Salas	5 min
P24-074: Improved clarity of Mod CV transform for diagnostic tests	J. Chavez- Salas	5 min
P24-077: Improved accuracy of Normal A- and B-Basis factors	S. Kloppenborg	5 min
New SPC Task Group	B. Langston	20 min
New Equivalency Task Group	S. Kloppenborg	20 min
Bayesian methods	L. Jones	10 min
The future structure of the Statistics WG	S. Kloppenborg	15 min
Adjourn		

AM TESTING

Thursday, Nov 14, 2024

10:00 am – 12:00 pm

- Discussion and review of Shear Test Section.
- Discussion and review of Introduction Sections.
- Discussion and review of CTE Section.

PMC SANDWICH

Thursday, Nov 14, 2024

10:00 am – 12:00 pm

- Introductions and Agenda Review 5 min
- Sandwich WG Mission 10 min
- Volume 6 Evolution 15 min
- Volume 6A Outline and Proposed Task Groups- 15 min
- Proposed Initial TGs and Leaders 15 min
- Initial Tasks Planning (pending approval)- 25 min
 - TG Scope of Effort
 - Proposed Meeting Frequencies/Formats
 - Quarterly Status Update Meetings
- Feedback/Discussion 20 min
- Next Steps Planning/Wrap-up 10 min

AM DESIGN & ANALYSIS

Thursday, Nov 14, 2024

1:00 pm – 3:00 pm

- YP Negative Vote Reconciliation on 11.1 and 11.2
- Discuss on section 11.3 Design
- Introductory discussion Chapter 12 Maintainability and Supportability Discuss Chapter 13 Applications and Lessons Learned for next YP ballot

PMC DATA REVIEW

Thursday, Nov 14, 2024

• Introduction and Welcome – Royal Lovingfoss, Michael Hempowicz

- Overview of Data Review Working Group (DRWG)
 - DRWG Voting Members Voting Group Expectations
 - DRWG Data Source Data Submittal Data Confidentiality Data Approval Process
- Data Review Schedule
 - Data in Ballot/ Review/ Upcoming
 - Victrex AE 250 T-071 AS4 12k Unitape- Negative in work
 - Toray 3900-2C/T800s Grade 145 Unitape
 - Hexcel 8552 AGP 370 8HS
 - Available Datasets
 - o Additional Datasets
- Old/ New Business

1:00 pm – 3:00 pm

Tuesday, November 19, 2024

1:00 pm – 3:00 pm

- Introductions
- Vision and Goals
- Overview of CMC Testing WG Sections (Volume 5, Part C, Chapters 8-15)
- Review and Discuss:
 - Finished Sections Requiring Changes and/or Balloting
 - Sections Currently being Worked
 - Future Plans

PMC DESIGN

Tuesday, November 19, 2024

1:00 pm – 3:00 pm

- Brief overview of Rev. H advancements/publishing status, Ilcewicz, Enjuto
- Identify all existing proposals for future development, Ilcewicz (15 Min.)
- Proposal to update Sec. 7.2.2.2 7.2.2.4 to include a prototype phase in "Product Development" Design Phases 1 to 3, Ilcewicz, Seaton (25 Min.)
- Status/recruiting Sec. 7.2.3: Integrated Product Teams, Gintert, Stenne (15 Min.)
- Status Example Design Process (Sec. 7.2.5.1 Transport Aircraft), Rush (10 Min.)
- Joint Design/Spacecraft WG on case studies, Ilcewicz, Jacobs (40 Min.)
 - Discuss proposed options (Outcomes from joint planning meetings)
 - Active IPT design discussions on the next steps forward (for purposes of member recruiting)
- Closure/actions (5 Min.)

AM GUIDELINES

Wednesday, Nov 20, 2024

10:00 am – 12:00 pm

- Working Group Overview Mission, Membership, Rhythm
- Vol. 3 Rev H and Vol. 5 Rev. B Submissions
- Review Current WG Scope and Discuss Whether Expanded Scope is Desired
- Review Chapter Outline and Status of Planned Sections
- 2024 Working Group Plans
- Summary & Actions

PMC MATERIALS & PROCESSING

Wednesday, Nov 20, 2024

10:00 am – 12:00 pm

Margaret Roylance and Dan Ruffner 10:00a – 10:35a ET

The M&P Working Group is directly responsible for content in Volume 3: Chapter 5 on Materials and Processes for Polymer Matrix Composites, Chapter 6 on Quality Control of Production, and Chapter 18 on Environmental Management. M&P additions and changes in Rev H occurred exclusively in Chapter 5.

Quick Review of New Non-bonding M&P Content for Rev H

Thank you, authors and reviewers!

- Resin Matrix Chemistries Howard Creel
- Shelf Life and Out-time Nathan Collins
- Updated Chapter 5 Outline Margaret Roylance

New M&P Content Beyond Rev H - Need authors and reviewers!

Previously Established Interests

1) Tutorial on Shared Databases

Margaret Roylance/Beth Clarkson/Brad Tipton (Agenda Item 17-04) There is a three-page outline of potential content. The practice of including elevated temperature wet tests in equivalency exercises has been proposed.

 Nested Qualification Statistics Expansion Shannon Jones The specific statistics used to analyze nested designs are not extensively covered in the literature; the handbook needs some more specific guidance.

Already Proposed New Initiatives

- 3) Shelf Life Out-Time Additional content?
- 4) Lot Testing Adding and/or setting aside coupons, other content?
- 5) Specification Acceptance Values v Allowables Need additional guidance
- 6) **Heat surveys** Composites (coordinate with BPTG content on bonding)
- 7) **Process Control/Traveler Coupons** Composites (coordinate with BPTG)
- 8) Complete Review & Reorganize Chapter 5 Many changes since last done

New M&P Initiative Suggestions/Proposals for New Content?

P-17 Task Group Meeting

Shannon Jones and Margaret Roylance 10:35a - 11:00a ET

The P-17 Task Group is convened in the M&P Working Group to focus on generating new AMS material specifications for composite materials with data published in Volume 2, and then continued support/change management of these specifications. In comparison, the corresponding SAE group has multiple additional responsibilities, including hundreds more

similar, already existing composite and bonding AMS specifications which are not directly associated with CMH-17.

The associated SAE P-17 QPG is responsible for surveying and monitoring the material manufacturers for the Volume 2 published materials. This includes ensuring that materials being manufactured to the above P-17 AMS specifications are comparable to those which produced the test data published in Volume 2. Continued change management is then required to maintain this provenance.

Together this system allows procurement of the composite materials that produced the data published in Volume 2 using industry available specifications.

General Business

Welcome & Introductions Virtual sign in sheet(s) Review and approval of the minutes

Status update of P-17 Specification Activities

- Discussion on carbon fiber slash sheets on prepreg specifications
- MIL-STD-1587 revision draft review
- WiP Review
- Five Year Document Review Status
- Coordination of data review and specification generation
- New business
- P17 QPG highlights

Looking Forward

- Need volunteers to support adapting new AMS composite material specifications to support materials with data published in Volume 2
- Will the handbook publish data for adhesives and/or core?
- Will any CMH published adhesive and/or core data correspond directly with the current Volume 2 approach for composites?
- How can issues similar to composites (procurement of the material directly represented by the data published in V2) best be handled for new materials?
- Additional suggestions/proposals for P-17 TG support of procurement of Volume 2 published materials using industry specifications?

Bonding Process Task Group

Molly Stone and Lisa McHugh 11:00a to 12:00p ET

Bonding Process Task Group (BPTG) Meeting

The Bonding Process Task Group (BPTG) is convened in the M&P Working Group to generate new structural adhesive bonding process content for the handbook.

Meeting Objectives: Introduce new tasks and associated timelines. Create BPTG roster and recurring meeting schedule.

Quick Review of New Bonding Process Content for Rev H

Thank you, authors and reviewers!

Section	Title	Primary
		Author(s)
5.9	Introduction	Howard
		Creel
5.9.1	General Considerations	Dan Ruffner
5.9.2	Adhesive and Substrate Selection	Chad Franks
5.9.3	Surface Preparation for	Ashley
	Secondary Bonding	Tracey, Will
	, ,	Grace, Jim
		Mazza, Kara
		Storage
5.9.4	Application and Assembly	Scott
	Processes for Secondary	Leeman,
	Bonding	Molly Stone
5.9.5	Cocuring	Dan Ruffner
5.9.6	Cobonding	Dan Ruffner
5.9.7	Multi-stage Bonding	Dan Ruffner
5.9.8	Bond Quality Assurance	Lisa
		McHugh,
		Molly Stone
5.9.9	Considerations for a Bonding	Lisa
	Process Specification	McHugh,
		Molly Stone
5.9.10	Bonded Joint Certification	Chad Franks,
		Lisa
		McHugh,
		Molly Stone

Looking Forward

The need for new/additional bond process content is already established for the following areas:

- Cure monitoring and heat survey guidance
- Process control tools
- Amine blush testing
- Bond surface characterization methods and application

New BPTG Initiative Suggestions/Proposals for New Content? Volunteers?

PMC GUIDELINES

Wednesday, Nov 20, 2024

1:00 pm – 3:00 pm

Rousseau	Call to Order	1:00pm
Bastian	Approval of Spring 2024 GWG WG Minutes	
Yellow Page Re	eview – none for PMC GWG this cycle	
Old Business a	nd Open Als	
Bastian	 Post-Rev-H PMC GWG Issues (need champion names): Younger/New Member Outreach, Scott L, Steve K had volunteered 'Editorial' Review of PMC-GWG v1-v3 volunteers to work with Michele on review Bonded Joints, Shared Database Tutorials as a future part of CMH-17 Joint Guidelines meetings with CMC and AM guidelines 	1:10pm
Ballocchi Seats/Interiors TG Status of SAE ARP-6337 Rev B update, and next steps		1:40pm
New Business		
All	 Future role and scope of PMC GWG? Merge with JGWG? Sections absorbed by PMC Design and Analysis WG? Stress methods support for V6? 	
All	Topics to Elevate to PMC Coordination	2:45pm
Adjourn		3:00pm

SUPPORTABILITY

Wednesday, Nov 20, 2024	1:00 pm – 3:00 pm				
Introductions and Supportability WG Ov					

- Revision H content observations for Ch14 and Status of Publication 20 min
- SoBR TG2 Initiative Case Study #2 40 min
 - Scope and Team assignments
 - Content discussion
 - Timeline Planning
- Other Post-Rev H Planning 40 min
 - Discussion of Tasking Topics
 - Development of Proposals and Team Identification
- Next Steps Planning/Wrap-up 10 min

AM MATERIALS & PROCESSING

Thursday, Nov 21, 2024

10:00 am – 12:00 pm

- Introductions (15min)
- Review Chapter 4 & Chapter 5 Proposed Update to Table of Contents (20 min)
- Review summary for SLS content in AM handbook (40 min)
- Review proposal for pellet based extrusion terminology and content (20 min)
- Review current Chapter 4 & 5 terminology list (15 min)
- Review M&P Chapter/Section progress tracker (if time allows)

PMC DAMAGE TOLLERANCE

Thursday, Nov 21, 2024

10:00 am – 12:00 pm

Intro + Rev H Status (10 minutes)

Post-Rev H Topics and Priorities (50 minutes)

- Review of topics
- Identify and prioritize tasking initiatives

F44.30 Harmonization (30 minutes)

- EASA (Melanie/Simon) + FAA (Angle and/or Bob)
- Identify gaps in CMH-17 for Part 23, Appendix to 20-107C?

LEF Usage with Impact Damage (30 minutes)

- Waruna regarding impact damage scaling effects with respect to fatigue scatter/LEF.
- NSE/Fawcett> Discuss need for LEF for impact damage that is based on severe/conservative damage design criteria (also relates to relationship among categories of damage and residual strength curve).
- Bonded joints and out-of-plane loads should be considered (as related to impact damage)

COMPOSITE MATERIALS HANDBOOK 17

YELLOW PAGE RESULTS

RESULTS OF YELLOW PAGE VOTING

AM SPRING YP1 RESULTS

Volume	Section	Title	Affirmative	Affirmative with Comment	Negative	Abstain	Total
7	1.5	SCOPE	15	4	2	0	21
7	1.6	USE OF THE DOCUMENT AND LIMITATIONS	17	3	2	1	23
7	1.9	CMH-17 VOLUME 7 CHAPTER 1 SECTION 1.9 DEFINITIONS	18	3	0	2	23
7	2.1	INTRODUCTION TO NON-METALLIC AM DESIGN AND DEVELOPMENT	17	5	0	0	22
7	2.2	SOURCES OF VARIABILITY	20	1	0	1	22
7	4.1	PROCESS AND MANUFACTURING INTRODUCTION	14	3	3	3	23
7	5.3.4	CRITERIA FOR SOFTWARE CHANGE LEVEL SELECTION	15	3	1	4	23
7	8.4.1	STATISTICAL METHODS FOR MATERIAL EQUIVALENCE AND ACCEPTANCE	15	5	1	4	25

CMC SPRING YP1 RESULTS

Volume	Section	Title	Affirmative	Affirmative with Comment	Negative	Abstain	Total
5	13.7	COMPRESSION TESTING	10	5	1	0	16
5	13.12	INTERLAMINAR FRACTURE TOUGHNESS	7	7	2	0	16

AM SPRING YP2 RESULTS

Volume	Section	Title	Affirmative	Affirmative with Comment	Negative	Abstain	Total
7	1.5	SCOPE	16	6	0	2	24
7	1.6	USE OF THE DOCUMENT AND LIMITATIONS	17	3	1	3	24
7	8.2.5	Structured vs Unstructured Data	21	0	0	3	24
7	8.2.6	Statistically-Based Material Allowables	17	3	1	3	24
7	8.2.7	Modified CV	18	0	2	4	24
7	9.8	Tensile Testing	14	5	2	3	24
7	11.1	Design and Analysis	14	3	3	4	24

CMC SRPING YP2 RESULTS

				Affirmative with			
Volume	Section	Title	Affirmative	Comment	Negative	Abstain	Total
5	6.1.3.2	Attachments to non-CMC components	13	5	2	2	22
5	13.14	Creep Testing	17	1	1	3	22

ALL YP COMMENTS CAN BE FOUND AT CMH17.ORG

VOLUME OUTLINE

Updated 04/2024

VOLUME 1 - Rev H Working Draft

PMC Working/Task Group Responsibility

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION TO THE HANDBOOK	Guidelines
1.2 OVERVIEW OF HANDBOOK CONTENT	Guidelines
1.3 PURPOSE AND SCOPE OF VOLUME 1	Guidelines
1.4 USE OF THE DOCUMENT AND LIMITATIONS	Guidelines
1.4.1 Roadmaps for use of Volumes 1 - 3	Guidelines
1.4.2 Source of information	Guidelines
1.4.3 Use of data and guidelines in applications	Guidelines
1.4.4 Strength properties and allowables terminology	Guidelines
1.4.5 Use of references	Guidelines
1.4.6 Use of tradenames and product names	Materials & Processes
1.4.7 Toxicity, health hazards, and safety	Materials & Processes
1.4.8 Ozone depleting chemicals	Materials & Processes
1.5 APPROVAL PROCEDURES	Guidelines
1.6 MATERIAL ORIENTATION CODES	Guidelines
1.6.1 Laminate orientation codes	Guidelines
1.6.2 Braiding orientation codes	Guidelines
1.7 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS	Guidelines
1.7.1 Symbols and abbreviations	Guidelines
1.7.2 System of units	Guidelines
1.8 DEFINITIONS	Guidelines

CHAPTER 2 GUIDELINES FOR PROPERTY TESTING OF COMPOSITES

COMPOSITES	
2.1 INTRODUCTION	Guidelines
2.1.1 Building-block approach to substantiation of composite	Guidelines
structures	
2.1.2 Test levels and data uses	Guidelines
2.2 TEST PROGRAM PLANNING	Guidelines
2.2.1 Overview	Guidelines
2.2.2 Baseline and alternate approaches for statistically-based	Guidelines
properties	
2.2.3 Issues of data equivalence	Guidelines
2.2.4 Test program type	Guidelines
2.2.5 test method selection	Guidelines
2.2.6 Population sampling and sizing	Materials & Processes
2.2.7 Material and processing variation, specimen preparation and NDE	Guidelines
2.2.8 Material operational limit (MOL)	Guidelines
2.2.9 Material operational limits (MOL)	Guidelines

2.2.10 SPACE ENVIRONMENTAL EFFECTS ON MATERIAL PROPERTIES	Spacecraft
2.2.11 Data normalization	Guidelines
2.2.12 Application specific testing needs	Guidelines
2.3 RECOMMENDED TEST MATRICES	Guidelines
2.3.1 Material screening test matrices	Guidelines
2.3.2 Material qualification and lamina basis values test matrices	Guidelines
2.3.3 Material acceptance test matrices	Guidelines
2.3.4 Alternate material equivalence test matrices	Guidelines
2.3.5 Generic laminate/structural element test matrices	Guidelines
2.3.6 Suggested bonded joint test matrices	Guidelines
2.4 ALTERNATE APPROACHES TO BASIS VALUES	Guidelines
2.5 RESERVED FOR FUTURE USE	Guidelines
2.6 DATA DOCUMENTATION	Guidelines
2.6.1 Data documentation	Guidelines
2.6.2 Test reports	Guidelines
2.7 EVALUATION OF CHANGES MADE TO PREVIOUSLY QUALIFIED MATERIALS	Guidelines
2.7.1 Modification categories	Guidelines
2.7.2 Actions required for each modification category	Guidelines
2.7.3 Implementation	Guidelines
2.7.4 Validation test matrices	Guidelines
2.7.5 Equivalency criteria and data analysis	Guidelines
2.8 EVALUATION OF ALTERNATE PART PROCESSORS OR SITES	Guidelines
2.9 QUALIFICATION OF ADDITIONAL MATERIAL FORMS OR ALTERNATE SOURCE COMPOSITE MATERIALS	Guidelines
2.9.1 Introduction	Guidelines
2.9.2 Goal and approach	Guidelines
2.9.3 Key material or structural performance parameters	Guidelines
2.9.4 General guidance	Guidelines

CHAPTER 3 EVALUATION OF REINFORCEMENT FIBERS

3.1 INTRODUCTION	Testing
3.2 CHEMICAL TECHNIQUES	Testing
3.2.1 Elemental analysis	Testing
3.2.2 Titration	Testing
3.2.3 Fiber structure	Testing
3.2.4 Fiber surface chemistry	Testing
3.2.5 Sizing content and composition	Testing
3.2.6 Moisture content	Testing
3.2.7 Thermal stability and oxidative resistance	Testing
3.2.8 Chemical resistance	Testing
3.3 PHYSICAL TECHNIQUES (INTRINSIC)	Testing
3.3.1 Filament diameter	Testing
3.3.2 Density of fibers	Testing
3.3.3 Electrical resistivity	Testing
3.3.4 Coefficient of thermal expansion	Testing
3.3.5 Thermal conductivity	Testing

3.3.6 Specific heat	Testing
3.3.7 Thermal transition temperatures	Testing
3.4 PHYSICAL TECHNIQUES (EXTRINSIC)	Testing
3.4.1 Yield of yarn, strand, or roving	Testing
3.4.2 Cross-sectional area of yarn or tow	Testing
3.4.3 Twist of yarn	Testing
3.4.4 Fabric construction	Testing
3.4.5 Fabric areal density	Testing
3.5 MECHANICAL TESTING OF FIBERS	Testing
3.5.1 Tensile properties	Testing
3.5.2 Filament compression testing	Testing

CHAPTER 4 MATRIX CHARACTERIZATION

4.1 INTRODUCTION	Testing
4.2 MATRIX SPECIMEN PREPARATION	Testing
4.2.1 Introduction	Testing
4.2.2 Thermoset polymers	Testing
4.2.3 Thermoplastic polymers	Testing
4.2.4 Specimen machining	Testing
4.3 CONDITIONING AND ENVIRONMENTAL EXPOSURE	Testing
4.4 CHEMICAL ANALYSIS TECHNIQUES	Testing
4.4.1 Elemental analysis	Testing
4.4.2 Functional group and wet chemical analysis	Testing
4.4.3 Spectroscopic analysis	Testing
4.4.4 Chromatographic analysis	Testing
4.4.5 Molecular weight and molecular weight distribution analysis	Testing
4.4.6 General scheme for resin material characterization	Testing
4.5 THERMAL/PHYSICAL ANALYSIS AND PROPERTY TESTS	Testing
4.5.1 Introduction	Testing
4.5.2 Thermal analysis	Testing
4.5.3 Rheological analysis	Testing
4.5.4 Morphology	Testing
4.5.5 Density/specific gravity	Testing
4.5.6 Volatiles content	Testing
4.5.7 Moisture content	Testing
4.6 STATIC MECHANICAL PROPERTY TESTS	Testing
4.6.1 Introduction	Testing
4.6.2 Tension	Testing
4.6.3 Compression	Testing
4.6.4 Shear	Testing
4.6.5 Flexure	Testing
4.6.6 Impact	Testing
4.6.7 Hardness	Testing
4.7 FATIGUE TESTING	Testing
4.8 TESTING OF VISCOELASTIC PROPERTIES	Testing

CHAPTER 5 PREPREG MATERIALS CHARACTERIZATION

5.1 INTRODUCTION	Testing
5.1.1 Background	Testing
5.2 PREPREG SAMPLING PLANS AND SPECIMEN PREPARATION	Testing
5.3 CONDITIONING AND ENVIRONMENTAL EXPOSURE	Testing
5.4 PREPREG PHYSICAL AND CHEMICAL PROPERTIES	Testing
5.4.1 Prepreg physical properties	Testing
5.4.2 Prepreg chemical properties	Testing

CHAPTER 6 LAMINA, LAMINATE, AND SPECIAL FORM CHARACTERIZATION

Testing
Testing
Testing
. coung

6.6.18 Flammability and smoke generation	Testing
6.7 ELECTRICAL PROPERTY TESTS	Testing
6.7.1 Introduction	Testing
6.7.2 Electrical permittivity	Testing
6.7.3 Dielectric strength	Testing
6.7.4 Magnetic permeability	Testing
6.7.5 Electrical property tests - electro-magnetic interference (EMI) shielding effectiveness	Testing
6.7.5.1 Coupon testing	Testing
6.7.5.2 Enclosure testing	Testing
6.7.6 Electrostatic discharge	Testing
6.8 STATIC UNIAXIAL MECHANICAL PROPERTY TESTS	Testing
6.8.1 Introduction	Testing
6.8.2 Tensile properties	Testing
6.8.3 Compressive properties	Testing
6.8.4 Shear properties	Testing
6.8.5 Flexural properties	Testing
6.8.6 Fracture toughness	Damage Tolerance/Testing
6.9 UNIAXIAL FATIGUE TESTING	Testing
6.9.1 Overview	Testing
6.9.2 Fatigue test key parameters	Testing
6.9.3 Fatigue strength test methods	Testing
6.9.4 Fatigue fracture toughness	Testing
6.10 MULTIAXIAL MECHANICAL PROPERTY TESTING	Testing
6.11 VISCOELASTIC PROPERTIES TESTS	Testing
6.11.1 Introduction	Testing
6.11.2 Creep and stress relaxation	Testing
6.12 FORM-SPECIFIC MECHANICAL PROPERTY TESTS	Testing
6.12.1 Tests unique to filament winding	Testing
6.12.2 Tests unique to textiles composites	Testing

CHAPTER 7 STRUCTURAL ELEMENT CHARACTERIZATION

7.1 INTRODUCTION	Testing
7.2 SPECIMEN PREPARATION	Testing
7.2.1 Introduction	Testing
7.2.2 Mechanically fastened joint tests	Testing
7.2.3 Bonded joint tests	Testing
7.3 CONDITIONING AND ENVIRONMENTAL EXPOSURE	Testing
7.3.1 Introduction	Testing
7.3.2 General specimen preparation	Testing
7.3.3 Bonded joints	Testing
7.3.4 Damage characterization specimens	Testing
7.3.5 Sandwich Structure	Testing
7.4 NOTCHED LAMINATE TESTS	Testing
7.4.1 Overview	Testing

7.4.2 Notched laminate tension	Testing
7.4.3 Notched laminate compression	Testing
7.4.4 Notched laminate test methods for CMH-17 data submittal	Testing
7.5 MECHANICALLY-FASTENED JOINT TESTS	Testing
7.5.1 Definitions	Testing
7.5.2 Bearing Tests	Testing
7.5.3 Bearing/by-pass evaluation	Testing
7.5.4 Fastener pull-thru resistance	Testing
7.5.5 Bearing/mechanical joint test methods for CMH-17 data submittal	Testing
7.6 BONDED JOINT TESTS	Testing
7.6.1 Overview	Testing
7.6.2 Adhesive characterization tests	Testing
7.6.3 Bonded joint characterization tests	Testing
7.7 DAMAGE CHARACTERIZATION	Testing
7.7.1 Overview	Testing
7.7.2 Damage resistance	Testing
7.7.3 Damage tolerance tests	Testing

CHAPTER 8 STATISTICAL METHODS

8.1 INTRODUCTION	Statistics
8.1.1 Overview of methods for calculating statistically-based properties	Statistics
8.1.2 Computer software	Statistics
8.1.3 Symbols	Statistics
8.1.4 Statistical terms	Statistics
8.2 BACKGROUND	Statistics
8.2.1 Statistically-based design values	Statistics
8.2.2 Basis values for unstructured data	Statistics
8.2.3 Basis values in the presence of batch-to-batch variability	Statistics
8.2.4 Batches, panels, and confounding	Statistics
8.2.5 Sample size guidelines for determining basis values	Statistics
8.3 CALCULATION OF STATISTICALLY-BASED MATERIAL PROPERTIES	Statistics
8.3.1 Guide to computational procedures	Statistics
8.3.2 Subpopulation compatibility - structured or unstructured	Statistics
8.3.3 Detecting outliers	Statistics
8.3.4 Equality of variances	Statistics
8.3.5 Computational procedures for basis values using the pooling across environments method (Figure 8.3.1(a))	Statistics
8.3.6 Computational procedures for basis values using the single point method (Figure 8.3.1(b))	Statistics
8.3.7 Calculation of basis values for structured data using regression analysis	Statistics
8.3.8 Exploratory data analysis	Statistics
8.3.9 Acceptable grouping of environmental conditions for pooling	Statistics
8.3.10 Guidelines for applying experience and judgment to statistical results	Statistics
8.3.11 Examples	Statistics
8.4 STATISTICAL METHODS	Statistics

8.4.1 Tests for determining equivalency between an existing database and a new dataset for the same material	Statistics
8.4.2 Alternate material statistical procedures	Statistics
8.4.3 Confidence intervals for the coefficient of variation	Statistics
8.4.4 Modified coefficient of variation approach	Statistics
8.4.5 Statistical procedures for process control	Statistics
8.4.6 Average stress-strain curves and bearing load-deformation curves	Statistics
8.4.7 General linear statistical models	Statistics
8.5 STATISTICAL TABLES AND APPROXIMATIONS	Statistics
8.5.1 Quantiles of the F-distribution	Statistics
8.5.2 Quantiles of the χ^2 distribution	Statistics
8.5.3 Upper-tail quantiles for the t-distribution	Statistics
8.5.4 Two-tail probabilities for the t-distribution	Statistics
8.5.5 Upper-tail probabilities for the standard normal distribution	Statistics
8.5.6 Critical values for the k-sample Anderson-Darling test at the a = 0.05 significance level	Statistics
8.5.7 Critical values for the MNR outlier test	Statistics
8.5.8 One-sided B-basis tolerance factors, V_B , for the Weibull distribution	Statistics
8.5.9 One-sided A-basis tolerance factors, V _A , for the Weibull distribution	Statistics
8.5.10 One-sided B-basis tolerance factors, k _B , for the normal distribution	Statistics
8.5.11 One-sided A-basis tolerance factors, k _A , for the normal distribution	Statistics
8.5.12 Ranks, r _B , for determining nonparametric B-basis values	Statistics
8.5.13 Ranks, r _A , for determining nonparametric A-basis values	Statistics
8.5.14 Nonparametric B-basis values for small sample sizes	Statistics
8.5.15 Non-parametric A-basis values for small sample sizes	Statistics
8.5.16 Critical values for approximate confidence limits on the coefficient of variation	Statistics
8.5.17 One-sided tolerance factors for acceptance limits on mean values, for normal distribution	Statistics
8.5.18 One-sided tolerance factors for acceptance limits on individual values, for normal distribution	Statistics
8.5.19 Upper and lower tail quantiles for two-sided t-distribution	Statistics

VOLUME 2 - Rev H

PMC Working/Task Group Responsibility

CHAPTER 1 GENERAL INFORMATION

CHAPTER T GENERAL INFORMATION	1
1.1 Introduction to the Handbook	Guidelines
1.2 Overview of Handbook Content	Guidelines
1.3 Purpose and Scope of Volume 2	Data Review
1.4 Organization of Data in Volume 2	Data Review
1.5 Presentation of Data	Data Review
1.5.1 Complete Documentation	Data Review
1.5.2 Legacy Data	Data Review
1.5.3 Appended MIL-HDBK-17 Rev A Data	Data Review
	Data Review/Materials &
1.6 Materials Systems	Processes
1.6.1 Materials system codes	Data Review/Materials & Processes
	Data Review/Materials &
1.6.2 Index of materials	Processes
1.7 Material Orientation Codes	Guidelines
1.7.1 Laminate orientation codes	Guidelines
1.7.2 Braiding orientation codes	Guidelines
1.8 Symbols, Abbreviations, and Systems of Units	Guidelines
1.8.1 Symbols and abbreviations	Guidelines
1.8.2 System of units	Guidelines
1.9 Definitions	Guidelines
1.10 DATA REDUCTION AND DOCUMENTATION (sections moved from Volume 1	
Section 2.3.7 and 2.4)	Data Review
1.10.1 Introduction	Data Review
1.10.2 Lamina properties from laminates	Data Review
1.10.3 Data normalization	Data Review
1.10.4 Disposition of outlier data	Data Review
1.10.5 Data documentation	
1.11 MATERIAL TESTING FOR SUBMISSION OF DATA TO CMH-17	Data Review
1.11.1 Introduction	Data Review
1.11.2 Material and process specification requirements	Data Review
1.11.3 Sampling requirements	Data Review
1.11.4 Conditioning requirements	Data Review
1.11.5 Test method requirements	Testing/Data Review
1.11.6 Data documentation requirements	Data Review
1.11.7 Data normalization	Data Review
1.11.8 Statistical analysis	Data Review
1.11.9 Mechanical properties of laminae and laminates	Data Review
1.11.10 Chemical properties	Data Review
1.11.11 Physical properties of laminae and laminates	Data Review
1.11.12 Thermal properties	Data Review
1.12 Data substantiation for use of basis values from CMH-17 or other large databases	Data Review

CHAPTER 2 CARBON FIBER COMPOSITES

2.1 Introduction	Data Review
2.2 Complete Documentation	Data Review
2.2.1 Carbon - Epoxy Prepreg Tape	Data Review
2.2.2 Carbon - Epoxy Prepreg Fabric	Data Review
2.2.3 Carbon - Epoxy Wet-Lay-Up Fabric	Data Review
2.3 Legacy Data	Data Review
2.3.1 Carbon - Epoxy Prepreg Tape	Data Review
2.3.2 Carbon - Epoxy Prepreg Fabric	Data Review
2.3.3 Carbon - Epoxy Wet-Lay-Up Fabric	Data Review
2.3.4 Carbon - Epoxy Resin-Transfer-Molded Fabric	Data Review
2.3.5 Carbon - Bismaleimide Prepreg Tape and Fabric	Data Review
2.3.6 Carbon - Bismaleimide Resin-Transfer-Molded Fabric	Data Review
2.3.7 Carbon - Polyimide Prepreg Fabric	Data Review
2.3.8 Carbon - Thermoplastic Prepreg Tape	Data Review
2.3.9 Carbon - Cyanate Ester Prepreg Tape	Data Review

CHAPTER 3 BORON FIBER COMPOSITES

3.1 Introduction	Data Review
3.2 Complete Documentation	Data Review
3.3 Legacy Data	Materials & Processes
3.3.1 Boron - Epoxy Prepreg Tape	Materials & Processes

CHAPTER 4 GLASS FIBER COMPOSITES

4.1 Introduction	Data Review
4.2 Complete Documentation	Data Review
4.2.1 Glass - Epoxy Prepreg Tape	Data Review
4.2.2 Glass - Epoxy Prepreg Fabric	
4.3 Legacy Data	Data Review
4.3.1 Glass - Epoxy Prepreg Tape and Fabric	Data Review
4.3.2 Glass - Epoxy Wet-Lay-Up	Data Review

CHAPTER 5 QUARTZ FIBER COMPOSITES

5.1 Introduction	Data Review
5.2 Complete Documentation	Data Review
5.3 Legacy Data	Data Review
5.3.1 Quartz - Bismaleimide Prepreg Fabric	Data Review

APPENDIX A1. MIL-HDBK-17A DATA

A1.1 General Information	
A1.2 Introduction	
A1.3 Handbook Test Program	
A1.3.1 Objectives	
A1.3.2 Preimpregnated materials	
A1.3.3 Test panels	
A1.3.4 Test procedures	
A1.3.4.1 Tensile tests	
A1.3.4.2 Compression tests	
A1.3.4.3 Shear tests	

A1.3.4.4 Interlaminar shear	
A1.3.4.5 Flexural tests	
A1.3.4.6 Bearing strength	
A1.3.5 Dry conditioning	
A1.3.6 Wet conditioning	
A1.3.7 Test schedule	
A1.4 Data Presentation	
A1.4.1 Epoxy fiberglass laminates	
A1.4.2 Phenolic fiberglass laminates	
A1.4.3 Silicone fiberglass laminates	
A1.4.4 Polyester fiberglass laminates	
A1.4.5 Boron epoxy laminates	

CHAPTER 1 GENERAL INFORMATION

Guidelines
Guidelines

CHAPTER 2 INTRODUCTION TO COMPOSITE STRUCTURE DEVELOPMENT

2.1 INTRODUCTION	Guidelines
2.1.1 Why composites are different	Guidelines
2.1.2 A different development approach	Guidelines
2.1.3 Limitations on this Chapter	Guidelines
2.2 BEHAVIOR OF COMPOSITES - MECHANICS	Guidelines
2.2.1 Materials terminology and coordinate systems	Guidelines
2.2.2 Mechanical properties at the material level	Guidelines
2.2.3 Stacking sequence issues	Guidelines
2.2.4 Environmental effects	Guidelines
2.2.5 Damage effects	Guidelines
2.2.6 Variability issues	Guidelines
2.2.7 Mechanical properties for design	Guidelines
2.3 MATERIAL SELECTION	Guidelines
2.3.1 Structural materials	Guidelines
2.3.2 Ancillary materials	Guidelines
2.3.3 Material selection considerations	Guidelines
2.4 MANUFACTURING PROCESS SELECTION	Guidelines
2.4.1 Process steps and options	Guidelines
2.4.2 Tooling approaches	Guidelines
2.4.3 Quality assurance processes	Guidelines
2.4.4 Process selection considerations	Guidelines
2.5 STRUCTURAL CONCEPTS	Guidelines
2.5.1 Basic construction types	Guidelines
2.5.2 Joint types	Guidelines
2.5.3 Assembly of detail parts	Guidelines
2.5.4 Integration of large composite structures	Guidelines
2.5.5 Assembly into complete structure	Guidelines
2.6 DEFECT AND DAMAGE ISSUES	Guidelines
2.6.1 General defect and damage design considerations	Guidelines
2.6.2 Defect and damage sources	Guidelines

2.6.3 Defect and damage characteristics	Guidelines
2.6.4 Inspection for defects and damage	Guidelines
2.6.5 Addressing defects and damage during design and development	Guidelines
2.7 LIFETIME CONSIDERATIONS	Guidelines
2.7.1 Environmental degradation	Guidelines
2.7.2 Maintenance issues	Guidelines
2.7.3 Issues related to changes in "mission spectrum"	Guidelines
2.7.4 Environmental management	Guidelines
2.8 DEVELOPMENT PROGRAM OUTLINE	Guidelines

CHAPTER 3 AIRCRAFT STRUCTURE CERTIFICATION AND COMPLIANCE

3.1.1 General (background) Guidelines 3.1.2 Purpose and scope Guidelines 3.2 CERTIFICATION CONSIDERATIONS Guidelines 3.2.1 Product development (initial airworthiness) Guidelines 3.2.2 Continued airworthiness Guidelines 3.2.3 Product modification (changed product) Guidelines 3.2.4 Qualified workforce and learnwork Guidelines 3.3.7 Structure, design, and construction Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.8 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.1 Lighting strike protection Guidelines 3.4.1 Uptioning structure autor in static stability) Guidelines 3.4.5 Flaws experienced in	3.1 INTRODUCTION	Guidelines
3.2 CERTIFICATION CONSIDERATIONS Guidelines 3.2.1 Product development (initial airworthiness) Guidelines 3.2.2 Continued airworthiness Guidelines 3.2.3 Product modification (changed product) Guidelines 3.2.4 Qualified workforce and teamwork Guidelines 3.2.5 Product modification (changed product) Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.9 Flutter substantiation (static strength and damage tolerance) Guidelines 3.4.1 Lightning strike protection Guidelines 3.4.1 Lightning strike protection Guidelines 3.4.7 Structural substantiation (static strength and damage tolerance) Guidelines	3.1.1 General (background)	Guidelines
3.2.1 Product development (initial airworthiness) Guidelines 3.2.2 Continued airworthiness Guidelines 3.2.3 Product modification (changed product) Guidelines 3.2.4 Qualified workforce and teamwork Guidelines 3.3.7 EEGULATIONS Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.9 Flutter substantiation (acro-elastic stability) Guidelines 3.4.9 Flutter substantiation (acro-elastic stability) Guidelines 3.4.1 Liphtring strike protection Guidelines 3.4.3 Structural conformity process Guidelines <	3.1.2 Purpose and scope	Guidelines
3.2.2 Continued airworthiness Guidelines 3.2.3 Product modification (changed product) Guidelines 3.2.4 Qualified workforce and teamwork Guidelines 3.3 REGULATIONS Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.9 Ituter substantiation (acro-elastic stability) Guidelines 3.4.10 Filer protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines	3.2 CERTIFICATION CONSIDERATIONS	Guidelines
3.2.3 Product modification (changed product) Guidelines 3.2.4 Qualified workforce and teamwork Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.3 Continued ainvorthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.11 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control <td< td=""><td>3.2.1 Product development (initial airworthiness)</td><td>Guidelines</td></td<>	3.2.1 Product development (initial airworthiness)	Guidelines
3.2.4 Qualified workforce and teamwork Guidelines 3.3 REGULATIONS Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.9 Flutter substantiation (static strength and damage tolerance) Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.12 Crashworthiness Guidelines 3.5 PRODUCTION - ESSENTIALS Guidelines 3.5.1 Production implementation Guidelines 3.5.4 Modification of the production process Guidelines 3.5.4 Modification of the production process Guidelines 3.5.5 Defect disposition and manufacturing records Gui	3.2.2 Continued airworthiness	Guidelines
3.3 REGULATIONS Guidelines 3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.7 Structural conformity process Guidelines 3.4.8 Structural conformity process Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.12 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines 3.5.4 Modification of the production process Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines 3.5.4 Modification of the production process Guidelines 3.5.1 R	3.2.3 Product modification (changed product)	Guidelines
3.3.1 Structure, design, and construction Guidelines 3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.8 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.12 Crashworthiness Guidelines 3.4.12 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines	3.2.4 Qualified workforce and teamwork	Guidelines
3.3.2 Production approval Guidelines 3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.8 Structural substantiation (aero-elastic stability) Guidelines 3.4.1 Lightning strike protection Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.12 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines 3.5.3 Defect disposition and manufacturing records Guidelines 3.5.4 Modification of the production process Guidelines<	3.3 REGULATIONS	Guidelines
3.3.3 Continued airworthiness (maintenance) Guidelines 3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.8 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.12 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines 3.5.3 Defect disposition and manufacturing records Guidelines 3.5.4 Modification of the production process Guidelines 3.6.1 Repair design and process substantiation Guidelines 3.6.2 Teamwork and disposition Guidelines 3.6.3 Damage detection and characterization Guidelines 3.6.4 Repair proce	3.3.1 Structure, design, and construction	Guidelines
3.4 DESIGN SUBSTANTIATION Guidelines 3.4.1 Design and process documentation Guidelines 3.4.2 Material/adhesive qualification Guidelines 3.4.3 Environmental exposure and fluid compatibility Guidelines 3.4.4 Structural bonding Guidelines 3.4.5 Tools and part cure Guidelines 3.4.6 Flaws experienced in production Guidelines 3.4.7 Structural conformity process Guidelines 3.4.8 Structural substantiation (static strength and damage tolerance) Guidelines 3.4.9 Flutter substantiation (aero-elastic stability) Guidelines 3.4.10 Fire protection, flammability, and thermal issues Guidelines 3.4.11 Lightning strike protection Guidelines 3.4.2 Crashworthiness Guidelines 3.5.1 Production implementation Guidelines 3.5.2 Manufacturing quality control Guidelines 3.5.3 Defect disposition and manufacturing records Guidelines 3.6.4 Repair design and process substantiation Guidelines 3.6.1 Repair design and process substantiation Guidelines 3.6.2 Teamwork and disposition Guidelines 3.6.3 Damage detection and characterization Guidelines 3.6.4 R	3.3.2 Production approval	Guidelines
3.4.1Design and process documentationGuidelines3.4.2Material/adhesive qualificationGuidelines3.4.3Environmental exposure and fluid compatibilityGuidelines3.4.4Structural bondingGuidelines3.4.5Tools and part cureGuidelines3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines	3.3.3 Continued airworthiness (maintenance)	Guidelines
3.4.2Material/adhesive qualificationGuidelines3.4.3Environmental exposure and fluid compatibilityGuidelines3.4.4Structural bondingGuidelines3.4.4Structural bondingGuidelines3.4.5Tools and part cureGuidelines3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.6.4Repair processes (bonded vs. bolted)Guidelines	3.4 DESIGN SUBSTANTIATION	Guidelines
3.4.3Environmental exposure and fluid compatibilityGuidelines3.4.4Structural bondingGuidelines3.4.5Tools and part cureGuidelines3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.6.4Repair processes (bonded vs. bolted)Guidelines	3.4.1 Design and process documentation	Guidelines
3.4.4Structural bondingGuidelines3.4.5Tools and part cureGuidelines3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.2 Material/adhesive qualification	Guidelines
3.4.5Tools and part cureGuidelines3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.3 Environmental exposure and fluid compatibility	Guidelines
3.4.6Flaws experienced in productionGuidelines3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.4 Structural bonding	Guidelines
3.4.7Structural conformity processGuidelines3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.5 Tools and part cure	Guidelines
3.4.8Structural substantiation (static strength and damage tolerance)Guidelines3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.6 Flaws experienced in production	Guidelines
3.4.9Flutter substantiation (aero-elastic stability)Guidelines3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.7 Structural conformity process	Guidelines
3.4.10Fire protection, flammability, and thermal issuesGuidelines3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5.1PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.4.8 Structural substantiation (static strength and damage tolerance)	Guidelines
3.4.11Lightning strike protectionGuidelines3.4.12CrashworthinessGuidelines3.5PRODUCTION - ESSENTIALSGuidelines3.5.1Production implementationGuidelines3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines		Guidelines
3.4.12 CrashworthinessGuidelines3.5 PRODUCTION - ESSENTIALSGuidelines3.5.1 Production implementationGuidelines3.5.2 Manufacturing quality controlGuidelines3.5.3 Defect disposition and manufacturing recordsGuidelines3.5.4 Modification of the production processGuidelines3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines		Guidelines
3.5 PRODUCTION - ESSENTIALSGuidelines3.5.1 Production implementationGuidelines3.5.2 Manufacturing quality controlGuidelines3.5.3 Defect disposition and manufacturing recordsGuidelines3.5.4 Modification of the production processGuidelines3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines	3.4.11 Lightning strike protection	Guidelines
3.5.1 Production implementationGuidelines3.5.2 Manufacturing quality controlGuidelines3.5.3 Defect disposition and manufacturing recordsGuidelines3.5.4 Modification of the production processGuidelines3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines	3.4.12 Crashworthiness	Guidelines
3.5.2Manufacturing quality controlGuidelines3.5.3Defect disposition and manufacturing recordsGuidelines3.5.4Modification of the production processGuidelines3.6MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1Repair design and process substantiationGuidelines3.6.2Teamwork and dispositionGuidelines3.6.3Damage detection and characterizationGuidelines3.6.4Repair processes (bonded vs. bolted)Guidelines3.7GUIDANCE AND REPORTSGuidelines	3.5 PRODUCTION - ESSENTIALS	
3.5.3 Defect disposition and manufacturing recordsGuidelines3.5.4 Modification of the production processGuidelines3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines	3.5.1 Production implementation	Guidelines
3.5.4 Modification of the production processGuidelines3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines		Guidelines
3.6 MAINTENANCE - TECHNICAL ISSUESGuidelines3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines		Guidelines
3.6.1 Repair design and process substantiationGuidelines3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines		Guidelines
3.6.2 Teamwork and dispositionGuidelines3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines	3.6 MAINTENANCE - TECHNICAL ISSUES	Guidelines
3.6.3 Damage detection and characterizationGuidelines3.6.4 Repair processes (bonded vs. bolted)Guidelines3.7 GUIDANCE AND REPORTSGuidelines		Guidelines
3.6.4 Repair processes (bonded vs. bolted) Guidelines 3.7 GUIDANCE AND REPORTS Guidelines		
3.7 GUIDANCE AND REPORTS Guidelines	-	Guidelines
		Guidelines
3.7.1 Advisory circulars Guidelines		
	3.7.1 Advisory circulars	Guidelines

3.7.2 Policy statements	Guidelines	
3.7.3 Technical reports	Guidelines	

CHAPTER 4 BUILDING BLOCK APPROACH FOR COMPOSITE STRUCTURES

4.1 INTRODUCTION AND PHILOSOPHY	Guidelines
4.2 RATIONALE AND ASSUMPTIONS	Guidelines
4.2.1 Risk reduction	Guidelines
4.3 METHODOLOGY	Guidelines
4.3.1 Failure modes	Guidelines
4.3.2 Analysis	Guidelines
4.3.3 Material qualification and allowables (coupon level)	Guidelines
4.3.4 Design detail allowables (element test level)	Guidelines
4.3.5 Critical structure pre-production assurance (subcomponent test level)	Guidelines
4.3.6 Full-scale structure validation-component level tests	Guidelines
4.4 CONSIDERATIONS FOR SPECIFIC APPLICATIONS	Guidelines
4.4.1 Aircraft for prototypes	Guidelines
4.4.2 Aircraft for EMD and production	Guidelines
4.4.3 Commercial aircraft	Guidelines
4.4.4 Business and private aircraft	Guidelines
4.4.5 Rotorcraft	Guidelines
4.4.6 Spacecraft	Guidelines
4.5 SPECIAL CONSIDERATION AND VARIANCES FOR SPECIFIC PROCESSES AND MATERIAL FORMS	Guidelines
4.5.1 Room temperature	Guidelines
4.6 STATISTICAL METHODS FOR HIGHER BUILDING BLOCK LEVELS	Guidelines
4.6.1 Method for Estimating Laminate Basis Values from Small Sample Datasets	Guidelines

CHAPTER 5 MATERIALS AND PROCESSES

5.1 INTRODUCTION	Materials & Processes
5.2 PURPOSE	Materials & Processes
5.3 SCOPE	Materials & Processes
5.4 CONSTITUENT MATERIALS	Materials & Processes
5.4.1 Fibers	Materials & Processes
5.4.2 Resins	Materials & Processes
OUTLINE	Materials & Processes
5.5 PROCESSING OF PRODUCT FORMS	Materials & Processes
5.5.1 Fabrics and preforms	Materials & Processes
5.5.1.1 Woven fabrics	Materials & Processes
5.5.2 Preimpregnated forms	Materials & Processes
5.5.3 Detailed guidelines for defining a "batch" or "lot" of material for production use	
5.6 SHIPPING AND STORAGE PROCESSES	Materials & Processes
5.6.1 Packaging	Materials & Processes
5.6.2 Shipping	Materials & Processes
5.6.3 Unpackaging and storage	Materials & Processes
5.7 CONSTRUCTION PROCESSES	Materials & Processes
5.7.1 Hand lay-up	Materials & Processes
5.7.2 Automated tape placement/automated tape lamination	Materials & Processes

5.7.3 Automated tow placement/fiber placement	Materials & Processes
5.7.4 Braiding	Materials & Processes
5.7.5 Filament winding	Materials & Processes
5.7.6 Pultrusion	Materials & Processes
5.7.7 Sandwich construction	Materials & Processes
5.7.8 Adhesive bonding	Materials & Processes
5.7.9 Prebond moisture	Materials & Processes
5.7.10 Adhesive bond quality	Materials & Processes
5.8 CURE AND CONSOLIDATION PROCESSES	Materials & Processes
5.8.1 Vacuum bag molding	Materials & Processes
5.8.2 Oven cure	Materials & Processes
5.8.3 Autoclave curing processing	Materials & Processes
5.8.4 Press molding	Materials & Processes
5.8.5 Integrally heated tooling	Materials & Processes
5.8.6 Pultrusion die cure and consolidation	Materials & Processes
5.8.7 Resin transfer molding (RTM)	Materials & Processes
5.8.8 Thermoforming	Materials & Processes
5.9 ASSEMBLY PROCESSES	Materials & Processes
5.9.1 Assembly Processes for Bonded Joints	Materials & Processes
5.9.5 SURFACE PREPARATION	Materials & Processes
5.10 PROCESS CONTROL	Materials & Processes
5.10.1 Common process control schemes	Materials & Processes
5.10.2 Example - autoclave cure of a thermoset composite	Materials & Processes
5.11 PREPARING MATERIAL AND PROCESSING SPECIFICATIONS	Materials & Processes
5.11.1 Types of specifications	Materials & Processes
5.11.2 Format for specifications	Materials & Processes
5.11.3 Specification examples	Materials & Processes
5.11.4 Configuration management	Materials & Processes
5.12 Determining sources of variability during a composite material qualification	Materials & Processes
5.12.1 Introduction	Materials & Processes
5.12.2 Development and application of the nested qualification approach	Materials & Processes
5.12.3 Example of nested qualification data allowables calculation results using regression	Materials & Processes
5.12.4 Qualification of Vendor C manufacturing Vendor A material	Materials & Processes
5.12.5 Design allowables using nested approach	Materials & Processes
5.12.6 Nested qualification cost issues	Materials & Processes
5.12.7 Summary	Materials & Processes
5.13 GENERIC BASIS VALUES AND EQUIVALENCE CRITERIA	Statistics

CHAPTER 6 QUALITY CONTROL OF PRODUCTION MATERIALS AND PROCESSES

6.1 INTRODUCTION	Materials & Processes
6.2 MATERIAL PROCUREMENT QUALITY ASSURANCE PROCEDURES	Materials & Processes
6.2.1 Specifications and documentation	Materials & Processes
6.2.2 Material control at the supplier level	Materials & Processes
6.2.3 Material control at the user level	Materials & Processes
6.3 PART FABRICATION VERIFICATION	Materials & Processes
6.3.1 Process verification	Materials & Processes
6.3.2 Nondestructive inspection (NDI)	Materials & Processes

6.3.3 Destructive tests (DT)	Materials & Processes
6.4 Managing Change in Materials and Processes	Materials & Processes
6.4.1 Introduction	Materials & Processes
6.4.2 Qualification of new materials or processes	Materials & Processes
6.4.3 Divergence and risk	Materials & Processes
6.4.4 Production readiness	Materials & Processes
6.5 STATISTICAL tools for improving processes	Materials & Processes
6.5.1 Process feedback adjustment	Materials & Processes
6.5.2 Design of experiments	Materials & Processes
6.5.3 Taguchi	Materials & Processes
CHAPTER 7 DESIGN OF COMPOSITES	
7.1 OVERVIEW OF UNIQUE ISSUES ASSOCIATED WITH COMPOSITE DESIGN	Guidelines
7.2 DESIGN PROCESS	Guidelines
7.3 MATERIAL AND PROCESS SELECTION	Guidelines
7.3.1 Materials selection	Guidelines
7.3.2 Manufacturing process selection	Guidelines
7.3.3 Quality control	Guidelines
7.3.4 Producibility	Guidelines
7.3.5 Tooling	Guidelines
7.3.6 Environmental effects	Guidelines
7.4 STRUCTURAL CONCEPTS	Guidelines
7.4.1 Solid laminate vs. sandwich vs. stiffened structure	Guidelines
7.4.2 Layup selection	Guidelines
7.4.3 Tailored properties	Guidelines
7.4.4 Hybrid Structure Design	Guidelines
7.5 DETAILED PART DESIGN	Guidelines
7.5.1 Elastic properties	Guidelines
7.5.2 Laminate design considerations	Guidelines
7.5.3 Thermal compatibility/low CTE	Guidelines
7.5.4 Composite/metal interfaces	Guidelines
7.5.5 Design for supportability	Guidelines
7.5.6 Design of joints	Guidelines
7.5.7 Damage resistance/tolerance	Guidelines
7.5.8 Durability	Guidelines
7.5.9 Lightning strike	Guidelines
7.6 OPTIMIZATION	Guidelines
7.7 LESSONS LEARNED	Guidelines

CHAPTER 8 ANALYSIS OF LAMINATES

8.1 INTRODUCTION	Guidelines
8.2 LAMINA PROPERTIES AND MICROMECHANICS	Guidelines
8.2.1 Assumptions	Guidelines
8.2.2 Fiber composites: stress-strain properties	Guidelines
8.2.3 Fiber composites: physical properties	Guidelines
8.2.4 Thick composite 3-D lamina properties	Guidelines
8.2.5 Determining lamina moduli from laminate moduli test data	Guidelines
8.3 LAMINATE STIFFNESS ANALYSIS	Guidelines
8.3.1 Lamination theory	Guidelines

8.3.2 Laminate properties	Guidelines
8.3.3 Usage of moduli values for analysis	Guidelines
8.3.4 Thermal and hygroscopic analysis	Guidelines
8.3.5 Thick composite 3-D laminate analysis	Guidelines
8.4 LAMINATE IN-PLANE STRESS ANALYSIS	Guidelines
8.4.1 Stresses and strains due to mechanical loads	Guidelines
8.4.2 Stresses and strains due to temperature and moisture	Guidelines
8.4.3 Netting analysis	Guidelines
8.4.4 Nonlinear stress analysis	Guidelines
8.5 GENERAL LAMINATE STRENGTH CONSIDERATIONS	Guidelines
8.5.1 Lamina strength and failure modes	Guidelines
8.5.2 Laminate level failure modes	Guidelines
8.5.3 Effects of transverse tensile properties in unidirectional tape	Guidelines
8.5.4 Effect of stacking sequence on strength	Guidelines
8.5.5 Lamina versus laminate strength	Guidelines
8.6 LAMINATE IN-PLANE STRENGTH PREDICTION	Guidelines
8.6.1 Lamina to laminate analysis approach	Guidelines
8.6.2 Fiber failure approach (laminate level failure)	Guidelines
8.6.3 Laminate strength prediction at stress concentrations	Guidelines
8.7 INTRA- AND INTER-LAMINAR STRESS AND FAILURE ANALYSIS	Guidelines
8.7.1 Out-of-plane loads	Guidelines
8.7.2 Interlaminar stresses	Guidelines
8.7.3 Delamination	Guidelines
8.7.4 Calculation of strain energy release rate interlaminar fracture mechanics	Guidelines
8.7.5 Simulation of delamination failure using cohesive zone models - OUTLINE	Guidelines

CHAPTER 9 STRUCTURAL STABILITY ANALYSES

9.1 INTRODUCTION	Guidelines
9.2 COMPRESSIVE BUCKLING AND CRIPPLING	Guidelines
9.2.1 Plate buckling	Guidelines
9.2.3 Summary	Guidelines
9.3 SHEAR BUCKLING	Guidelines
9.4 STIFFENED PANEL STABILITY	Guidelines

CHAPTER 10 DESIGN AND ANALYSIS OF BONDED JOINTS

Revised Outline	Guidelines
10.1 BACKGROUND	Guidelines
10.2 INTRODUCTION	Guidelines
10.3 DESIGN OF BONDED JOINTS	Guidelines
10.3.1 Effects of adherend thickness: adherend failures vs. bond failures	Guidelines
10.3.2 Joint geometry effects	Guidelines
10.3.3 Effects of adherend stiffness unbalance	Guidelines
10.3.4 Effects of ductile adhesive response	Guidelines
10.3.5 Behavior of composite adherends	Guidelines
10.3.6 Effects of bond defects	Guidelines
10.4 ANALYSIS OF BONDED JOINTS	Guidelines
10.4.1 Metallic adherend bonded joint analysis	Guidelines

10.4.2 Composite adherend bonded joint analysis	Guidelines
10.5 BONDED JOINT CERTIFICATION ISSUES - AIRCRAFT	Guidelines
10.5.1 Process quality assurance	Guidelines
10.5.2 Static strength	Guidelines
10.5.3 Durability	Guidelines
10.5.4 Damage Tolerance	Guidelines
10.5.5 Bonded repair	Guidelines
10.6 BONDED JOINT CERTIFICATION / QUALIFICATION ISSUES – NON- AIRCRAFT	Guidelines
10.7 DERIVATION OF ELASTIC-PERFECTLY-PLASTIC LAP-SHEAR BONDLINE STRESS	Guidelines
10.7.1 Governing equations	Guidelines
10.7.2 Joint conditions	Guidelines
10.7.3 Boundary conditions	Guidelines
10.7.4 Application of boundary conditions	Guidelines
10.7.5 Scarf joint analysis	Guidelines

CHAPTER 11 DESIGN AND ANALYSIS OF BOLTED JOINTS

	• • • • •
11.1 BACKGROUND	Guidelines
11.2 INTRODUCTION	Guidelines
11.3 ANALYSIS OF BOLTED JOINTS	Guidelines
11.3.1 Load sharing in a joint	Guidelines
11.3.2 Analysis of local failure	Guidelines
11.3.3 Failure criteria	Guidelines
11.4 DESIGN OF BOLTED JOINTS	Guidelines
11.4.1 Geometry	Guidelines
11.4.2 Lay-up and stacking sequence	Guidelines
11.4.3 Fastener selection	Guidelines
11.5 FATIGUE EFFECTS ON BOLTED JOINTS	Guidelines
11.5.1 Influence of loading mode	Guidelines
11.5.2 Influence of joint geometry	Guidelines
11.5.3 Influence of attachment details	Guidelines
11.5.4 Influence of laminate lay-up	Guidelines
11.5.5 Influence of environment	Guidelines
11.5.6 Influence of specimen thickness	Guidelines
11.5.7 Residual strength	Guidelines
11.6 TEST VERIFICATION	Guidelines
	•

CHAPTER 12 DAMAGE RESISTANCE, DURABILITY, AND DAMAGE TOLERANCE

12.1 INTRODUCTION	Damage Tol.
12.1.1 Principles	Damage Tol.
12.1.2 Composite-related issues	Damage Tol.
12.1.3 Aircraft damage tolerance	Damage Tol.
12.1.4 General guidelines	Damage Tol.
12.2 RULES, REQUIREMENTS AND COMPLIANCE FOR AIRCRAFT	Damage Tol.
12.2.1 Civil aviation regulations and guidance	Damage Tol.
12.2.2 Categories of damage	Damage Tol.
12.2.3 Load and damage relationships	Damage Tol.

12.2.4 Compliance approaches	Damage Tol.
12.3 DESIGN DEVELOPMENT AND SUBSTANTIATION	Damage Tol.
12.3.1 Damage threat assessment	Damage Tol.
12.3.2 Damage design criteria	Damage Tol.
12.3.3 Substantiation	Damage Tol.
12.3.4 Addressing Category 5 Damage	Damage Tol.
12.3.5 Additional design development guidance	Damage Tol.
12.4 INSPECTION FOR DEFECTS AND DAMAGE	Damage Tol.
12.4.1 Aircraft in-service inspection programs	Damage Tol.
12.4.2 Development of damage inspection data	Damage Tol.
12.4.3 Development of inspection programs	Damage Tol.
12.4.4 Environmental deterioration and accidental damage rating systems	Damage Tol.
12.4.5 Fleet leader programs	Damage Tol.
12.4.6 Probability of detection studies	Damage Tol.
12.5 DAMAGE RESISTANCE	Damage Tol.
12.5.1 Influencing factors	Damage Tol.
12.5.2 Design issues and guidelines	Damage Tol.
12.5.3 Test issues	Damage Tol.
12.5.4 Analysis methods	Damage Tol.
12.6 DURABILITY AND DAMAGE GROWTH UNDER CYCLIC LOADING	Damage Tol.
12.6.1 Influencing factors	Damage Tol.
12.6.2 Design issues and guidelines	Damage Tol.
12.6.3 Test issues	Damage Tol.
12.6.4 Analysis methods	Damage Tol.
12.7 RESIDUAL STRENGTH	Damage Tol.
12.7.1 Influencing Factors	Damage Tol.
12.7.2 Design issues and guidelines	Damage Tol.
12.7.3 Test issues	Damage Tol.
12.7.4 Analysis methods	Damage Tol.
12.8 APPLICATIONS/EXAMPLES	Damage Tol.
12.8.1 Rotorcraft (Sikorsky)	Damage Tol.
12.8.2 Commercial aircraft (Boeing 777 empennage torque boxes)	Damage Tol.
12.8.3 General aviation (Beech Starship)	Damage Tol.
12.8.4 Thermal loads in a business jet horizontal stabilizer (designed by Fokker)	Damage Tol.
12.8.5 General aviation (KC-100, KAI)	Damage Tol.
12.9 SUPPORTING DISCUSSIONS	Damage Tol.
OUTLINE	Damage Tol.
12.9.1Compliance	Damage Tol.
12.9.2 Damage resistance	Damage Tol.
12.9.3 Durability and damage growth	Damage Tol.
12.9.4 Residual strength	Damage Tol.

CHAPTER 13 DEFECTS, DAMAGE, AND INSPECTION

13.1 Defects and Damage	Damage Tol.
13.1.1 Defect and damage sources	Damage Tol.
13.1.2 Damage types	Damage Tol.
13.2 Inspection Methods	Damage Tol.
13.2.1 Nondestructive inspection	Damage Tol.

13.2.2	Destructive Inspection	Damage Tol.
13.2.3	Examples	Damage Tol.

Section 14.1 Introduction	Supportability
Section 14.2 Important Considerations	Supportability
Section 14.3 Service Experience	Supportability
Section 14.4 Inspection	Supportability
Section 14.5 Damage Assessment	Supportability
Section 14.6 Repair of Composite and Metalbond Structure	Supportability
14.6.1 Introduction	Supportability
14.6.2 Prerequisites for the repair of composite and metalbond structure	Supportability
14.6.3 Repair design and processing	Supportability
14.6.4 Composite and metalbond repair substantiation	Supportability
Section 14.7 Repair Analysis	Supportability
Section 14.8 Composite Repair of Metallic Structure	Supportability
Section 14.9 Maintenance Documentation	Supportability
Section 14.10 Design for Supportability	Supportability
Section 14.11 Logistics Requirements	Supportability
Section 14.12 Bonded Repair Case Studies	Supportability
14.12.1 Introduction	Supportability
14.12.2 Case study #1 - Substantiation of metalbond process changes	Supportability
14.12.3 Case study #2 - Pressurized fuselage bonded repair	Supportability
14.12.4 Case study #3 - Unpressurized fuselage bolted repair	Supportability
14.12.5 Case study #4 - Horizontal stabilizer wet lay-up bonded repair	Supportability
14.12.6 Case study #5 - Horizontal stablizer lower skin (constant gage zone) Inded repair	Supportability
14.12.7 Case study #6 - Horizontal stabilizer lower skin (skin damage with	Supportability
inger bondline damage) bonded/bolted repair	
14.12.8 Case study #7 - Fan Cowl, VID damage, bonded repair	Supportability
14.12.9 Case study #8 - Transport Category Co-bonded Fueled Wing Skin Image	Supportability
14.12.10 Case study #9 - GA case study of bodned wing-spar/skin damage	Supportability

CHAPTER 15 THICK-SECTION COMPOSITES

15.1 INTRODUCTION AND DEFINITION OF THICK-SECTION	Guidelines
15.2 MECHANICAL PROPERTIES REQUIRED FOR THICK-SECTION COMPOSITE THREE-DIMENSIONAL ANALYSIS	Guidelines
15.2.1 2-D composite analysis	Guidelines
15.2.2 3-D composite analysis	Guidelines
15.2.3 Theoretical property determination	Guidelines
15.2.4 Test specimen design considerations	Guidelines
15.3 STRUCTURAL ANALYSIS METHODS FOR THICK-SECTION COMPOSITES	Guidelines
5.4 PHYSICAL PROPERTY ANALYSIS REQUIRED FOR THICK-SECTION COMPOSITE THREE-DIMENSIONAL ANALYSIS	Guidelines

15.5 PROCESS ANALYSIS METHODS FOR THICK-SECTION COMPOSITES	Guidelines
15.6 FAILURE CRITERIA	Guidelines
15.7 FACTORS INFLUENCING THICK-SECTION ALLOWABLES (i.e., SAFETY MARGINS)	Guidelines
15.8 THICK LAMINATE DEMONSTRATION PROBLEM	Guidelines

CHAPTER 16 CRASHWORTHINESS AND ENERGY MANAGEMENT

16.1 OVERVIEW AND GENERAL GUIDELINES	Crashworthiness
16.1.1 Section organization	Crashworthiness
16.1.2 Principles of crashworthiness	Crashworthiness
16.1.3 Composite-related issues	Crashworthiness
16.1.4 Terminology	Crashworthiness
16.1.5 Existing research and development	Crashworthiness
16.1.6 Overview of regulating bodies and safety standards	Crashworthiness
16.2 Numerical Round Robin Results	Crashworthiness
16.2.1 - LS-DYNA MAT54	Crashworthiness
16.2.2 - LS-DYNA MAT 58	Crashworthiness
16.2.3 - PAM-CRASH	Crashworthiness

CHAPTER 17 STRUCTURAL SAFETY MANAGEMENT

17.1 Introduction	Safety Mgmt
17.1.1 Background	Safety Mgmt
17.1.2 Purpose and scope	Safety Mgmt
17.2 Safety risk management overview	Safety Mgmt
17.2.1 Definitions	Safety Mgmt
17.2.2 Process of safety risk management	Safety Mgmt
17.2.3 Hazard identification and initial safety assessment	Safety Mgmt
17.2.4 Risk analysis and strategies	Safety Mgmt
17.2.5 Risk assessment and mitigation actions	Safety Mgmt
17.3 Structural safety and regulations	Safety Mgmt
17.3.1 Sources of information	Safety Mgmt
17.3.2 Regulations	Safety Mgmt
17.3.3 Guidance documents	Safety Mgmt
17.4 Structural safety assessment considerations	Safety Mgmt
17.4.1 Design	Safety Mgmt
17.4.2 Manufacturing	Safety Mgmt
17.4.3 Maintenance	Safety Mgmt
17.4.4 Operations	Safety Mgmt
17.4.5 Airworthiness requirements	Safety Mgmt
17.4.6 Structural integrity	Safety Mgmt
17.4.7 Illustration	Safety Mgmt
17.5 Structural safety management procedure	Safety Mgmt
17.5.1 Describe structure	Safety Mgmt
17.5.2 Identify unsafe conditions and damage threats	Safety Mgmt
17.5.3 Analyze risk	Safety Mgmt
17.5.4 Assess risk	Safety Mgmt
17.5.5 Mitigate risk	Safety Mgmt
17.6 Structural safety management applications	Safety Mgmt

17.6.1 Application: implication of less reliance on OEMs for repaired parts	Safety Mgmt
17.6.2 Application: nonconforming extensive repair involving metal bonding	Safety Mgmt
17.6.3 Application: nonconforming extensive repair involving composite repair	Safety Mgmt
17.7 Structural safety awareness course structure	Safety Mgmt

CHAPTER 18 ENVIRONMENTAL MANAGEMENT

18.1 INTRODUCTION	Materials & Processes
18.1.1 Scope	Materials & Processes
18.1.2 Glossary of recycling terms	Materials & Processes
18.2 RECYCLING INFRASTRUCTURE	Materials & Processes
18.2.1 Recycling infrastructure development models	Materials & Processes
18.2.2 Infrastructure needs	Materials & Processes
18.2.3 Recycling education	Materials & Processes
18.3 ECONOMICS OF COMPOSITE RECYCLING	Materials & Processes
18.4 COMPOSITE WASTE STREAMS	Materials & Processes
18.4.1 Process waste	Materials & Processes
18.4.2 Post consumer composite waste	Materials & Processes
18.5 COMPOSITE WASTE STREAM SOURCE REDUCTION	Materials & Processes
18.5.1 Just-in-time and just enough material delivery	Materials & Processes
18.5.2 Electronic commerce acquisition management	Materials & Processes
18.5.3 Waste minimization guidelines	Materials & Processes
18.5.4 Lightweighting	Materials & Processes
18.6 REUSE OF COMPOSITE COMPONENTS AND MATERIALS	Materials & Processes
18.6.1 Reuse of composite components	Materials & Processes
18.6.2 Machining to smaller components	Materials & Processes
18.7 MATERIALS EXCHANGE	Materials & Processes
18.7.1 Reallocation of precursors	Materials & Processes
18.7.2 Composite materials exchange services	Materials & Processes
18.8 RECYCLING OF COMPOSITE MATERIALS	Materials & Processes
18.8.1 Design for disassembly and recycling	Materials & Processes
18.8.2 Recycling logistics	Materials & Processes
18.8.3 Processing of composite recyclate	Materials & Processes
18.8.4 Recycling of waste prepreg	Materials & Processes

CHAPTER 19 LAUNCH VEHICLES AND SPACECRAFT

19.1 LIFE CYCLE CONSIDERATIONTINTRODUCTION	Spacecraft
19.2 MATERIAL SELECTION	Spacecraft
19.3 DURABILITY AND DAMAGE TOLERANCE	Spacecraft
19.4 SPACECRAFT SANDWICH STRUCTURE DESIGN CONSIDERATIONS	Spacecraft
19.4.1 Requirements and policies	Spacecraft
19.4.2 Managing Moisture and Internal Pressure in Spacecraft Sandwich Structure	Spacecraft
19.4.3 Cryogenic Sandwich Structural Design Complexities	Spacecraft
19.4.4 Design Substantiation Testing and Analysis	Spacecraft
19.5 ELECTROMAGNETIC COMPATIBILITY (EMC)	Spacecraft
19.6 STRUCTURAL REDUNDANCY AND FRACTURE CRITICAL STRUCTURES	Spacecraft
19.7 DESIGN SUBSTANTIATION	Spacecraft
19.8 COMPOSITE OVERWRAPPED PRESSURE VESSELS	Spacecraft
19.8.1 COPV design and fabrication	Spacecraft

19.8.2 Material allowables development

Spacecraft

1 GUIDELINES **1.1 GENERAL INFORMATION** 1.1.1 INTRODUCTION 1.1.2 PURPOSE 1.1.3 SCOPE 1.1.4 USE OF THE DOCUMENT AND LIMITATIONS 1.1.5 APPROVAL PROCEDURES 1.1.6 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS 1.1.7 DEFINITIONS **1.2 INTRODUCTION TO MMC MATERIALS 1.2.1 INTRODUCTION** 1.2.2 MMC SYSTEMS 1.2.3 Matrix Materials 1.2.4 Reinforcement Materials 1.2.5 Reinforcement coatings **1.2.6 MANUFACTURING PROCESSES** 1.2.7 Product forms 1.2.8 Secondary Manufacturing Processes 1.2.9 quality assurance 1.2.10 Repair 1.3 test plans for materials characterization 1.3.1 Introduction 1.3.2 Requirements 1.3.3 Materials pedigree 1.3.4 Continuous fiber Reinforced MMC constituent material properties 1.3.5 Discontinuous reinforced MMC & constituent material properties 1.4 Composite testing and analytical methods 1.4.1 introduction 1.4.2 continuous fiber reinforced MMC mechanical property test methods 1.4.3 DISCONTINUOUS reinforced MMC Mechanical property test methods 1.4.4 Physical property test methods 1.4.5 Microstructural analysis techniques 1.4.6 Chemical Analysis Techniques 1.4.7 Nondestructive Evaluation test methods 1.4.8 Environmental effects test methods 1.4.9 interphases and interfaces test methods 1.5 INTERMEDIATE FORMS TESTING AND ANALYTICAL METHODS 1.5.1 INTRODUCTION 1.5.2 MECHANICAL PROPERTY TEST METHODS 1.5.3 PHYSICAL PROPERTY TEST METHODS 1.5.4 MICROSTRUCTURAL ANALYSIS TECHNIQUES 1.5.5 CHEMICAL ANALYSIS TECHNIQUES

CMH-17 Volume 4 Outline (MMC)

1.5.6 NONDESTRUCTIVE EVALUATION TEST METHODS	
1.6 Fiber testing and analytical methods	
1.6.1 Introduction	
1.6.2 Mechanical property test methods	
1.6.3 Physical property test methods	
1.6.4 microstructural analysis techniques	
1.6.5 chemical analysis techniques	
1.6.6 environmental effects test methods	
1.7 fiber sizing testing and analytical methods	
1.7.1 introduction	
1.7.2 physical property test methods	
1.7.3 chemical analysis techniques	
1.8 fiber coatings, interfaces and interphases testing and analytical methods	
1.8.1 introduction	
1.8.2 mechanical property test methods	
1.8.3 physical property test methods	
1.8.4 microstructural analysis techniques	
1.8.5 chemical analysis techniques	
1.9 MATRIX TESTING AND ANALYTICAL METHODS	
1.9.1 Introduction	
1.9.2 Mechanical test methods	
1.9.3 Physical test method	
1.9.4 microstructural analysis techniques	
1.9.5 chemical analysis techniques	
1.9.6 environmental effects test methods	
1.1 STRUCTURE SENSITIVE PROPERTIES CHARACTERIZATION	
1.10.1 INTRODUCTION	
1.10.2 MECHANICALLY-FASTENED JOINTS	
1.10.3 BONDED, BRAZED, AND WELDED JOINTS	
1.10.4 CURVED SHAPES	
1.10.5 STRUCTURAL DESIGN DETAILS	
1.10.6 TRANSITION AND OTHER SPECIAL REGIONS	
1.10.7 SIZE EFFECTS	
1.10.8 OTHER TOPICS	
1.11 ANALYSIS OF DATA	
1.11.1 GENERAL	
1.11.2 PROCEDURES OF CALCULATION OF STATISTICALLY-BASED MATERIAL PROPERTIES	
1.11.3 SAMPLES OF COMPUTATIONAL PROCEDURES	
1.11.4 STATISTICAL TABLES	
2 DESIGN GUIDELINES FOR METAL MATRIX MATERIALS	
2.1 GENERAL INFORMATION	
2.1.1 INTRODUCTION	
2.1.2 purpose, scope, and organization of section 2	

2.3 STRUCTURA	L design and analysis
2.3.1 Introduction	
2.3.2 GENERAL [DESIGN GUIDELINES
2.3.3 analysis app	roaches (Continuous Fiber MMC)
2.3.4 design guide	elines (discontinuous fiber reinforced mmc)
2.3.4.1 Micromech	nanics
2.4 applications a	nd CASE studies
2.4.1 Components	s for structural applications
2.4.2 Components	s for tribological applications
2.4.3 Components	s for thermal management applications
2.4.4 Components	s for thermal expansion control
2.4.5 Other misce	llaneous applications
3 MATERIALS PF	ROPERTIES DATA
3.1 general inform	ation
3.1.1 introduction	
3.1.2 purpose, sco	ope, and organization of section
3.1.3 Presentatior	ı of data
3.2 REINFORCE	MENT PROPERTIES
3.2.1 INTRODUC	ΤΙΟΝ
3.2.2 alumina fibe	rs
3.2.3 boron fibers	
3.2.4 boron carbic	le fibers
3.2.5 carbon and	graphite fibers
3.2.6 silicon carbi	de fibers
3.2.7 steel fibers	
3.2.8 tungsten fibe	ers
3.2.9 other fibers	
3.2.10 other reinfo	rcements
3.3 properties of r	natrix materials
3.3.1 Introduction	
3.3.2 aluminums	
3.3.3 coppers	
3.3.4 magnesiums	>
3.3.5 titaniums	
3.3.6 others	
3.4 fiber coating p	roperties
3.4.1 introduction	
3.4.2 carbon	
3.4.3 titanium dibo	ride
3.4.4 yttria	
3.4.5 others	

3.5.1 introduction	
3.5.2 alumina/aluminum	
3.5.2.1 Nextel 610/pure Al panel	
3.5.3 boron/aluminum	
3.5.4 boron carbide/aluminum	
3.5.5 graphite/aluminum	
3.5.6 Silicon carbide/aluminum	
3.5.7 steel/aluminum	
3.5.8 tungsten/aluminum	
3.5.9 others/aluminum	
3.6 copper matrix composite properties	
3.6.1 introduction	
3.6.2 graphite/copper	
3.6.3 others/copper	
3.7 magnesium matrix composite properties	
3.7.1 introduction	
3.7.2 graphite/magnesium	
3.7.3 alumina/magnesium	
3.7.4 other/magnesium	
3.8 Titanium Matrix Composite Properties	
3.8.1 Introduction	
3.8.2 silicon carbide/titanium	
3.8.3 alumina/titanium	
3.8.4 other/titanium	
3.9 other matrix composites	
APPENDIX A. TYPICAL PUSHOUT TEST DATA	
A1. FIBER PUSHOUT	
APPENDIX B. RAW DATA TABLES FOR MATRIX MATERIALS	
B1. ALUMINUMS	
B2. COPPERS	
B3. MAGNESIUMS	
B4. TITANIUMS	
B4.1 Ti 15V 3Cr 3Al-3Sn (Section 3.3.5.1)	
APPENDIX C. RAW DATA TABLES FOR METAL MATRIX COMPOSITE MATERIALS	6
C1. ALUMINUMS	
C1.1 Nextel 610 / SP AI (Section 3.5.2.1)	
C2. COPPER	
C3. MAGNESIUMS	
C4. Titaniums	
C4.1 SiC/Ti-15-3 (Section 3.8.2.1.1 and 3.8.2.1.2)	
C4.2. TRIMARC-1/Ti 6-2-4-2 (Section 3.8.2.2)	

C4.3	Titanium Matrix	Composite Panels	(Section 3.8.2.3)
------	-----------------	------------------	-------------------

Index

VOLUME 5 - Rev B Working Draft

PART a. introduction and guidelines	Guidelines
1 MIL-17 GUIDELINES AND PROCEDURES	Guidelines
1.1 INTRODUCTION TO THE HANDBOOK	Guidelines
1.1.1 Objectives of Ceramic Matrix Composite (CMC) Working Groups	Guidelines
1.2 OVERVIEW OF HANDBOOK CONTENT	Guidelines
1.3 SCOPE	Guidelines
1.3.1 Part A: Introduction and Guidelines	Guidelines
1.3.2 Part B: Design Supportability	Guidelines
1.3.3 Part C: Testing	Guidelines
1.3.4 Part D: Data Requirements and Data Sets	Guidelines
1.4 USE OF THE DOCUMENT AND LIMITATIONS	Guidelines
1.4.1 Source of information	Guidelines
1.4.2 Use of data and guidelines in applications	Guidelines
1.4.3 Strength properties and allowables terminology	Guidelines
1.4.4 Use of References	Guidelines
1.4.5 Use of tradenames and product names	Guidelines
1.4.6 Toxicity, health hazards, and safety	Guidelines
1.4.7 Ozone depleting chemicals	Guidelines
1.5 APPROVAL PROCEDURES	Guidelines
1.6 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS	Guidelines
1.6.1 Symbols and abbreviations	Guidelines
1.6.2 System of units	Guidelines
1.7 DEFINITIONS	Guidelines
2 INTRODUCTION, HISTORY AND OVERVIEW	Materials & Processes
2.1 History and overview	Materials & Processes
2.2 Applications	Materials & Processes
3 processing, characterization and manufacturing	Materials & Processes
3.1 CMC Systems, Processing, properties and applications	Materials & Processes
3.1.1 CMC processing methods	Materials & Processes
3.2 Fiber/Reinforcement Systems and Technology	Materials & Processes
3.2.1 Introduction – the role and function of reinforcements in CMCs	Materials & Processes

3.2.2 Continuous fibers	Materials & Processes
3.2.4 Discontinuous reinforcements – whiskers, particulates, and in-situ	Materials & Processes
3.3 INTERPHASE/Interface Technology and Approaches	Materials & Processes
3.3.1 Introduction	Materials & Processes
3.3.3 Other	Materials & Processes
3.4 fabrication and forming of fiber architectures	Materials & Processes
3.4.1 General	Materials & Processes
3.4.2 Fiber architectures	Materials & Processes
3.4.3 Fabric weave and braid manufacturers	Materials & Processes
3.5 External protective Coatings	Materials & Processes
3.5.1 External coating functions	Materials & Processes
3.5.2 External protective coatings for oxide CMCs	Materials & Processes
3.5.3 Engineering considerations	Materials & Processes
3.5.4 Examples of external coatings for CMCs	Materials & Processes
3.6 Characterization Methods (chemical and microstructural)	Materials & Processes
3.6.1 Bulk composite	Materials & Processes
3.6.2 Fibers/reinforcement	Materials & Processes
3.6.3 Matrices	Materials & Processes
3.6.4 Interfaces	Materials & Processes
3.7 Nondestructive Evaluation Methods For CMC (defect characterization)	Materials & Processes
3.7.1 Needs and requirements	Materials & Processes
3.7.2 Cost	Materials & Processes
3.7.3 Standards	Materials & Processes
3.7.4 Current methods and status	Materials & Processes
3.7.5 Developing methods	Materials & Processes
3.8 Quality Control of starting materials	Materials & Processes
3.9 Machining	Materials & Processes
4 Quality control of final products	Materials & Processes
4.1 introduction	Materials & Processes
4.2 quality assurance	Materials & Processes
4.3 material property verification	Materials & Processes
4.4 statistical process control	Materials & Processes
5 applications, case histories and lessons learns	Materials & Processes
part b. design and supportability	Design & Analysis

6 Design and analysis	Design & Analysis
6.1 introduction	Design & Analysis
6.2 Design considerations	Design & Analysis
6.2.1 CMC design guidelines	Design & Analysis
6.2.2 Status of CMC design systems	Design & Analysis
6.2.3 CMC component design and development	Design & Analysis
6.2.4 Design allowables	Design & Analysis
6.3 Design requirements	Design & Analysis
6.3.1 Static or creep loads - mechanical, thermal, stress/creep rupture, hot streaks	Design & Analysis
6.3.2 Low cycle fatigue	Design & Analysis
6.3.3 High cycle fatigue	Design & Analysis
6.3.4 Thermal cycling	Design & Analysis
6.3.5 Thermo-mechanical fatigue	Design & Analysis
6.4 Design criteria	Design & Analysis
6.4.1 Durability requirements	Design & Analysis
6.4.2 Damage tolerance	Design & Analysis
6.5 Data requirements	Design & Analysis
6.5.1 Killer tests	Design & Analysis
6.5.2 Configuration shaped coupons	Design & Analysis
6.5.3 Composite "T" subelements with interlaminar cracks	Design & Analysis
6.6 Attachments	Design & Analysis
6.6.1 Thermally free attachment designs	Design & Analysis
6.6.2 Thermally free curled liner	Design & Analysis
6.6.3 Thermally free flat liner	Design & Analysis
6.6.4 Rib-stiffened liners	Design & Analysis
6.6.5 Composite fastener design	Design & Analysis
7 supportability	Design & Analysis
7.1 introduction and terminology	Design & Analysis
7.2 supportability elements	Design & Analysis
7.2.1 System engineering and integration	Design & Analysis
7.2.2 Joining	Design & Analysis
7.2.3 Inspectability	Design & Analysis
7.2.4 Repairability	Design & Analysis
7.2.5 Maintainability	Design & Analysis
7.2.6 Environmental compliance	Design & Analysis
7.2.7 Support implementation	Design & Analysis
	Deelginariaiyeie

part c. TESTING	Testing
8 thermo-mechanical-physical test methods - overview	Testing
8.1 Introduction	Testing
8.1.1 Building block approach	Testing
8.1.2 Test level and data uses	Testing
8.2 Test Program Planning	Testing
8.2.1 Overview	Testing
8.2.2 Baseline and alternate approaches for statistically-based properties	Testing
8.2.3 Issues of data equivalence	Testing
8.2.4 Test method selection	Testing
8.2.5 Population sampling and sizing	Testing
8.2.6 Material and processing variation	Testing
8.2.7 Material operating limit	Testing
8.2.8 Non ambient testing	Testing
8.2.9 Data normalization	Testing
8.2.10 Data documentation	Testing
8.2.11 Application specific testing needs	Testing
8.3 Recommended Test Matrices	Testing
8.3.1 Material screening	Testing
8.3.2 Material qualification	Testing
8.3.3 Material acceptance test matrices	Testing
8.3.4 Alternate material equivalence test matrices	Testing
8.3.5 Generic material/structural element test matrices	Testing
8.3.6 Alternate approaches to basis values	Testing
8.3.7 Data substantiation for use of mil-hdbk-17 basis values	Testing
8.4 data reduction and documentation	Testing
8.4.1 Introduction	Testing
8.4.2 Layer properties from composites	Testing
8.4.3 Data normalization	Testing
8.4.4 Data documentation requirements	Testing
9 Material Testing & CHARACTERIZATION for Submission of Data to MIL-HDBK- 17	Testing
9.1 Introduction	Testing
9.2 Material and process specification requirements	Testing
9.3 Data sampling requirements	Testing

9.4 Test method requirements	Testing
9.4.1 Thermal	Testing
9.4.4 Chemical Properties	Testing
9.4.5 Electrical Properties	Testing
9.4.6 Environmental Testing	Testing
10 evaluation of reinforcements	Testing
10.1 introduction	Testing
10.2 mechanical properties	Testing
10.2.1 Elastic (Poisson's Ratio, modulus)	Testing
10.2.2 Strength (FT, RT)	Testing
10.2.3 Creep/creep rupture	Testing
10.2.4 Fatigue	Testing
10.3 thermal properties	Testing
10.3.1 Expansion	Testing
10.3.2 Conductivity	Testing
10.3.3 Environmental (corrosion, erosion, wear, etc.)	Testing
10.3.4 Oxidation	Testing
11 evaluation of matrix materials	Testing
11.1 introduction	Testing
11.2 mechanical properties	Testing
11.2.1 Elastic (Poisson's Ratio, modulus)	Testing
11.2.2 Strength (HT, RT)	Testing
11.2.3 Creep/creep rupture	Testing
11.2.4 Fatigue	Testing
11.3 thermal properties	Testing
11.3.1 Expansion	Testing
11.3.2 Conductivity	Testing
11.3.3 Environmental (corrosion, erosion, wear, etc.)	Testing
11.3.4 Oxidation	Testing
11.3.5 Other physical (powder or preform char.)	Testing
12 evaluation of interface material	Testing
12 evaluation of compositor	Testing
13 evaluation of composites	Testing

13.1 Introduction	Testing
13.2 Mechanical properties	Testing
13.2.1 Elastic (Poisson's Ratio, modulus)	Testing
13.2.2 Strength (HT, RT) ILT/ILS	Testing
13.2.3 Creep/creep rupture	Testing
13.2.4 Fatigue	Testing
13.2.5 Open-hole tension/compression strength (notch sensitivity)	Testing
13.2.6 Interfacial shear properties	Testing
13.3 Environmental properties	Testing
13.3.1 Thermal expansion	Testing
13.3.2 Conductivity	Testing
13.3.3 Environmental (corrosion, erosion, wear, salt fog, etc.	Testing
13.3.4 Environmental effects (oxidation, corrosion, etc.)	Testing
13.3.5 Oxidation	Testing
13.4 Reactions at the interface (debonding, diffusion, etc.) (7.9)	Testing
13.5 Thermal shock resistance	Testing
13.6 electrical properties	Testing
13.7 dielectric properties	Testing
13.8 impact resistance	Testing
13.9 static and dynamic fatigue	Testing
13.10 proportional limit	Testing
13.11 interlaminar shear properties	Testing
13.12 strain at fracture	Testing
13.13 stress-strain curves	Testing
14 subcomponent testing – overview of problem	Testing
14.1 Introduction	Testing
14.2 joint testing	Testing
14.2.1 Definitions	Testing
14.2.2 Failure modes	Testing
14.2.3 Thermal effects	Testing
14.2.4 Joint configurations	Testing
14.2.5 Design requirements	Testing
14.2.6 Material bearing strength	Testing
14.2.7 Open-hole tension/compression strength	Testing
14.2.8 Thermal-mechanical fatigue strength	Testing

14.2.9 Creep and stress rupture	Testing
14.2.10 Fastener qualification tests	Testing
14.3 tubes	Testing
15 machining & grinding	Testing
15.1 Introduction	Testing
15.2 machining considerations	Testing
15.3 tooling requirements	Testing
15.4 specimen preparation	Testing
PART D. Data requirements and data sets	
16 DATA SUBMISSION, FORMAT AND REQUIREMENTS	Data Review
16.1 Introduction	Data Review
16.2 Data Submission Requirements	Data Review
16.3 Format and Units	Data Review
16.4 DESIGN properties	Data Review
17 statistical methods	Data Review
17.1 Introduction	Data Review
17.2 Background	Data Review
17.2.1 Statistically-based design allowables	Data Review
17.2.2 Basis values for unstructured data	Data Review
17.2.3 Basis values in the presence of batch-to-batch variability	Data Review
17.2.4 Computer Software	Data Review
17.3 Calculation of statistically based material properties	Data Review
17.3.1 Guide to computational procedures for data from multiple batches and environments	Data Review
17.3.2 Guide to computional procedures using the Single-Point method	Data Review
17.3.3 Material property variability over long periods of times	Data Review
17.4 Statistical Methods for Material Equivalence and Material Acceptance	Data Review
17.4.1 Tests for determining equivalency between an existing database and a new data set for the same material	Data Review
17.4.2 Statistical procedures for process control	Data Review

18 CMC Property data	Data Review
18.1 Introduction	Data Review
18.1.1 Organization of data in handbook	Data Review
18.1.2 Presentation of data	Data Review
18.1.2.1 Properties and definitions	Data Review
18.1.2.1.1 Sign convention	Data Review
18.1.2.2 Table formats	Data Review
18.2 CMC Systems - property data	Data Review
18.2.1 CMC system #1	Data Review
18.2.2 CMC system #2	Data Review
18.2.3 CMC system #3	Data Review
18.2.4 CMC system #4	Data Review
18.2.5 CMC system #5	Data Review
18.2.6 CMC system #6	Data Review
APPENDIX A. Derivation of the Residual Strength Reduction Expressions for LCF and Rupture Loadings	Design & Analysis
19 Engine Applications	Engine Applications
19.1 Introduction	Engine Applications
19.1.1 Scope	Engine Applications
19.1.2 Historical Development	Engine Applications
19.1.3 Special Characteristics of Engine Components	Engine Applications
19.1.4 Regulations	Engine Applications
19.2 Design Considerations	Engine Applications
19.2.1 Thermal	Engine Applications
19.2.2 Fatigue and Vibration	Engine Applications
19.2.3 Blade Containment and Rotor Imbalance	Engine Applications
19.2.4 Impact Considerations	Engine Applications
19.2.5 Erosion	Engine Applications
19.2.6 Wear	Engine Applications
19.2.7 Fire	Engine Applications
19.2.8 Lightning	Engine Applications
19.2.8 Lightning	Engine Applications
19.2.8 Lightning 19.3 Typical Materials and Manufacturing Processes	Engine Applications Engine Applications

19.3.4 Non-Prepreg Systems	Engine Applications
19.3.5 Advanced Fiber Architectures	Engine Applications
19.3.6 Thermoplastics	Engine Applications
19.3.7Coatings: erosion, environmental barrier	Engine Applications
19.3.8 Hybrid composite-metal designs	Engine Applications
19.4 Specialized Testing	Engine Applications
19.4.1 Aging	Engine Applications
19.4.2 Fire	Engine Applications
19.4.3 Impact and High Strain Rate	Engine Applications
19.4.4 Vibration	Engine Applications
19.5 Analysis	Engine Applications
19.5.1 Role of Analysis in Certification and Continued Airworthiness	Engine Applications
19.5.2 Types of Analysis Having Special Usage for Engines	Engine Applications
19.5.3 Components and Design Examples	Engine Applications
19.5.4 Analysis Validation	Engine Applications
19.6 Defects and Damage Tolerance	Engine Applications
19.6.1 General Considerations	Engine Applications
19.6.2 Manufacturing Defects & Damage	Engine Applications
19.6.3 Service Induced Damage	Engine Applications
19.6.4 Threat Assessment & Typical Engine Threats	Engine Applications
19.6.5 Inspections and Engine Diagnostics	Engine Applications

VOLUME 6 Rev A Working Draft

PMC Working/Task Group Responsibility

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION TO THE HANDBOOK	Sandwich
1.2 OVERVIEW OF HANDBOOK CONTENT	Sandwich
1.3 INTRODUCTION	Sandwich
1.4 NOMENCLATURE AND DEFINITIONS	Sandwich
1.4.1 Loads, geometry, and material properties	Sandwich
1.4.2 System of units	Sandwich

CHAPTER 2 GUIDELINES FOR PROPERTY TESTING

2.1 INTRODUCTION	Sandwich
2.2 DATA REDUCTION AND PRESENTATION	Sandwich
2.3 EVALUATION OF CORE MATERIALS	Sandwich
2.3.1 Mechanical properties	Sandwich
2.3.2 Environmental effects	Sandwich
2.3.3 Test Methods	Sandwich
2.4 EVALUATION OF CORE-TO-FACE SHEET BONDS	Sandwich
2.4.1 Introduction	Sandwich
2.4.2 Mechanical properties	Sandwich
2.4.3 Environmental effects	Sandwich
2.4.4 Test Methods	Sandwich
2.5 EVALUATION OF FACE SHEET PROPERTIES	Sandwich
2.5.1 Introduction	Sandwich
2.5.2 Mechanical properties	Sandwich
2.5.3 Environmental effects	Sandwich
2.5.4 Test Methods	Sandwich
2.6 EVALUATION OF SANDWICH PANELS	Sandwich
2.6.1 Introduction	Sandwich
2.6.2 Mechanical properties	Sandwich
2.6.3 Environmental effects	Sandwich
2.6.4 Damage resistance	Sandwich
2.6.5 Damage tolerance	Sandwich
2.6.6 Repair	Sandwich
2.6.7 Test Methods	Sandwich
2.7 EVALUATION OF INSERTS AND FASTENERS	Sandwich
2.7.1 Introduction	Sandwich
2.7.2 Mechanical properties	Sandwich
2.7.3 Environmental effects	Sandwich
2.7.4 Test Methods	Sandwich
2.8 EVALUATION OF OTHER FEATURES	Sandwich
2.8.1 Introduction	Sandwich
2.8.2 Mechanical properties	Sandwich
2.8.3 Environmental effects	Sandwich
2.8.4 Test Methods	Sandwich

CHAPTER 3 MATERIAL DATA

3.1 CORES	Sandwich
3.1.1 Description of cores	Sandwich
3.1.2 Core specifications	Sandwich
3.1.3 Honeycomb cores	Sandwich
3.1.4 Cross-banded cores	Sandwich
3.1.5 Corrugated cores	Sandwich
3.1.6 Waffle-type cores	Sandwich
3.1.7 Foam cores	Sandwich
3.1.8 Wood cores	Sandwich
3.1.9 Core properties	Sandwich
3.2 FACE SHEETS	Sandwich
3.2.1 Description of face shets	Sandwich
3.2.2 Face sheet properties	Sandwich
3.3 ADHESIVES	Sandwich
3.3.1 Description of adhesives	Sandwich
3.3.2 Adhesive specifications	Sandwich
3.3.3 Adhesive forms/types and uses	Sandwich
3.3.4 Adhesive chemistries	Sandwich
3.3.5 Adhesive properties	Sandwich

CHAPTER 4 DESIGN AND ANALYSIS OF SANDWICH STRUCTURES

4.1 INTRODUCTION	Sandwich
4.2 DESIGN AND CERTIFICATION	Sandwich
4.2.1 Basic design principles	Sandwich
4.2.2 Design process	Sandwich
4.2.3 Aircraft Damage tolerance	Sandwich
4.3 CERTIFICATION	Sandwich
4.3.1 Introduction to certification issues	Sandwich
4.3.2 Approach to certification testing	Sandwich
4.3.3 Analysis validation	Sandwich
4.3.4 Conformity oversight	Sandwich
4.3.5 Nondestructive testing (NDT)	Sandwich
4.3.6 Documentation requirements	Sandwich
4.3.7 Continued airworthiness	Sandwich
4.4 SANDWICH PANEL FAILURE MODES	Sandwich
4.5 STIFFNESS AND INTERNAL LOADS	Sandwich
4.5.1 Beam stiffness analysis	Sandwich
4.5.2 Plate stiffness analysis	Sandwich
4.5.3 Combined Transverse and in-plane loadings	Sandwich
4.5.4 Face sheet internal loads	Sandwich
4.6 LOCAL STRENGTH ANALYSIS METHODS	Sandwich
4.6.1 Face sheet failure	Sandwich
4.6.2 Core shear	Sandwich
4.6.3 Flatwise tension and compression	Sandwich
4.6.4 Flexural core crushing	Sandwich
4.6.5 Intracell buckling (dimpling)	Sandwich

4.6.6 Face sheet wrinkling	Sandwich
4.6.7 Core shear crimping	Sandwich
4.6.8 Attachments and hard points	Sandwich
4.6.8.1 Design of flat circular sandwich panels loaded an an insert	Sandwich
	Sandwich
4.7 FLAT PANEL INTERNAL LOADS AND STRESSES - PRESSURE LOADING	
	Sandwich
4.7.1 Design of flat rectangular sandwich beams under various normal loadings	
	Sandwich
4.7.2 Design of flat sandwich panels under uniformly distributed normal load	
4.8 CURVED SANDWICH PANEL INTERNAL LOADS AND STRESSES	Sandwich
4.8.1 General equations and analysis method	Sandwich
4.9 FLAT PANEL STABILITY ANALYSIS METHODS	Sandwich
4.9.1 Buckling of flat rectangular sandwich columns	Sandwich
	Sandwich
4.9.2 Design of flat rectangular sandwich panels under edgewise compression load	0
	Sandwich
4.9.3 Design of flat rectangular sandwich panels under edgewise shear load	Sandwich
4.9.4 Design of sandwich strips under torsion load	
	Sandwich
4.9.5 Design of flat rectangular sandwich panels under edgewise bending moment 4.10 DESIGN OF FLAT RECTANGULAR SANDWICH PANELS UNDER COMBINED	Sandwich
LOADS	Gandwich
4.10.1 Combined load buckling	Sandwich
4.10.2 Combined in-plane and transverse loads	Sandwich
4.11 DESIGN OF SANDWICH CYLINDERS	Sandwich
4.11.1 Introduction	Sandwich
4.11.2 Sandwich cylinders under external radial pressure	Sandwich
4.11.3 Sandwich cylinders under torsion	Sandwich
4.11.3 Sandwich cylinders under torsion	Sandwich
4.11.4 Sandwich cylinders under axial compression or bending	Sandwich
4.11.5 Sandwich cylinders under combined loads	Sandwich
4.12 FINITE ELEMENT MODELING OF SANDWICH STRUCTURE	Sandwich
4.12.1 Introduction	Sandwich
4.12.2 Global models	Sandwich
4.12.3 Layered models	Sandwich
4.12.4 Solid models	Sandwich
4.12.5 Sandwich element models	Sandwich
4.13 Optimum sandwich	Sandwich
4.13.1 Sandwich weight	Sandwich
4.13.2 Sandwich bending stiffness	Sandwich
4.13.3 Sandwich bending moment capacity	Sandwich
4.13.4 Sandwich panel buckling	Sandwich

CHAPTER 5 FABRICATION OF SANDWICH STRUCTURES

5.1 INTRODUCTION	Sandwich
5.2 MATERIALS	Sandwich
5.2.1 Cores	Sandwich
5.2.2 Face sheets	Sandwich

5.2.3 Adhesives	Sandwich	
5.2.4 Surfacing and sealing Sandwich		
5.3 PROCESSES Sandwich		
5.3.1 Core	Sandwich	
5.3.2 Face sheets - co-cure vs. pre-cure and resin pressure	Sandwich	
5.3.3 Adhesive	Sandwich	
5.4 HONEYCOMB CORE CRUSH Sandwich		
5.4.1 Core crush during cure	Sandwich	
5.4.2 Core crush - theoretical discussion San		
5.4.3 Core crush stabilization for cure Sandwich		
5.4.4 Core material characteristics and core crush	Sandwich	
5.4.5 Prepreg and adhesive material characteristics and core crush Sandy		
5.4.6 Cure cycles and core crush	Sandwich	
5.4.7 Quality issues including nondestructive evaluation (NDI)	Sandwich	

CHAPTER 6 QUALITY CONTROL

6.1 INTRODUCTION	Sandwich
6.2 MATERIAL PROCUREMENT QUALITY ASSURANCE PROCEDURES Sandwick	
6.2.1 Specifications and documentation Sandwich	
6.2.2 Receiving inspection	Sandwich
6.3 PART FABRICATION VERIFICATION	Sandwich
6.3.1 Process verification	Sandwich
6.3.2 Nondestructive inspection	Sandwich
6.3.3 Destructive tests Sandwic	
6.4 STATISTICAL PROCESS CONTROL	Sandwich
6.5 MANAGING CHANGE IN MATERIALS AND PROCESSES	Sandwich

CHAPTER 7 SUPPORTABILITY

	-
7.1 INTRODUCTION	Sandwich
7.2 DESIGN FOR SUPPORTABILITY Sand	
7.2.1 In-service experience Sandw	
7.2.2 Inspectability	Sandwich
7.2.3 Material selection	Sandwich
7.2.4 Damage resistance	Sandwich
7.2.5 Environmental compliance	Sandwich
7.2.6 Reliability and maintainability Sand	
7.2.7 Repairability	Sandwich
7.3 SUPPORT IMPLEMENTATION Sandv	
7.3.1 Part inspection Sand	
7.3.2 Damage assessment	Sandwich
7.3.3 Repair design criteria	Sandwich
7.3.4 Repair of composite structures	Sandwich
7.4 LOGISTICS REQUIREMENTS	Sandwich

Volume 7 Initial Working Draft	AM Working/Task Group Responsibility	
1. CMH-17 GUIDELINES AND PROCEDURES	Guidelines	
1.1 Introduction to the Handbook	Guidelines	
1.2 Overview of Handbook Content	Guidelines	
1.3 Introduction to AM Working Groups	Guidelines	
1.3.1 Objectives of Additive Manufacturing (AM) Working Groups	Guidelines	
1.4 Purpose	Guidelines	
1.5 Scope	Guidelines	
1.5.1 Introduction and Guidelines	Guidelines	
1.5.2 Design and Supportability	Guidelines	
1.5.3 Testing	Guidelines	
1.5.4 Data Requirements and Data Sets	Guidelines	
1.6 Use of the Document and Limitations	Guidelines	
1.6.1 Roadmaps for use of volume	Guidelines	
1.6.2 Source of information	Guidelines	
1.6.2 Use of data and guidelines in applications	Guidelines	
1.6.3 Strength properties and allowables terminology	Guidelines	
1.6.4 Use of references	Guidelines	
1.6.5 Use of tradenames and product names	Guidelines	
1.6.6 Toxicity, health hazards, and safety	Guidelines	
1.6.7 Ozone depleting chemicals	Guidelines	
1.7 Approval Procedures	Guidelines	
1.8 Symbols, Abbreviations, and System of Units	Guidelines	
1.8.1 Symbols and abbreviations	Guidelines	
1.8.2 System of units	Guidelines	
1.9 Definitions	Guidelines	
2. CHARACTERIZATION CONSIDERATIONS	Guidelines	
2.1 Introduction to Non-Metallic AM Design and Development	Guidelines	
2.2 Sources of Variability	Guidelines	
2.3 Building Block	Guidelines	
2.4 Data Classes	Guidelines	
2.5 Qualification vs Equivalency vs Interchangeability	Guidelines	
2.6 Recommended Test Matrices	Guidelines	
3. EVALUATION OF FEEDSTOCK	Testing	
3.1 Introduction	Testing	
3.2 Mechanical properties	Testing	
3.2.1 Filament	Testing	

	stituent properties	Testing
3.3.1 Filamer	nt	Testing
3.3.2 Powder		Testing
3.4 Thermal prop	ərties	Testing
3.4.1 Filamer	nt	Testing
3.4.2 Powder		Testing
ROCESSING AND N	IANUFACTURING	Materials and Processes
4.1 Process and I	Manufacturing Introduction	Materials and Processes
4.2 AM Technolog	gies, Processing, Properties, & Applications	Materials and Processes
4.2.1 Fused I	Filament Fabrication (FFF)	Materials and Processes
4.2.2 Selectiv	ve Laser Sintering (SLS)	Materials and Processes
4.2.3 Stereol	ithography (SLA)	Materials and Processes
4.3 MACHINING	& GRINDING	Materials and Processes
4.3.1 Introdu	ction	Materials and Processes
4.3.2 Machin	ing considerations	Materials and Processes
4.3.3 Tooling	requirements	Materials and Processes
4.3.4 Specim	en preparation	Testing
4.3.5 Specim	en machining from parts	Testing
UALITY CONTROL	OF PRODUCTION MATERIALS AND PROCESSES	Materials and Processes
5.1 Introduction		Materials and Processes
5.2 Material Proce	urement Quality Assurance Procedures	Materials and Processes
5.3 Machine Qua	ification	Materials and Processes
5.3.1	Specifications and documentation	Materials and Processes
5.3.2	Process Control Documents	Materials and Processes
5.3.3	Machine Checks and Calibration	Materials and Processes
5.3.4	Machine Configuration Control	Materials and Processes
5.3.5	Maintaining Qualification	Materials and Processes
		Materials and Processes
5.4 Quality Plan		
5.4 Quality Plan 5.4.1	Statistical Process Control	Materials and Processes
5	Statistical Process Control Non-Conformance	Materials and Processes Materials and Processes
5.4.1	Non-Conformance	
5.4.1 5.4.2	Non-Conformance	Materials and Processes
5.4.1 5.4.2 5.5 Part Verification	Non-Conformance	Materials and Processes Materials and Processes
5.4.1 5.4.2 5.5 Part Verification 5.5.1	Non-Conformance on NDE	Materials and Processes Materials and Processes Materials and Processes
5.4.1 5.4.2 5.5 Part Verification 5.5.1 5.5.2 5.5.3	Non-Conformance on NDE Destructive Testing	Materials and Processes Materials and Processes Materials and Processes Materials and Processes Materials and Processes

CMH-17	G & CHARACTERIZATION FOR SUBMISSION OF DATA TO	Testing
6.1 Introduction		Testing
6.2 Material and	process specification requirements	Testing
6.3 Data sampli	ng requirements	Testing
6.4 Test method	requirements	Testing
6.4.1	Thermal	Testing
6.4.2	Physical	Testing
6.4.3	Chemical Properties	Testing
6.4.4	Electrical Properties	Testing
6.4.5	Environmental Testing	Testing
6.4.6	Mechanical Testing	Testing
6.5 Data Submi	ssion, Format and Requirements	Data Review
6.5.1	Introduction	Data Review
6.5.2	Material and Process Specification Requirements	Data Review
6.5.3	Sampling Requirements	Data Review
6.5.4	Test Method Requirements	Data Review
6.5.5 Fo	rmats and Units	Data Review
6.5.6	Design Properties	Data Review
7. PROPERTY TESTIN	IG OF ADDITIVELY MANUFACTURED MATERIALS	Testing
7.1 Introductio	n	Testing
7.1.1	Building block approach	Testing
7.1.2	Test level and data uses	Testing
7.1.2.1	Structural complexity levels	Testing
7.1.2.2	Data application categories	Testing
7.1.2.3	Screening tests	Testing
7.1.2.4	Material qualification tests	Testing
7.1.2.5	Acceptance tests	Testing
7.1.2.6	Equivalence tests	Testing
7.2 Test Progra	m Planning	Testing
7.2.1	Overview	Testing
7.2.2	Baseline and alternate approaches for statistically-based	
properties 7.2.3	Issues of data equivalence	Testing
7.2.4	Test method selection	Testing
7.2.4	Population sampling and sizing	Testing
1.2.0	Material and processing variation	Testing
726	material and processing variation	Testing
7.2.6	Material operating limit	—
7.2.6 7.2.7 7.2.8	Material operating limit Non ambient testing	Testing Testing

7.2.10 Data documentation	Testing
7.2.11 Application specific testing needs	Testing
Revisit later 7.3 Data reduction and documentation	Testing
7.3.1 Introduction	Testing
7.3.2 Data documentation requirements	Testing
8. STATISTICAL METHODS	Statistics
8.1 Introduction	Statistics
8.1.1 Overview of methods for calculating statistically-based properties	Statistics
8.1.2 Computer software	Statistics
8.1.3 Symbols	Statistics
8.1.4 Statistical Terms	Statistics
8.1.5 Statistical Graphing	Statistics
8.2 Analysis of Material Properties	Statistics
8.2.1 Analysis of Material Properties	Statistics
8.2.2 Descriptive Statistics	Statistics
8.2.3 Sources of Variation	Statistics
8.2.4 Structured vs. Unstructured Data	Statistics
8.2.5 Statistically-based Material Allowables	Statistics
8.2.6 Modified CV	Statistics
8.2.7 Equivalence and Acceptance	Statistics
8.3 Calculation of Statistical Based Material Allowables	Statistics
8.3.1 Traditional (Single Point and pooled across environments)	Statistics
8.3.2 Cousins/Generic	Statistics
8.3.3 General Linear Statistical Models	Statistics
8.4 Statistical Methods for Material Equivalence and Acceptance	Statistics
8.4.1 Single Point	Statistics
8.4.2 Cousins/Generic	Statistics
8.5 Statistical Process Control	Statistics
8.6 Other Statistical Methods	Statistics
8.6.1 Average stress-strain curves and bearing load-deformation curves	Statistics
9. EVALUATION OF AM PART	Testing
9.1 Density	Testing
9.2 Fiber Volume Fraction	Testing
9.3 CTE	Testing
9.4 Diffusivity	Testing
9.5 Specific Heat	Testing
9.6 Crystallinity	Testing

9.7 Flammability	Testing
9.8 Tensile Testing	Testing
9.9 Compression Testing	Testing
9.10 Flexure	Testing
9.11 Shear	Testing
9.12 Interlaminar Tension	Testing
9.13 Notched Testing	Testing
9.13.1 OHT	Testing
9.13.2 OHC	Testing
9.13.3 FHT	Testing
9.13.4 FHC	Testing
9.14 Interlaminar Fracture Toughness	Testing
9.15 Crack Growth (include ENF, DCB, and other crack growth tests as needed)	Testing
9.16 Creep Testing	Testing
9.17 Fatigue Testing	Testing
9.18 TMF – Environmental-mechanical Fatigue	Testing
9.19 Wear Testing	Testing
9.20 Bearing Testing	Testing
9.20.1 Bearing Bypass/Multiple Fastener	Testing
9.21 Biaxial Testing	Testing
9.22 CAI	Testing
9.23 Fluid Sensitivity/Environmental Conditioning	Testing
0. ELEMENT LEVEL TESTING	Testing
10.1 Introduction	Testing
10.2 Joint testing	Testing
10.2.1 Definitions	Testing
10.2.2 Failure modes	Testing
10.2.3 Thermal effects	Testing
10.2.4 Joint configurations	Testing
10.2.5 Design requirements	Testing
10.2.6 Material bearing strength	Testing
10.2.7 Open-hole/Filled-hole tension/compression strength	Testing
10.2.8 Environmental-mechanical fatigue strength	Testing
10.2.9 Creep and stress rupture	Testing
10.2.10 Fastener qualification tests	Testing
1. DESIGN AND ANALYSIS	Design and Analysis
11.1 Introduction	Design and Analysis

11.1.1	General Definitions and Terms	Design and Analysis
11.1.2	General Process Flow of AM Parts	Design and Analysis
11.1.3	When to Utilize AM	Design and Analysis
11.1.4	Which AM Material/Process to Choose?	Design and Analysis
11.1.5	AM Risk Assessment	Design and Analysis
11.1.6	AM Decision Worksheet	Design and Analysis
11.2	Definition of Requirements	Design and Analysis
11.2.1	Establishment of Design Requirements	Design and Analysis
11.2.2	Guidance for Material and Process Specifications	Design and Analysis
11.2.3	Considerations Related to Part Criticality	Design and Analysis
11.2.4	Planning for Substantiation/Verification	Design and Analysis
11.2.5 D	ata Collection and Categorization by Application Space	Design and Analysis
11.3 Methods	AM Component Design and Analysis Considerations, Options,	Design and Analysis
11.3.1	Design for AM	Design and Analysis
11.3.1	.1 Design for Fused Filament Fabrication	Design and Analysis
11.3.1	.2 Design for Laser Polymer Bed Fusion	Design and Analysis
11.3.2	Analysis for AM	Design and Analysis
11.4	Design Verification for Material and Component	Design and Analysis
11.4.1	Point Design Verification Framework	Design and Analysis
11.4.2	Material Allowable Part Verification	Design and Analysis
12. MAINTAINABI	LITY AND SUPPORTABILITY	Design and Analysis
12.1	Inspection ability	Design and Analysis
12.2	Damage and Damage Tolerance	Design and Analysis
12.3	Repair	Design and Analysis
12.4	Life limitations and Placards	Design and Analysis
12.5	Substantiation Package for Certification	Design and Analysis
13. APPLICATION	S, CASE HISTORIES, and LESSONS LEARNED	Design and Analysis
13.1	Consequence of Failure	Design and Analysis
14. AM PROPERT	(DATA	Data Review
14.1	INTRODUCTION	Data Review
14.1.1	Organization of Data	Data Review
14.1.2	Database Generation Methodology	Data Review
14.1.3	Presentation of data	Data Review
14.1.3		Data Review
14.1.3		Data Review
14.1.3.3 Summary Tables		Data Review

14.1.3.4	Individual Data Tables - Normalized Data	Data Review
14.1.3.5	Individual Data Tables - Unnormalized Data	Data Review
14.1.3.6	Individual Data Tables - Notched Laminate Data	Data Review
14.1.3.7	Individual Data Tables - Bearing Data	Data Review
14.1.4	Material Systems	Data Review
14.1.4.1	Material Systems Codes	Data Review
14.1.4.2	Index of Materials	Data Review
14.1.5	Material Build Orientation Codes	Data Review
14.1.5.1	Build Orientation Codes	Data Review
14.1.5.2	Laminate/Layer Orientation Codes	Data Review
14.1.5.3	Shorthand Notation	Data Review
14.1.5.4	Ply Percentage Notation	Data Review
14.1.6	Symbols, Abbreviations, and Systems of Units	Data Review
14.1.6.1	Symbols and Abbreviations	Data Review
14.1.6.2	System of Units	Data Review
14.1.7	Definitions	Data Review
14.2 D	DATA REDUCTION AND DOCUMENTATION	Data Review
14.2.1	Introduction	Data Review
14.2.2	Material Mechanical Properties	Data Review
14.2.2.1	Methodology	Data Review
14.2.2.2	Tension Strength Tests	Data Review
14.2.2.3	Compression Strength Tests	Data Review
14.2.2.4	Other Properties	Data Review
14.2.3	Data Normalization	Data Review
14.2.3.1	Normalization Theory	Data Review
14.2.3.2	Normalization Methodology	Data Review
14.2.3.3	Practical Application of Normalization	Data Review
14.2.4	Dispositioning of Outlier Data	Data Review
14.2.5	Data Documentation	Data Review
14.3 A	M Methods – Property Data Tables	Data Review
14.3.1	Material Extrusion	Data Review
14.3.2	Powder Bed Fusion	Data Review
14.3.3	Vat Polymerization	Data Review
14.3.4	Binder Jetting	Data Review
14.3.5	Material Jetting	Data Review
14.3.6	Sheet Lamination	Data Review
14.3.7	Directed Energy Deposition	Data Review
14.3.8	Hybrid	Data Review

COMPOSITE MATERIALS HANDBOOK 17

INFORMATION ACCESS

INFORMATION ACCESS

HOMEPAGE

The World Wide Web homepage for the handbook is located at http://www.cmh17.org.

The Working Group Web Site is located at https://www.cmh17.org. A password can be obtained through the Secretariat (info@cmh17.org). Any active participant can obtain a password.

Coordination Group approved Proceedings, meeting information, RECIPE and other information are available at the website.

Select Coordination and Working Groups use a separate website for handbook development known as Confluence: https://cmh17.atlassian.net/. Any active participant of one of these groups can obtain an account from the Secretariat.

OBTAINING CMH-17

VOLUME 1 REVISION H (2022), VOLUME 2 REVISION H (2018) and VOLUME 3 REVISION G (2012), Volume 4B (2013), Volume 5A (2017) Volume 6 (2013)

Copies of published versions of CMH-17 Volumes 1, 2, 3, 4, 5 and 6 can be obtained from SAE only. (Link here: <u>https://www.cmh17.org/RESOURCES/Purchase-Handbook</u>) SAE offers a hardcopy version of the five volumes of the handbook (Volumes 1 and 2 – H, 3-G, 4-B, 6). Print and e-book versions are available.

SOFTWARE – CMH17-STATS

The statistical methods included in the Composite Materials Handbook are available in the newly released software - CMH17 STATS. This software (Excel based) is approved for use in CMH-17. For more information or to purchase CMH17 STATS, visit the online store –

https://www.cmh17.org/RESOURCES/Statistics-Software

Updated: 10/26/2022

PRELIMINARY ATTENDANCE LIST

AS OF 11/8/2024

PRELIMINARY ATTENDANCE LIST

(as of Friday, November 8, 2024)

First Name	Last Name	(as of Friday, November 8, 2024) Company	Email Address
Abraham	Avalos Postigo	AON3D - Made in Canada 3D	abraham@aon3d.com
Adam	Chisholm	NASA	adam.j.chisholm@nasa.gov
Ahmet	Oztekin	FAA	ahmet.oztekin@faa.gov
Alexandra	Desautels	Bell Textron	adesautels@bellflight.com
allen	fawcett	NSE	afawcett@nsecomposites.com
Allison	Horner	NIAR/Scalar Scientific LLC	allison.horner@idp.wichita.edu
Amanda	Cordes	Hexcel Corporation	amanda.cordes@hexcel.com
Amanda	Bastian	Joby Aviation	amanda.bastian@joby.aero
Amanda	Panikowski	Henkel	amanda.panikowski@henkel.com
Andries	Buitenhuis	Boom Supersonic	andries.buitenhuis@boom.aero
Angie	Kostopoulos	FAA	Evangelia.kostopoulos@faa.gov
Angie	Kostopoulos	Federal Aviation Administration	Evangelia.kostopouos@faa.gov
Atsushi	Ogawa	JFE-TEC	ogawa@jfe-tec.co.jp
Benjamin	Schreiber Costa	Bombardier	benjamin.costa@aero.bombardier.com
Beth	Clarkson	NIAR	bclarkson@niar.wichita.edu
Biagio	Virde	Toray Composite Materials America (inc)	Biagio.virde@toraycma.com
Bijan	Deris	Boeing	Bijan.deris@boeing.com
Billy	Cheng	Bombardier	Billy.cheng@aero.bombardier.com
Bob	Stegeman	FAA	robert.stegeman@faa.gov
Bob	Stegeman	FAA	robert.stegeman@faa.gov
Brett	Morham	Supernal	brett.morham@supernal.aero
Brian	Kitt	Spirit AeroSystems	brian.r.kitt@spiritaero.com
Brice	Langston	Teijin Carbon America	blangston@teijincarbon.us
Brock	Strunk	Epic Aircraft LLC	brock@epicaircraft.com
Bryan	Williams	Gulfstream Aerospace	bryan.williams@gulfstream.com
CANAAN	GEBRU	RTX COLLINS AEROSTRUCTURES	Canaan.GeBru@collins.com
Carl	Rousseau	LM Aero	carl.q.rousseau@Imco.com
Carl	Rousseau	LM Aero	carl.q.rousseau@lmco.com
Chad	Franks	General Atomics - Aeronautical Systems Inc.	chad.franks@ga-asi.com
Charles	Seaton	Seaton Consulting	seaton.charles@gmail.com
Chris	Croshaw	Collins Aerospace	Chris.Croshaw@collins.com
Christopher	Watson	Supernal	christopher.watson@supernal.aero
Christopher	Watson	Supernal	christopher.watson@supernal.aero
Cindy	Ashforth	FAA	cindy.ashforth@faa.gov
Damitha	Abeywardana	Spirit AeroSystems Inc.	damitha.r.abeywardana@spiritaero.com
Dan	Ruffner	Boeing - retired	danielrruffner@gmail.com
Dan	Adams	Wyoming Test Fixtures	dan@wyomingtestfixtures.com
Daniel	Rust	Northrop Grumman LV	daniel.rust@ngc.com

Danielle	Stephens	FAA	danielle.stephens@faa.gov
David	Podracky	Honda Aircraft	david_podracky@haci.honda.com
David	Spain	Supernal	dspain@supernal.aero
Dawn	Huh	Collins Aerospace	dawn.huh@collins.com
Deepa	Jose	Collins Aerospace	deepa.jose@collins.com
DM	Hoyt	NSE Composites	hoyt@nsecomposites.com
Eduardo	Rigo	Transport Canada	eduardo.rigo@tc.gc.ca
Elisa	Buckner	Northrop Grumman	elisa.buckner@ngc.com
Eric	Stenne	Self	stenne@videotron.ca
Eric	Stenne	Self	stenne@videotron.ca
Eric	Pomerleau	Bombardier	eric.pomerleau@aero.bombardier.com
Errick	Robles	NIAR WSU	errick.robles@idp.wichita.edu
Evelyn	Lian	Wichita State University - NIAR	evelyn.lian@idp.wichita.edu
Fei	Liang	Gulfstream	fei.liang@gulfstream.com
Fernando	Tironi	Embraer	fernando.tironi@embraer.com.br
France	Theriault	Bombardier	france.theriault@aero.bombardier.com
Fred	Caplan	FAA	frederick.n.caplan@faa.gov
Gilberto	Niitsu	Embraer	gilberto.niitsu@embraer.com.br
Heidi	Zierden	MTECH	Heidi.zierden@mtechengservices.com
Hossein	Ghiasi	Beta Technologies	mhghiasi@beta.team
Hyojin	Kim	TESTCOR	hjkim@testcor.co.kr
lan	Lane	UK Civil Aviation Authority	ian.lane@caa.co.uk
James	Matheson	Bombardier	James.Matheson@aero.bombardier.com
James	Finlayson	Rolls Royce Plc	james.finlayson@rolls-royce.com
Jan	Waleson	GKN Fokker Aerospace	jan.waleson@fokker.com
Janna	McKenna	Textron Aviation	jmckenna@txtav.com
Jay	Yeakle	Cirrus Aircraft	jyeakle@cirrusaircraft.com
Jeff	Eichinger	Boeing	jeffrey.d.eichinger@boeing.com
Jeff	Bozak	Boeing	jeffrey.a.bozak@boeing.com
Jeff	Johnson	FAA	jeffrey.d.johnson@faa.gov
Jeff	Johnson	FAA	jeffrey.d.johnson@faa.gov
Jeffrey	Luo	Supernal	jeffrey.luo@supernal.aero
Jennifer	McKeegan	NASA-JSC	jennifer.l.mckeegan@nasa.gov
John	Lin	Boeing	john.z.lin@boeing.com
John	Keune	Boeing	john.n.keune@boeing.com
John	Bakuckas	FAA	john.bakuckas@faa.gov
John	Russell	N/A	russellofjohn@gmail.com
John	Gintert	Northrop Grumman - Space Systems	john.gintert@ngc.com
John	Moylan	Element Materials Technology	john.moylan@element.com
Jon	Armentia	Bombardier Aerospace	jon.armentia@aero.bombardier.com
Ken	Kawanishi	IHI Corporation	kawanishi6001@ihi-g.com

Kevin	Robbins	Boeing	Kevin.Robbins@Boeing.com
-			
Kevin	Dupuis	Syensqo	kevin.dupuis@syensqo.com
Kevin	Stonaker	FAA	kevin.stonaker@faa.gov
Kevin	Rugg	Pratt and Whitney	kevin.rugg@prattwhitney.com
Kyohei	Otani	IHI Corporation	otani8715@ihi-g.com
Kyojin	An	Korea Aerospace Industries	teriousakj@naver.com
Lalith	Kumar	UUDS Group	Irameshbabu@uuds.com
Lawrence	Gintert	FAA Consultant	gintertl06@gmail.com
Lindsay	Jones	Boeing	lindsay.l.jones@boeing.com
Lindy	Рое	Teijin Carbon America	lpoe@teijincarbon.us
Lisa	McHugh	Northrop Grumman	lisa.mchugh@ngc.com
Logan	Oster	Supernal	logan.oster@supernal.aero
Lynn	Pham	FAA	lynn.pham@faa.gov
Lynn	Pham	FAA	lynn.pham@faa.gov
Malgorzata	Zalewska	Lukasiewicz Research Network - Institute of Aviation	malgorzata.zalewska@ilot.lukasiewicz.gov.pl
Mathieu	Comeau	Bell Textron Inc	mcomeau01@bellflight.com
Mathieu	Ruel	Bell Textron Canada Limited	mruel@bellflight.com
Matthew	Opliger	Wichita State University - NIAR	matthew.opliger@idp.wichita.edu
Melanie	Herman	EASA	melanie.herman@europa.easa.eu
Melissa	Muehleisen	Archer	mmuleart@gmail.com
Michael	Rush	The Boeing Company	michael.r.rush@boeing.com
Michael	Hempowicz	Toray CMA	michael.hempowicz@toraycma.com
Michael	van Tooren	Collins Aerospace	michael.vantooren@collins.com
Michelle	Man	NIAR	michelle.man@idp.wichita.edu
Mikaleen	Morrell	NAVAIR	mikaleen.a.morrell.civ@us.navy.mil
Mike	Smeets	GKN Fokker Landing Gear	mike.smeets@fokker.com
Molly	Stone	MTech Engineering Services LLC	molly@mtechengservices.com
Monica	Nogueira	SAE International	monica.nogueira@sae.org
Morimasa	Ishida	Mitsubishi Heavy Industies	morimasa.ishida.wj@ds.mhi.com
Mostafa	Rassaian	RASSAIAN LLC	mostafa@rassaianllc.com
NAOYA	MICHII	JAPAN	michii-n01wg@mlit.go.jp
Nav	Muraliraj	Northrop Grumman	nav.muraliraj@ngc.com
Nicole	Stahl	NIAR - NCAMP	Nicole.Stahl@idp.wichita.edu
Paige	Noble	Cincinnati Testing Laboratories Inc.	pnoble@metcutctl.com
Paolo	Ballocchi	Collins Aerospace	paolo.ballocchi@collins.com
Paulo	Mendes	Embraer	paulo.mendes@embraer.com.br
Pedro	Corrales	Safran Aerosystems	pedro.corrales@safrangroup.com
Pooja	Shah	Delta Air Lines	pooja.shah@delta.com
	Iwamura	Embraer	rafael.iwamura@embraer.com.br
Rafael	wannara		
Rafael Rajiv	Naik	University of Connecticut	rajiv.naik@uconn.edu

Reewanshu	Chadha	FAA William J. Hughes Technical Center	reewanshu.ctr.chadha@faa.gov
Reha	Aktas	Honda Aircraft	reha aktas@haci.honda.com
Richard	Jensen	Textron eAviation	rcjensen@e-aviation.com
Richard	Cole	National Research Council Canada	rick.cole@nrc-cnrc.gc.ca
Robert	Thompson	NAVAIR - FRC East	robert.s.thompson208.civ@us.navy.mil
Ronald	Krueger	National Institute of Aerospace	rkrueger@nianet.org
Royal	Lovingfoss	NIAR	royal.lovingfoss@idp.wichita.edu
Saadia	Naqvi	Toray Composite Materials America Inc.	Saadia. Naqvi@toraycma.com
Samuel	Cordner	NASA	samuel.m.cordner@nasa.gov
Scott	Finn	GE Aerospace - Retired	scottrfinn@gmail.com
Shannon	Jones	Bell Textron	ssjones@bellflight.com
Sheng	Lu	Collins Aerospace	shenglu0418@gmail.com
Shuhei	Muto	Mitsubishi Heavy Industries Ltd.	shuhei.muto.rx@ds.mhi.com
Shunichi	Morishima	Mitsubishi Heavy Industries Ltd.	shunichi.morishima.ah@mhi.com
Silvio	Martino	Gulfstream Aerospace	Silvio.Martino@gulfstream.com
Simon	Shams	Federal Aviation Administration	simon.s.shams@faa.gov
simon	waite	EASA	simon.waite@easa.europa.eu
Sorin	Burlacu	Boom Supersonic	sorinburlacu@yahoo.com
Stefan	Kloppenborg	De Havilland Aircraft of Canada	stefan@kloppenborg.ca
Stephanie	Kramig	A&P Technology	skramig@braider.com
Stephen	Ward	SWComposites	shward@taosnet.com
Steve	Starnes	Navair	stephen.d.starnes2.civ@us.navy.mil
Sung	Park	Northrop Grumman	s.park@ngc.com
Sung	Park	Northrop Grumman	s.park@ngc.com
Susan	Danley	NASA	susan.e.danley@nasa.gov
Sylvina	Castillo	NIAR - NCAMP	sylvina.castillo@wichita.edu
Takahiro	Fukumaru	IHI Corporation	fukumaru6080@ihi-g.com
Takushi	Sugiyama	Mitsubishi Heavy Industries Ltd.	takushi.sugiyama.cv@ds.mhi.com
Tanila	Leal	Embraer	tanila.faria@embraer.com.br
Teresa	Marian	None	tmarian@advcomposite.com
Toshiyasu	Fukuoka	Mitsubishi Heavy Industries	toshiyasu.fukuoka.rt@mhi.com
Trent	Thorson	Beta Technologies	tthorson@beta.team
Trevor	Gundberg	Vectorply Corporation	tgundberg@vectorply.com
Vinay	Pilaka	Safran Seats	vinay.pilaka@safrangroup.com
Vincent	Tanoto	Wichita State University - NIAR	vinsensius.tanoto@idp.wichita.edu
VINOTH	SAMPATH	BOMBARDIER	VINOTH.SAMPATH@AERO.BOMBARDIER.COM
Vishnu	Saseendran	National Institute of Aerospace (NIA)	vishnu.saseendran@nianet.org
Walter	Sippel	FAA	walter.sippel@faa.gov
Warren	Ronk	Spirit Aerosystems	warren.ronk@spiritaerosystems.com
Warren	Ronk	Spirit Aerosystems	warren.ronk@spiritaerosystems.com
Waruna	Seneviratne	NIAR	waruna.seneviratne@idp.wichita.edu

Xiaomei	Fang	Pratt & Whitney	xiaomei.fang@prattwhitney.com
Yongzhe	Tian	FAA	yongzhe.tian@faa.gov
Yuanxin (Bob)	Zhou	GE Aerospace	yuanxin.zhou@ge.com

COMPOSITE MATERIALS HANDBOOK 17

CHAIRS AND COORDINATORS

CMH-17 COORDINATORS

CMH-17 Co-Chair

Ms. Cindy Ashforth FAA Aircraft Certification Service, Policy and Innovation Division 2200 S. 216th Street Des Moines, WA 98198 Tel: 206-231-3239 Email: cindy.ashforth@faa.gov

CMH-17 Senior Advisor

Dr. Larry Ilcewicz FAA Aircraft Certification Service, Policy and Innovation Division 2200 S 216th St, 3W-450 Des Moines, WA 98198 Tel: 206-231-3147 Email: larry.ilcewicz@faa.gov

CMH-17 AM Industry Chair

Mr. Rick Cole NRC Aerospace National Research Council Canada (NRC) Building M-3, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6 Tel: 613-993-4058 E-mail: rick.cole@nrc-cnrc.gc.ca

CMH-17 PMC Industry Chair

Dr. Carl Q. Rousseau Lockheed Martin Aeronautics P.O. Box 748, MZ 6516 Fort Worth, TX 76101 Tel: 817-763-7727 Fax: 817-762-5673 Email: carl.q.rousseau@lmco.com

CMH-17 Secretariat

Wichita State University 1845 Fairmount Wichita, KS 67260-0093 Tel: 316-218-2773 Email: info@cmh17.org

CMH-17 Co-Chair

Dr. Ahmet Oztekin FAA Research Program Manager CCXQ+22 Atlantic City International Airport, Egg Harbor Township, NJ 08405 Tel: 609-742-5532 Email: oztekin.ahmet@faa.gov

CMH-17 Senior Advisor

Dr. John S. Tomblin Wichita State University 1845 Fairmount Wichita, KS 67260-0093 Tel: 316-978-5234 Fax: 316-978-3175 Email: john.tomblin@wichita.edu

CMH-17 CMC Industry Chair

Mr. Doug Kiser NASA Glenn Research Center Cleveland, OH 44135 Tel: 216-433-3247 Fax: 216-433-5544 Email: james.d.kiser@nasa.gov

CMH-17 PMC Industry Chair

Mr. Stephen H. Ward Email: shward@taosnet.com

AM WORKING GROUP

Data Review Chair

Seeking WG co-chair

Design and Analysis Cochair

Dr. Sung Park NGC Aerospace Systems One Hornet Way, M/S: L044DH, W2 El Segundo, CA 90245 Tel: 310-331-1836 Email: s.park@ngc.com

Guidelines Cochair

Mr. Rick Cole NRC Aerospace National Research Council Canada (NRC) Building M-3, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6 Tel: 613-993-4058 E-mail: rick.cole@nrc-cnrc.gc.ca

Materials & Processes Cochair

Dr. Fei Liang Gulfstream Aerospace Tel: 912-251-3012 Email: fei.liang@gulfstream.com

Statistics Cochair

Dr. Elizabeth Clarkson WSU/NIAR 1845 Fairmount Box 93 Wichita, KS 67260 Tel: 316-978-3952 Email: bclarkson@niar.wichita.edu

Statistics Cochair

Stefan Kloppenborg 7757 8th Street NE Calgary, AB Canada T2E 8A2 Email: stefan@kloppenborg.ca

Design and Analysis Cochair

Ms. Elisa Buckner NGC Aerospace Systems Tel: 858-618-8733 Email: Elisa.Buckner@ngc.com

Guidelines Cochair

Mr. Bijan Deris Boeing 3003 Casino Everett, WA, 98201 Tel: 425-309-6233 E-mail: bijan.deris@boeing.com

Materials & Processes Cochair

Mr. Eric Moyer The Boeing Company Tel: 610-597-1551 Email: eric.k.moyer@boeing.com

Statistics Cochair

Dr. Lindsay Jones Boeing Tel: +1 256-519-5700 Email: lindsay.l.jones@boeing.com

Testing Cochair

Mr. Joe Costanzo Boeing Tel: 425-750-6201 Email: joseph.c.costanzo@boeing.com

Testing Cochair

Mr. Royal Lovingfoss National Institute for Aviation Research 1845 Fairmount Wichita, KS 67260-0093 Tel: 316-978-5317 Email: rlovingfoss@niar.wichita.edu **Testing Cochair** Mr. Brian Kitt Spirit AeroSystems PO Box 780008 Wichita, KS 67278 Tel: 316-523-3672 Email: brian.r.kitt@spiritaero.com

CMC WORKING GROUP

Data Review Chair

Dr. Rajiv A. Naik School of Engineering, Professional Education University of Connecticut Storrs, CT 06269-4031 Email: rajiv.naik@uconn.edu

Design and Analysis Cochair

Mr. Arun Bhattacharya Boeing Tel: (714) 330-0053 Email: arunabh.bhattacharya@boeing.com

Engine Applications Cochair

Mr. Scott Finn GE(Ret.) Tel: (518) 207-7578 Email: scottrfinn@gmail.com

Materials & Processes Cochair

Mr. Doug Kiser NASA Glenn Research Center Cleveland, OH 44135 Tel: 216-433-3247 Fax: 216-433-5544 Email: james.d.kiser@nasa.gov

Testing Cochair

Mr. Matt Opliger National Institute for Aviation Research 1845 Fairmount Wichita, KS 67260-0093 Tel: 316-978-6672 Email: Matthew.Opliger@idp.wichita.edu

Design and Analysis Cochair

Mr. Kevin Rugg Pratt and Whitney Tel: (860) 557-0953 Email: kevin.rugg@prattwhitney.com

Engine Applications Cochair

Mr. James Finlayson Rolls-Royce Email: james.finlayson@rollsroyce.com

Materials & Processes Cochair

Ms. Leanne Lehman The Boeing Company 14441 Astronautics Dr Huntington Beach, CA 92647 Tel: 714-330-7190 Email: leanne.l.lehman@boeing.com

Testing Cochair

Dr. Bob Zhou GE Aviation Tel: 513-243-4497 Email: yuanxin.zhou@ge.com

PMC WORKING GROUP

Bonding Process Cochair

(Task Group under M&P) Dr. Howard Creel 3M Automotive and Aerospace Solutions Division 3M Center, 280-2W-21 | St. Paul, MN 55144 Tel: 651-737-9955 Email: hscreel@mmm.com

Spacecraft Cochair

Mr. Jeffrey D. Eichinger Boeing 5301 Bolsa Avenue Huntington Beach, CA 92647 Tel: 714-317-0394 Fax: Email: jeffrey.d.eichinger@boeing.com

Crashworthiness Cochair

Dr. Mostafa Rassaian PO Box 6683 Bellevue, WS 98008-0683 Tel: 206-715-6358 Email: mostafa@rassaianllc.com

Damage Tolerance Cochair

Dr. Douglas S. Cairns Montana State University Mechanical & Industrial Engineering 220 Roberts Hall Boseman, MT 59717 Tel: 406-994-0393 Fax: 406-539-6292 Email: dcairns@me.montana.edu

Bonding Process Cochair

(Task Group under M&P) Ms. Molly Stone MTech Engineering Services, LLC Tel: +1 218-260-9054 Email: molly@mtechengservices.com

Spacecraft Cochair

Mr. Jeremy Jacobs NASA Johnson Space Center 2101 Nasa Parkway, M.S. ES4 Houston, TX 77058 Tel: 281-483-8825 Fax: Email: jeremy.b.jacobs@nasa.gov

Damage Tolerance Cochair

Mr. Patrick Enjuto The Boeing Company Everett, WA Tel: 206-369-9250 Email: patrick.enjuto2@boeing.com

Damage Tolerance Cochair

Mr. Allen Fawcett Boeing/BCA 621 Cedar Ave So Renton, WA 98057 Tel: 425-342-2399 Email: allen.j.fawcett@boeing.com

Damage Tolerance Cochair

Dr. Simon Waite European Aviation Safety Agency (EASA) Postfach 10 12 53 Koln D-50452 GERMANY Tel: 49-221-89990 4082 Fax: 49-221 89990 4582 Email: simon.waite@easa.europa.eu

Data Review Cochair

Mr. Michael Hempowicz Toray CMA Tel: 251-382-8320 Email: michael.hempowicz@toraycma.com

Design Co-Chair

Dr. Larry Ilcewicz FAA Aircraft Certification Service, Policy and Innovation Division 2200 S 216th St, 3W-450 Des Moines, WA 98198 Tel: 206-231-3147 Email: larry.ilcewicz@faa.gov

Damage Tolerance Cochair

Mr. Mike Smeets Fokker Landing Gear Grasbeemd 28 Helmond 5705 DG The Netherlands Tel: 31 0 492-575286 Email: mike.smeets@fokker.com

Damage Tolerance Cochair

Mr. DM Hoyt NSE Composites 1101 North Northlake Way, Suite 4 Seattle, WA 98103 www.nsecomposites.com Tel: (206)-545-4888 Email: hoyt@nsecomposites.com

Data Review Cochair

Mr. Royal Lovingfoss Wichita State University - NIAR 1845 Fairmount Wichita, KS 67260-0093 Tel: 316-978-5317 Fax: 316-978-3175 Email: Royal.Lovingfoss@idp.wichita.edu

Design Co-Chair

Mr. Patrick Enjuto The Boeing Company Everett, WA Tel: 206-369-9250 Email: patrick.enjuto2@boeing.com

Engine Applications Cochair

Dr. Scott R. Finn GE Aviation One Newmann Way Mail Drop E-163 Cincinnati, OH 45215 finn@ge.com 513-243-3415

Guidelines Cohair

Dr. Carl Q. Rousseau Lockheed Martin Aeronautics P.O. Box 748, MZ 6516 Fort Worth, TX 76101 Tel: 817-763-7727 Fax: 817-762-5673 Email: carl.q.rousseau@Imco.com

Materials & Processes Cochair

Dr. Margaret E. Roylance Nano Tech Labs Tel: 617- 930-6572 Email: mroylance@nanotechlabs.com

Engine Applications Cochair

James Finlayson Rolls Royce Moor Lane D3, PO Box 31, Derby, DE24 8BJ ames.finlayson@rolls-royce.com +44 (0) 7585 881070

Guidelines Cohair

Ms. Amanda Bastian Joby Aviation 333 Encinal St Santa Cruz, CA 65060 Tel: 802-989-8706 Email: amandabastian@gmail.com

Materials & Processes Cochair

Mr. Daniel R. Ruffner Email: danielrruffner@gmail.com

Safety Management Cochair

Ms. Cindy Ashforth FAA Aircraft Certification Service, Policy and Innovation Division 2200 S. 216th Street Des Moines, WA 98198 Tel: 206-231-3239 Email: cindy.ashforth@faa.gov

Sandwich Cochair

Mr. Lawrence A. Gintert Independent Consultant 3 Cross St, Apt 1 Jaffrey, NH 03452 Tel: 727-403-5769 Email: GintertL06@gmail.com

Safety Management Cochair

Dr. Larry Ilcewicz FAA Aircraft Certification Service, Policy and Innovation Division 2200 S 216th St, 3W-450 Des Moines, WA 98198 Tel: 206-231-3147 Email: larry.ilcewicz@faa.gov

Sandwich Cochair

Dr. Zhi Chen Email: zhiming.chen@aero.org

Statistics Cochair

Stefan Kloppenborg Email: stefan@kloppenborg.ca

Statistics Cochair

Mr. Jorge Chavez-Salas WSU/NIAR 1845 Fairmount, Box 93 Wichita, KS 67260 Tel: 316-978-6427 Fax: 316-978-3175 Email: Jorge.Chavez-Salas@idp.wichita.edu

Supportability, Maintenance, and **Repair Cochair**

Mr. Stephen Starnes US Navy 101 Wasp Street Jacksonville, FL 32212-0016 Tel: 904-790-6410 Email: stephen.starnes@navy.mil

Testing Cochair

Dr. Daniel O. Adams University of Utah 50 S. Central Campus Drive Room 2110 MEB Salt Lake City, UT 84112 Tel: 801-585-9807 Fax: 801-585-9826 Email: john.moylan@element.com Email: adams@mech.utah.edu

Testing Cochair

Mr. John Moylan **Element Materials Technologies** 1857 Business Center Dr Duarte, CA 91010 Tel: 818-296-0444