TABLE OF CONTENTS

Introduction ... 1
Wireframe & Surfaces ... 2
Generative Shape Design Workbench ... 3

Wireframe .. 15
Points ... 15
 Coordinate .. 15
 On curve .. 18
 On plane ... 22
 On surface .. 24
 Circle / Sphere / Ellipse center ... 26
 Tangent on curve ... 27
 Between ... 30
 Point Repetition ... 32
 Projecting points ... 37
 Intersection points ... 41
 Extremum ... 45
 Polar Extremum .. 48

Lines .. 50
 Point-Point ... 50
 Point-Direction .. 53
 Angle/Normal to curve ... 55
 Tangent to curve ... 60
 Normal to surface ... 63
 Bisecting .. 65
 Intersection lines ... 67
 Projecting lines .. 68
 Axis .. 69
 Polyline .. 71

Planes .. 75
 Offset from plane ... 75
 Parallel through point ... 77
 Angle/Normal to plane .. 78
 Through three points ... 80
 Through two lines .. 81
 Through point and line ... 82
 Through planar curve ... 83
 Normal to curve ... 84
 Tangent to curve ... 86
 Equation .. 87
 Mean through points ... 89
 Between ... 90
 Plane Between .. 92

Circles .. 95
 Center and radius ... 95
 Center and point ... 98

© Wichita State University
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two points and radius</td>
<td>99</td>
</tr>
<tr>
<td>Three points</td>
<td>101</td>
</tr>
<tr>
<td>Center and axis</td>
<td>103</td>
</tr>
<tr>
<td>Bitangent and radius</td>
<td>104</td>
</tr>
<tr>
<td>Bitangent and point</td>
<td>106</td>
</tr>
<tr>
<td>Tritangent</td>
<td>108</td>
</tr>
<tr>
<td>Center and tangent</td>
<td>110</td>
</tr>
<tr>
<td>Corners</td>
<td>111</td>
</tr>
<tr>
<td>Curves</td>
<td>116</td>
</tr>
<tr>
<td>Connect Curves</td>
<td>116</td>
</tr>
<tr>
<td>Conics</td>
<td>121</td>
</tr>
<tr>
<td>Splines</td>
<td>128</td>
</tr>
<tr>
<td>Helixes</td>
<td>134</td>
</tr>
<tr>
<td>Spirals</td>
<td>141</td>
</tr>
<tr>
<td>Project Curves</td>
<td>145</td>
</tr>
<tr>
<td>Combine Curves</td>
<td>148</td>
</tr>
<tr>
<td>Reflect Line Curves</td>
<td>152</td>
</tr>
<tr>
<td>Silhouette Curves</td>
<td>155</td>
</tr>
<tr>
<td>Intersection Curves</td>
<td>158</td>
</tr>
<tr>
<td>Parallel Curves</td>
<td>162</td>
</tr>
<tr>
<td>Rolling Offset Curve</td>
<td>168</td>
</tr>
<tr>
<td>3D Curve Offset</td>
<td>170</td>
</tr>
<tr>
<td>Curve comparison</td>
<td>173</td>
</tr>
<tr>
<td>Supports</td>
<td>175</td>
</tr>
<tr>
<td>Work on Support</td>
<td>175</td>
</tr>
<tr>
<td>Creation on the fly</td>
<td>181</td>
</tr>
<tr>
<td>Modifying</td>
<td>184</td>
</tr>
<tr>
<td>Datums</td>
<td>186</td>
</tr>
<tr>
<td>Object repetition</td>
<td>188</td>
</tr>
<tr>
<td>Surfaces</td>
<td>189</td>
</tr>
<tr>
<td>Extruded</td>
<td>189</td>
</tr>
<tr>
<td>Revolution</td>
<td>191</td>
</tr>
<tr>
<td>Sphere</td>
<td>193</td>
</tr>
<tr>
<td>Cylinder</td>
<td>196</td>
</tr>
<tr>
<td>Offset</td>
<td>198</td>
</tr>
<tr>
<td>Mid Surface</td>
<td>201</td>
</tr>
<tr>
<td>Swept Surfaces</td>
<td>211</td>
</tr>
<tr>
<td>Explicit</td>
<td>211</td>
</tr>
<tr>
<td>With reference surface</td>
<td>212</td>
</tr>
<tr>
<td>With two guide curves</td>
<td>220</td>
</tr>
<tr>
<td>With pulling direction</td>
<td>225</td>
</tr>
<tr>
<td>Linear</td>
<td>227</td>
</tr>
<tr>
<td>Two limits</td>
<td>228</td>
</tr>
<tr>
<td>Limit and middle</td>
<td>233</td>
</tr>
<tr>
<td>With reference surface</td>
<td>235</td>
</tr>
<tr>
<td>With reference curve</td>
<td>239</td>
</tr>
<tr>
<td>With tangency surface</td>
<td>241</td>
</tr>
<tr>
<td>With draft direction</td>
<td>244</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>With two tangency surfaces</td>
<td>248</td>
</tr>
<tr>
<td>Circular</td>
<td>251</td>
</tr>
<tr>
<td>Three guides</td>
<td>252</td>
</tr>
<tr>
<td>Two guides and radius</td>
<td>254</td>
</tr>
<tr>
<td>Center and two angles</td>
<td>257</td>
</tr>
<tr>
<td>Center and radius</td>
<td>259</td>
</tr>
<tr>
<td>Two guides and tangency surface</td>
<td>261</td>
</tr>
<tr>
<td>One guide and tangency surface</td>
<td>263</td>
</tr>
<tr>
<td>Limit curve and tangency surface</td>
<td>265</td>
</tr>
<tr>
<td>Conical</td>
<td>268</td>
</tr>
<tr>
<td>Two guide curves</td>
<td>269</td>
</tr>
<tr>
<td>Three guide curves</td>
<td>271</td>
</tr>
<tr>
<td>Four guide curves</td>
<td>273</td>
</tr>
<tr>
<td>Five guide curves</td>
<td>275</td>
</tr>
<tr>
<td>Adaptive Sweep</td>
<td>277</td>
</tr>
<tr>
<td>Fill Surfaces</td>
<td>283</td>
</tr>
<tr>
<td>Multi-Section Surfaces</td>
<td>290</td>
</tr>
<tr>
<td>Blend surfaces</td>
<td>301</td>
</tr>
<tr>
<td>Spines</td>
<td>308</td>
</tr>
<tr>
<td>Isoparametric Curves</td>
<td>313</td>
</tr>
<tr>
<td>Laws</td>
<td>315</td>
</tr>
<tr>
<td>Operations</td>
<td>329</td>
</tr>
<tr>
<td>Joining Elements</td>
<td>329</td>
</tr>
<tr>
<td>Healing Surfaces</td>
<td>337</td>
</tr>
<tr>
<td>Curve smoothing</td>
<td>342</td>
</tr>
<tr>
<td>Splitting Elements</td>
<td>343</td>
</tr>
<tr>
<td>Trimming Elements</td>
<td>350</td>
</tr>
<tr>
<td>Untrimming Elements</td>
<td>354</td>
</tr>
<tr>
<td>Disassembling Elements</td>
<td>356</td>
</tr>
<tr>
<td>Disconnect</td>
<td>358</td>
</tr>
<tr>
<td>Sew Surface</td>
<td>360</td>
</tr>
<tr>
<td>Remove Face</td>
<td>362</td>
</tr>
<tr>
<td>Extracting Boundaries and Faces</td>
<td>364</td>
</tr>
<tr>
<td>Multiple Extract</td>
<td>369</td>
</tr>
<tr>
<td>Fillets</td>
<td>373</td>
</tr>
<tr>
<td>Shape Fillet</td>
<td>373</td>
</tr>
<tr>
<td>Edge Fillet</td>
<td>380</td>
</tr>
<tr>
<td>Face-Face Fillet</td>
<td>386</td>
</tr>
<tr>
<td>Tritangent Fillet</td>
<td>388</td>
</tr>
<tr>
<td>Styling Fillet</td>
<td>390</td>
</tr>
<tr>
<td>Automatic Filleting</td>
<td>397</td>
</tr>
<tr>
<td>Chamfer</td>
<td>402</td>
</tr>
<tr>
<td>Transformations</td>
<td>407</td>
</tr>
<tr>
<td>Translate</td>
<td>407</td>
</tr>
<tr>
<td>Rotate</td>
<td>410</td>
</tr>
<tr>
<td>Symmetry</td>
<td>413</td>
</tr>
<tr>
<td>Scale</td>
<td>414</td>
</tr>
<tr>
<td>Affinity</td>
<td>416</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Axis to Axis</td>
<td>419</td>
</tr>
<tr>
<td>Patterns</td>
<td>420</td>
</tr>
<tr>
<td>Rectangular</td>
<td>420</td>
</tr>
<tr>
<td>Circular</td>
<td>423</td>
</tr>
<tr>
<td>User Defined</td>
<td>424</td>
</tr>
<tr>
<td>Extrapolating Curves and Surfaces</td>
<td>425</td>
</tr>
<tr>
<td>Inverting the Orientation</td>
<td>431</td>
</tr>
<tr>
<td>Creating the Nearest or Farthest Element</td>
<td>432</td>
</tr>
<tr>
<td>Multi-Selection</td>
<td>434</td>
</tr>
<tr>
<td>Analysis</td>
<td>439</td>
</tr>
<tr>
<td>Connect Checker Analysis</td>
<td>439</td>
</tr>
<tr>
<td>Light Distance Analysis</td>
<td>450</td>
</tr>
<tr>
<td>Draft Analysis</td>
<td>452</td>
</tr>
<tr>
<td>Surfacic Curvature Analysis</td>
<td>457</td>
</tr>
<tr>
<td>Porcupine Curvature Analysis</td>
<td>462</td>
</tr>
<tr>
<td>Geometric Information</td>
<td>472</td>
</tr>
<tr>
<td>Dress-Up</td>
<td>474</td>
</tr>
<tr>
<td>Geometrical Set Management</td>
<td>477</td>
</tr>
<tr>
<td>Inserting Sets</td>
<td>477</td>
</tr>
<tr>
<td>Changing Sets</td>
<td>479</td>
</tr>
<tr>
<td>Hiding and Showing Components</td>
<td>481</td>
</tr>
<tr>
<td>Activating and Deactivating Components</td>
<td>482</td>
</tr>
<tr>
<td>Reordering Components</td>
<td>483</td>
</tr>
<tr>
<td>Groups</td>
<td>485</td>
</tr>
<tr>
<td>Isolating Geometry</td>
<td>487</td>
</tr>
<tr>
<td>Copying and Pasting Geometry</td>
<td>488</td>
</tr>
<tr>
<td>Ordered Geometrical Set Management</td>
<td>491</td>
</tr>
<tr>
<td>Inserting an Ordered Geometrical Set</td>
<td>491</td>
</tr>
<tr>
<td>Modifying Children</td>
<td>493</td>
</tr>
<tr>
<td>Reordering Components</td>
<td>495</td>
</tr>
<tr>
<td>Scanning Ordered Sets透入</td>
<td>497</td>
</tr>
<tr>
<td>Inserting in an Ordered Set</td>
<td>498</td>
</tr>
<tr>
<td>Switching to a Regular Geometrical Set</td>
<td>499</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>500</td>
</tr>
<tr>
<td>Parents/Children</td>
<td>500</td>
</tr>
<tr>
<td>Historical Graph</td>
<td>502</td>
</tr>
<tr>
<td>Quick Select</td>
<td>504</td>
</tr>
<tr>
<td>Inserting Elements</td>
<td>506</td>
</tr>
<tr>
<td>Sets of planes</td>
<td>507</td>
</tr>
<tr>
<td>Regular</td>
<td>507</td>
</tr>
<tr>
<td>Semi-Regular</td>
<td>509</td>
</tr>
<tr>
<td>Irregular</td>
<td>510</td>
</tr>
<tr>
<td>Keep and No Keep Mode</td>
<td>512</td>
</tr>
<tr>
<td>Keep Mode</td>
<td>512</td>
</tr>
<tr>
<td>No Keep Mode</td>
<td>512</td>
</tr>
</tbody>
</table>
Table of Contents

CATIA Wireframe & Surfaces

Current Body ...517
Masks ...519
2D Visualization Modes ..524
Deleting Useless Elements ...528

Review ..529
Mouse Body ..529
Buttons and Wheel ..551

Problems ..563
Problem #01 ..563
Problem #02 ..564
Problem #03 ..565
Problem #04 ..566
Problem #05 ..568
Problem #06 ..570
Problem #07 ..572
Problem #08 ..574
Problem #09 ..577
Problem #10 ..579

Appendix A ..583
Shape - Generative Shape Design - General583
Shape - Generative Shape Design - Work On Support585

Appendix B ..587
Part Design Using Surfaces ..587
 Split ..587
 Thick Surface ..589
 Close ..591
 Sew ..592
 Pad/Pocket ..594
 Boolean Operations595

Appendix C ..597
Developed Shapes ..597
 Unfold Surfaces ..597
 Transfer ..602
 Develop Wires ...605

Appendix D ..611
Volumes ..611
Introduction

CATIA Version 6 Wireframe & Surfaces

Upon completion of this course, the student should have a full understanding of the following topics:

- Creating wireframe geometry
- Creating surfaces
- Performing operations on surfaces
- Modifying wireframe and surfaces
- Analyzing curves and surfaces
- Utilizing wireframe and surfaces in Part Design
Wireframe & Surfaces

Many parts can be created using just the Part Design tools. However, there are times when surfaces need to be used in order to get the desired shape for your part. Wireframe geometry is also necessary at times to define support geometry for the various Part Design tools as well as the surface tools. Surfaces provide the ability to create complex contours that are often necessary in your design. There are a few workbenches in CATIA V6 that have wireframe and surface options. This class will focus on the Generative Shape Design workbench. The Generative Shape Design workbench has all of the tools that are available on the Wireframe & Surfaces workbench and more. This course will cover all of the options found in the Generative Shape Design workbench.

As covered in previous courses, surfaces can be used within Part Design. This gives the capability of hybrid modeling. To review, you should remember that you can perform four operations with surfaces in Part Design. One option is to add thickness to a surface thereby creating a solid. A second option is to split your part with a surface. A third option is to sew a surface to your part, which will either add or remove material, or both. The last option is to close a surface with planar faces to form a solid. These options can be reviewed via the exercises located in Appendix B. It is also important that you understand how to work with boolean operations in order to fully utilize all of the surface options. These are reviewed in Appendix B as well.

It is important to understand some of the terminology that CATIA uses when working with wireframe and surfaces. You should already be familiar with a PartBody and know that you can have more than one within your part. Wireframe geometry and surfaces are created within geometrical sets. You may also have more than one geometrical set in your part. Geometrical sets are used to organize non-solid geometry. When you create new wireframe or surface geometry, you will need to be sure that the correct geometrical set is the in-work object in order to have an organized tree.
Wireframe geometry is critical to the creation of surfaces and is used as reference elements throughout CATIA.

Points

Points are useful to define specific locations and to assist in the creation of other wireframe geometry. You have a variety of options to define points that will be explored in the following exercises.

Coordinate

Open the WFAS - Points document. Remember, you will need to search for WFAS - Points and then open the document. You should see a surface and some wireframe geometry.

Switch to the Generative Shape Design workbench if are not already there. To change workbenches, you can select the My 3D Modeling Apps (West quadrant) section of the compass, then choose Generative Shape Design.

Select the Point icon. The Point Definition window appears.

- **Point type** specifies what type of point you want to create: Coordinates, On curve, On plane, On surface, Circle/Sphere/Ellipse center, Tangent on curve, or Between

- **X=, Y=, Z=** The coordinate values of the point to be created from the reference point
Reference

Point The point that the coordinates are based from; the default is the origin

Axis System Defines the axis system that the point will be based off of

Robot Location Creates the point at the location of the robot in the display

Press the third mouse button in the Axis System field. A contextual menu appears.

Choose Clear Selection. By default, the active axis system is used to create a coordinate point. By clearing the Axis System field, the absolute axis system will be used to define the point instead.

Enter 2.0, 4.0, and 2.0 for the X, Y, and Z values respectively, then select OK. You should have noticed a preview of the point as you were entering the values before selecting OK. It should appear similar to the diagram shown below.
Select the Point icon again. The Point Definition window appears. This time, you will use a point as the reference instead of the origin.

Clear the Axis System selection box so that the absolute axis system will be used, then select the point you just created to define the Reference Point. The point is labeled as Point and the name of the point appears in the Point field of the window.

Enter 0.0, 2.0, and 1.0 for the X, Y, and Z values respectively, then select OK. The new point is created off of the previous point rather than the origin.

Select the Point icon again. The Point Definition window appears. This time, you will use the axis system that has been created instead of using the absolute axis system.

Enter 1.0, 2.0, and 0.0 for the X, Y, and Z values respectively, then select OK. The point is created off of the origin of Axis System.1 instead of the absolute axis system. Your model should appear similar to the diagram shown below.

You can also create points on elements such as curves, planes, and surfaces.
On curve

Select the Point icon. The Point Definition window appears.

Change the Point type to On curve. The options change as shown here.

- **Curve** Specifies the curve on which the point will be created
- **Distance to reference** Determines the mode to use for the point creation
 - **Distance on curve** The distance along the curve from the reference point
 - **Distance along direction** The distance along the curve in a particular direction
 - **Ratio of curve length** The ratio between the reference point and the extremity
 - **Length/Offset/Ratio** A user-defined value to specify either the Length for the Distance on curve option, the Offset for the Distance along direction option, or the Ratio for the Ratio of curve length option
 - **Geodesic** Forces the length to be measured along the curve
Select the curve on the right. The curve is labeled Curve in the display and the extremity shows a red arrow.

Select the Distance on curve option, then change the Length to 5.0 and make sure it is set to Geodesic. The point appears at five inches along the curve.

Select the Euclidean option instead of Geodesic. The point is still on the curve, but it is now five inches from the reference point instead of five inches along the curve.

Select OK. The point is created.

Select the Point icon again and ensure the Point type is set to On curve, then select the curve on the right.

Set the Reference Point to be the origin of the axis system at the end of the curve.

Select the Distance along direction option, then select the yz plane from the specification tree for the Direction. This will be where the offset is measured from.

Change the Offset to 1.0 and select OK. The point is created and is measured normal from the yz plane along the curve.

Select the Point icon again and ensure the Point type is set to On curve, then select the curve on the right.

Select the Ratio of curve length and Geodesic options, then change the Ratio to 0.25 and select Preview. A point appears a quarter of the way along the curve. A ratio of 0.5 is the midpoint of the curve. Only the Distance on curve option can use a Euclidean measurement.
Select **OK**. The point is created and should appear similar to the diagram shown below.

![Diagram of a point created on a curve](image)

Select the **Point** icon again and ensure the **Point type** is set to **On curve**, then select the curve on the right.

Select the **Distance on curve** option, then select the **Nearest extremity** button. The point appears at the nearest endpoint of the curve.

Select the **Middle point** button and click **OK**. The point appears in the middle of the curve.

Select the **Point** icon again and ensure the **Point type** is set to **On curve**, then select the curve on the right. This time, you will use a reference point other than an extremity.

Select **Distance on curve**, then choose **Geodesic** and change the **Length** to 3.0.

Select the **Reference Point** field and choose the point shown below. Notice the direction of the arrow.

![Diagram showing geodesic distance](image)

Select the **Reverse Direction** button. The arrow points to the opposite direction. If using an extremity, reversing the direction causes the reference point to switch to the other end of the spline.

Select **OK**. The point is created.
Select the **Point** icon again and ensure the **Point type** is set to **On curve**, then select the curve on the right.

Choose **Distance on curve** and **Geodesic**, then change the **Length** to 1.0.

Select the Reverse Direction button. This moves the reference to the other end of the curve.

Turn on the **Repeat object after OK** checkbox and select **OK**. The **Points & Planes Repetition** window appears.

Select Cancel. These options will be covered in detail later in the book. Only the one point is created. This completes the options for creating a point on a curve.

Select in space to release the point.
Surfaces

Surfaces are extremely important for defining contours. With the use of wireframe geometry, surfaces can be created to represent any contour needed. Once the surfaces are created, they can then be used in Part Design to make a solid model. There are a variety of options for creating surfaces. Some are straightforward, while others are much more complex.

Extruded

Extruded surfaces are created by extending an element in a linear direction. The resulting object is called an Extrude in the specification tree.

Open the WFAS - Basic Surfaces document. You should see some wireframe geometry.

Select the Extrude icon from the Surface section. The Extruded Surface Definition window appears.

- **Profile**: Specifies the shape to be extruded
- **Direction**: Defines the direction of the extrusion
- **Extrusion Limits**: Defines a distance or a limiting element
 - **Limit 1/2**: Two options available: **Dimension** and **Up-to element**
 - **Type**: Specifies a distance for the extrusion to extend
Up-to element Specifies an element that the extrusion will stop at

Mirrored Extent Forces Limit 2 to be the same as Limit 1; only available when the Type is set to Dimension

Reverse Direction Reverses the direction of the extrusion

Select the curve shown below. This curve was created in a sketch. Whenever a sketch is selected for an extrusion, the direction will automatically be normal to the sketch plane.

Enter 3.0 for Limit 1 and 1.0 for Limit 2, then select the Reverse Direction button and click OK. The surface is created.

Select the Extrude icon again. The Extruded Surface Definition window appears.

Select the curve and plane as shown below. When a plane is selected for the direction, the surface will extend normal to the plane.

Change both Dimension fields to 1.0 and select OK. The surface is created.
Revolution

Revolution surfaces are created by rotating an element around an axis. The resulting object is called a *Revolute*.

Select the Revolve icon. It is located within the sub-toolbar of the *Extrude* icon. The *Revolution Surface Definition* window appears.

![Revolution Surface Definition Window]

- **Profile** Specifies the shape that will be revolved.
- **Revolution axis** Defines the axis around which the profile will revolve; if the profile is a sketch that has an axis defined within it, CATIA will use that axis for the revolution.
- **Angular Limits**
 - **Angle 1** Defines the starting angle for the revolution.
 - **Angle 2** Defines the ending angle for the revolution.
Select the profile and line as shown below.

Change Angle 1 to 0.0 and Angle 2 to 180, then select OK. The surface is created.
Spherical surfaces are created by defining a center point and a radius. The resulting object is called a *Sphere* in the specification tree.

Select the Sphere icon. It is located within the sub-toolbar of the **Extrude** icon. The *Sphere Surface Definition* window appears.

![Sphere Surface Definition Window](image)

- **Center**
 - Specifies the center point of the sphere

- **Sphere axis**
 - Determines the orientation of the *Parallel* and *Meridian* curves

- **Sphere radius**
 - Defines the radius of the sphere

Sphere Limitations

- **Angles**
 - Creates a partial sphere

- **Whole Sphere**
 - Creates a full sphere

 - **Parallel Start Angle**
 - Defines the starting angle in the parallel direction; only available when the …Angles icon is selected

 - **Parallel End Angle**
 - Defines the ending angle in the parallel direction; only available when the …Angles icon is selected
Meridian Start Angle
Defines the starting angle in the meridian direction; only available when the ...Angles icon is selected

Meridian End Angle
Defines the ending angle in the meridian direction; only available when the ...Angles icon is selected

Select Point.6 either graphically or from the tree and enter 1.5 for the Sphere radius, then select Preview. Since you do not have an axis to select, you will use the default. The Parallel limits have a range of -90 degrees to 90 degrees, while the Meridian limits have a range of -360 degrees to 360 degrees. Basically, the Parallel limits are up and down, while the Meridian limits are side to side. This will depend on the axis selected, however.

Change the Parallel Start Angle to -60, the Parallel End Angle to 30, the Meridian Start Angle to 135 and the Meridian End Angle to 225, then select Preview.
Select the **Whole Sphere** icon from the window and click *OK*. All the limit options became unavailable.
Cylinder

Cylindrical surfaces are created by defining a point, a direction, a radius, and a length. The resulting object is called a Cylinder in the tree.

Select the Cylinder icon. It is located within the sub-toolbar of the Extrude icon. The Cylinder Surface Definition window appears.

- **Point**: Specifies the center point of the cylinder
- **Direction**: Specifies the direction the cylinder will extrude
- **Parameters**
 - **Radius**: Defines the radius of the cylinder
 - **Length 1**: Defines the length of the cylinder in the first direction
 - **Length 2**: Defines the length of the cylinder in the second direction
- **Mirrored Extent**: Changes Length 2 to be the same as Length 1
- **Reverse Direction**: Reverses the direction of the cylinder
Select the point and the line as shown below.

Change the *Radius* to 0.5, *Length 1* to 2.0, and *Length 2* to 0.0, then select the *Reverse Direction* button and click *OK*. A cylindrical surface is created.
Offset

Offset surfaces are created by offsetting an existing surface by a specified distance. Offsets are always extended normal to the original element. The resulting object is called an Offset.

Select the Offset icon from the Transform section. The Offset Surface Definition window appears.

- **Surface**: Specifies the surface to be offset
- **Offset**: Defines the distance of the offset

Parameters

- **Smoothing**: Creates deviation in the surface in order to assist in creating the offset
- **Maximum Deviation**: Defines the maximum amount the new surface can vary from the original
- **Reverse Direction**: Reverses the direction of the offset
- **Both sides**: Offsets the surface in both directions
- **Repeat object after OK**: Repeat the offset numerous times

Sub-Elements To Remove

Excludes problematic surfaces from the offset; they are added to a list under the Sub-Elements To Remove tab. Sub-elements can be added to the list or removed from it in order to determine which element is causing the offset to fail.
Select the surface as shown below, then enter 0.25 for the Offset and select Preview. An offset surface appears.

Select the Reverse Direction button and click OK. The offset surface appears above the original surface instead of below it.

Select the Offset icon again. The Offset Surface Definition window appears.

Select the surface shown below and enter 0.5 for the Offset, then select Preview. An offset surface appears below the original.
Turn on the **Both sides** option and select **OK**. Offset surfaces appear above and below the original surface.

*Note: Since the offset surface has a Repeat object after OK option in its definition window, you can use the **Object Repetition** icon to duplicate it, if desired.*

Save and close your document.
Review

For this review exercise, you will create a computer mouse. The intention of the exercise is to demonstrate the process of building a solid model by utilizing wireframe and surface geometry.

Note: Set your view mode to Shading With Edges Without Smooth Edges in order to obtain the same results shown in the following images.

Mouse Body

You will first create the mouse body, followed by the buttons and wheel.

Create a new 3D part.

Insert a geometrical set named Mouse Body, then select the Positioned Sketch icon and set the options as shown below.
Create the following sketch. All curves are tangent continuous. The geometrical constraints have been hidden for clarity.

Create an extremum point at each end of the sketch.
Create the following sketch on the zx plane. The bottom of the arcs are coincident to the extremum points. Be sure the taller end of this sketch is towards the wider end of the first sketch.

Extract each curve from the sketch.

Create a Point-Point line between the top points of the arcs.

Create a plane through the line. Use the line for the Rotation axis and the zx plane for the Reference. The plane should be normal to the reference.
Select the **Positioned Sketch** icon and set the options as shown below.
Create the following sketch. The top and bottom arcs in this sketch are coincident to the upper end points of the extracted arcs. All curves are tangent continuous. The geometrical constraints have been hidden for clarity.

Your model should look like this.
Create a spline between the two points at the top of each extracted arc. The spline will be tangent continuous to both arcs with a tension of 0.375 at the first point, and 0.75 at the second point.

Create two geodesic points on the new spline. The left point will have a ratio value of 0.2 from the left end of the spline, and the right point will have a ratio value of 0.3 from the right end of the spline.

Create a plane normal to the upper spline at both points.
Extrude the extracted spline two inches in both directions normal to the zx plane, then change the name of the extrude to CHANNEL SURFACE in the specification tree.

Project the last sketch you created to CHANNEL SURFACE along the normal direction of the first plane created.

Split CHANNEL SURFACE with the projected curve, keeping the inner portion. The split surface is shown below. Much of the geometry has been hidden. Feel free to hide your geometry as necessary to reduce clutter.
Fill your first sketch with a surface. This is the bottom profile of the mouse.

Create an intersection line between both planes and surfaces shown below. You should have four, separate intersection lines.
Create a 0.5 inch line normal to the intersection line indicated below that starts at the point and uses the plane as its support.

Create another line using the same geometry, but this time specify an Angle of -60. Ensure the line extends upward.

Repeat this process at the other point so that your model looks the same as below.
Create the two splines shown below. The tension at all three points for both splines should be 1.0. Use the normal lines you just created for the tangent direction of the first and third points, and the zx plane for the tangent direction of the second points. Ensure each spline lies on the appropriate support plane indicated below.
Next, create the spline shown below. This spline is tangent continuous to the spline above it and uses the angled line for the bottom point’s tangent direction. The tension is 1.0 at the top point, and 1.5 at the bottom point. Ensure the spline lies on the support plane indicated below.
Create the spline shown below using the same method as the previous spline. It is tangent continuous to the spline above it and uses the angled line for the bottom point’s tangent direction. The tension is 1.0 at the top point, and 1.25 at the bottom point. Ensure the spline lies on the support plane indicated below.
Mirror each of the last two splines created across the zx plane.

Join the three curves indicated below. Ensure they are tangent continuous.

Create another join for the three curves shown below. Ensure they are tangent continuous.
Create a boundary curve on the following edge.

Create another boundary curve on the edge shown below.
Create the same two boundaries on the opposite side of the surfaces. Only the boundary curves, the joined curves, the split surface, and the filled surface are shown below.

Split the upper spline at its normal planes, then hide all geometry except the boundary curves, the joined curves, and the new split.
Create a multi-section surface using the joined curves as sections, and the boundary curves and split curve as guides.

Next, create the two boundary curves shown below. You’ll have to show the two surfaces.
Create a multi-section surface using the geometry shown below. The splines and the extracted arc are the sections, and the boundaries are the guides. Ensure the first and last sections are tangent continues to the surface shown below.

Your model should look like this.
Create the boundaries shown below.

Create a multi-section surface using the geometry shown below. The splines and the extracted arc are the sections, and the boundaries are the guides. Ensure the first and last sections are tangent continues to the surface shown below.
Your model should look like this. Only the three multi-section surfaces are shown below.

Split the upper spline at the plane shown below, keeping the left side.
Create a fill surface from the curves shown below that passes through the split curve you just created. Ensure the fill surface is tangent continuous to the existing surfaces.

Your model should look like this. Only the multi-section surfaces and the fill surface are shown below.
Split the upper spline at the plane shown below, keeping the right side.

Create a fill surface from the curves shown below that passes through the split curve you just created. Ensure the fill surface is tangent continuous to the adjacent surfaces.
Your model should look like this. Only the multi-section and fill surfaces are shown.

Join all of the multi-section and fill surfaces together. Ensure that the normal arrow is pointing to the inside of the join. Do not forget to include the first fill surface you created for the bottom profile.

Create a 0.125 inch fillet along the bottom edge, then change the name of the fillet to OUTER SURFACE in the specification tree.

Thicken OUTER SURFACE 0.0625 inches to the inside, then hide the PartBody.
Buttons and Wheel

Insert a new geometrical set named **Buttons and Wheel**. For organizational purposes, the remaining reference geometry will be created in this new set.

Offset **OUTER SURFACE** inward 0.025 inches, then change the name of the new offset to **INNER SURFACE** in the specification tree and hide **OUTER SURFACE**.

Intersect **INNER SURFACE** with the zx plane.

Create a parallel curve from the intersection curve 0.0125 inches away on both sides. Ensure that **INNER SURFACE** is the support.

Intersect the yz plane with the intersection curve shown above, keeping only the top point.
Create a geodesic point on the intersection curve that is 9.75 inches away from the intersection point you just created. Ensure that the point is between the nose of the mouse body and the intersection point. The parallel curves have been hidden in the following image.

Create a plane normal to the intersection curve at the last point created, then change the name to CHANNEL PLANE in the specification tree.
Split the intersection curve with CHANNEL PLANE and CHANNEL SURFACE, then change the name of the split to CHANNEL CURVE in the specification tree. The split curve is shown below.

Create a midpoint on CHANNEL CURVE.

Create a plane that is tangent to INNER SURFACE at the midpoint on CHANNEL CURVE. The tangent plane, the midpoint, INNER SURFACE, and CHANNEL CURVE are shown below.
Make the *PartBody* the in-work object, then create the following positioned sketch on the new plane. Use the midpoint for the *Origin* and the y axis for the *Orientation*, then reverse the *V Direction*.

![Sketch Diagram]

Pad the sketch upward 0.0625 inches and use *Up to next* for the *Second Limit*, then hide the *PartBody*.

Activate the *Buttons and Wheel* geometrical set.

Split *INNER SURFACE* with both parallel curves, *CHANNEL PLANE*, and *CHANNEL SURFACE*, keeping the smaller, inner portion. The result is shown below.

![Result Diagram]

Create a boundary element on both edges indicated above.
Create a linear sweep with a zero degree angle that is 0.05 inches long on both boundary elements, using the zx plane as the reference surface. Ensure the direction of the sweep is outward. The split surface and both linear sweeps are shown below.

Join the split surface and the linear sweeps shown above, then change the name of the join to TOP CHANNEL in the specification tree. Hide TOP CHANNEL, then show INNER SURFACE and intersect it with CHANNEL PLANE.

Create a parallel curve from the intersection curve that is 0.0125 inches away on both sides. Ensure that INNER SURFACE is the support. The intersection curve, both parallel curves, and INNER SURFACE are shown below.
Split *INNER SURFACE* with the new parallel curves and *CHANNEL SURFACE*, keeping the top portion. The result is shown here.

Create a boundary curve on both edges indicated above.

Create a linear sweep with a zero degree angle that is 0.05 inches long on both boundary elements, using *CHANNEL PLANE* as the reference surface. Ensure the direction of the sweep is outward. The split surface and both linear sweeps are shown below.

Join the split surface and the linear sweeps shown above, then change the name of the join to *CROSS CHANNEL* in the specification tree and hide it.

Show *CHANNEL SURFACE*, then offset it downward 0.025 inches.
Show *INNER SURFACE*, then trim *CHANNEL SURFACE* and its offset with *INNER SURFACE*, keeping only the inside portion of *INNER SURFACE*. The result is shown below.

Split the newly created trim with *OUTER SURFACE*, keeping the inside portion, then change the name of the split to *SIDE CHANNEL* in the specification tree.

Show *TOP CHANNEL* and *CROSS CHANNEL* from the tree.
Trim **SIDE CHANNEL**, **TOP CHANNEL**, and **CROSS CHANNEL** together, then change the name of the trim to **COMBINED CHANNELS** in the specification tree.

Split the **PartBody** with **COMBINED CHANNELS**, keeping the inside portion of the solid. Ensure the *Extrapolation type* is set to *Tangent*. The **PartBody** is shown here.

Create a plane that is offset downward from the last plane by 0.15 inches. Be sure to activate the *Buttons and Wheel* geometrical set.

Project the pad’s sketch to the new plane.

Create an axis line through the minor axis of the projected, elongated hole.

Create a parallel curve to the inside of the projected, elongated hole that is 0.1 inches away. Use the offset plane as the support.
Split the projected, elongated hole with the axis line. The offset plane, the axis line, and the split projection are shown below.

Create a 360 degree groove with the split projection curve and the axis line.

Create a parallel curve to the inside of the split projection that is 0.025 inches away, then change the name of the parallel curve to WHEEL PROFILE in the specification tree. Use the offset plane as the support. The parallel curve is highlighted below.

Create a 360 degree shaft from WHEEL PROFILE and the axis line.
Use **WHEEL PROFILE** to create the following positioned sketch on the offset plane.

The offset plane is the *Planar support*, the midpoint previously created is the *Origin*, and the y axis is used for the *Orientation*. Reverse the directions as necessary. In the image below, the *PartBody* is cut at the sketch plane for clarity.

Note: Show the PartBody if the sketch is not visible.

Create a groove that is two degrees in both directions using the new sketch and the axis line.

Create a **360 degree circular pattern of the groove with 50 instances**. Use the axis line for the *Reference Direction*.
Fillet the edges indicated below with the given values.

Your finished model should look like this.