

A Building Block Approach for Crashworthiness Testing of Composites

Dalton Ostler Erin Blessing Mark Perl Dan Adams University of Utah

JAMS 2019 Technical Review May 22-23, 2019

FAA Sponsored Project Information

- Principal Investigators:
 Dr. Dan Adams
- Graduate Student Researchers: Dalton Ostler Erin Blessing Mark Perl
- FAA Technical Monitor:
 Allan Abramowitz
- Collaborators:

Boeing: Mostafa Rassaian, Kevin Davis Engenuity, LTD: Graham Barnes Hexcel: Audrey Medford

Current CMH-17 Challenge Problem: Composite Cargo Floor Stanchion

- Central assembly consisting of four primary members
 - Stanchion #3 (primary crush member)
 - Floor beam
 - Frame
 - Skin
- Initial sizing based on 6g vertical loading condition (Altair Engineering)
 - Cross section geometry
 - Laminate ply orientations
 - Laminate thickness

Primary Crush Member: C-Channel Stanchion

Initial Testing Activities: Laminate Design for Crashworthiness

- Flat-coupon crush testing
- Tailor laminate to achieve stable crush, high energy absorption
- Mini round-robin to evaluate proposed crush test fixtures and draft standard

Flat Coupon Crush Testing: Unsupported and Pin-Supported

6

Previous Research Results: Crush Modes Affect Energy Absorption

Fragmentation

- Short axial cracks
- Shear failure from compressive stresses
- Extensive fiber fracture

Brittle Fracture

- Intermediate axial cracks
- Combines characteristics from other failure modes

Fiber Splaying

- Long axial cracks
- Frond formation
- Delamination dominated

7

Flat Coupon Crush Test Results: Hard Laminates

All laminates produced good energy absorption

- 50% 0°, 25% ±45°, 25% 90°
- No significant difference due to fabric layers in Hybrid laminates
- Minimal variation between laminates investigated
- Two laminates selected for further investigation

C-Channel Stanchion Crush Testing: Specimen Manufacturing

- IM7/8552 carbon/epoxy unitape prepreg, 190 gsm
- [90₂/0₂/±45/0₂]_s and [90/+45/0₂/90/-45/0₂]_s "Hard" laminates
- 0.25 in. corner radius, 0.114 in. average thickness
- Layup and cure in accordance with NCAMP specifications
- ~1.5% thickness difference between flat and corner sections (corner thickness slightly lower)

Validation of Numerical Crush Modeling Methods: C-Channel Crush Testing

- University of Utah instrumented drop-weight impact tower
- [90₂/0₂/±45/0₂]_s and [90/+45/0₂/90/-45/0₂]_s
 "hard" laminates
- Three crush velocities
 - 300 in/sec (~10 ft. drop height)
 - 150 in/sec (~2.5 ft. drop height)
 - Quasi-static
- Results to be used to assess numerical analysis capabilities
- High-speed video of crush process

C-Channel Crush Testing: High-Speed Video of Crush Process

Current Focus:

Crush Testing of Single Stanchion Assembly

Additional considerations include:

- Bolted attachments (top and bottom)
 - Design of bolted connections
 - Design of laminate in bolted regions
- Crush initiator
 - Internal ply-drops
 - Reduced cross-sectional area
 - Produced failure at prescribed location, load level, and failure mode
- Subsequent stable crush of stanchion

Design of Bolted Attachments: Dynamic Bearing Testing

- Stanchion bolted to the upper floor and lower frame
- Bearing failure possible at bolted connections
- Investigate dynamic bearing strength and bearing crush behavior
 - Single fastener tests to establish dynamic bearing strength
 - Bolted C-channel tests to establish joint load capacity

Dynamic Bearing Testing: Single Fastener/Single Shear Testing

- Use of Univ. of Utah flat coupon crush test fixture
- 0.25 in. diameter steel fastener
- Test specimen bolted to steel block
- Compression loaded
 - Quasi-static: 0.4 in/min
 - Dynamic: 144 in/sec (drop-weight impact)

Dynamic Bearing Testing: Single Fastener/Single Shear Testing

- Failure of single fastener
 - Quasi-static: 3.5 kip
 - Dynamic: 4.1 kip
- Failure by fastener tearing through the laminate
- No visible degradation to the fastener
- Stanchion will consist of six fasteners. Therefore, the desired dynamic peak load would be 24.3 kip

Dynamic Bearing Testing: Bolted C-Channel Test

- Single-shear testing of bolted joint design
- Six 0.25 in. diameter bolts, two rows three columns
- Top of channel potted to prevent end crushing

ds

Establishment of dynamic and quasi-static joint performance

- Initial failure load
- Failure mode and location
- Testing of two selected "hard" laminates
- Of use for assessing numerical modeling methods

Bolted Joint Dynamic Testing: Summary of Results To Date

- Similar failure mode in all tests
- Similar max. bearing loads for two hard laminates tested quasi-statically and dynamically

Bolted Joint Dynamic Testing: Summary of Results To Date

- Bearing design with 3 rows and 2 columns
- Similar failure as previous bolted design
- Slight increase in peak failure loading
- Similar failure modes in all tests

Bolted Joint Dynamic Testing: Summary of Results

- By changing the bearing configuration
 - Quasi-static peak increased by 10.5%
 - Dynamic peak increased by 5%
 - Below the theoretical 6 bearings value by 4.9 kip
 - Not a significant peak load increase
 - Proposing a bearing parameter change to increase the dynamic peak value
- Again, of use in assessing modeling capabilities

Current Focus: Bolted Joint Design and Validation

- Investigate use of quasi-isotropic laminate in bolted region of stanchion
- Additional ±45° layers for increased bearing strength
- Desire to continue all 0° layers throughout stanchion into bolted region to retain compression strength
- Options under investigation:
 - Replace 90° plies with ±45° plies
 - Additional ±45° plies added to laminate

	Joint (add.	45s)	
45	45	45	45
-45	-45	-45	-45
45	45	45	45
0	0	0	0
0	0	0	0
90	90	90	90
-45	-45	-45	-45
0	0	0	0
0	0	0	0
0	0	0	0
-45	-45	-45	-45
90	90	90	90
0	0	0	0
0	0	0	0
45	45	45	45
-45	-45	-45	-45
45	45	45	45
1			
	Joint (Qua	si)	
45	Joint (Qua 45	si) 45	45
45 90	Joint (Qua 45 90	si) 45 90	45 90
45 90 0	Joint (Qua 45 90 0	si) 45 90 0	45 90 0
45 90 0	Joint (Qua 45 90 0 0	si) 45 90 0 0	45 90 0
45 90 0 0	Joint (Qua 45 90 0 0 90	si) 45 90 0 0 90	45 90 0 0 90
45 90 0 90 90 -45	Joint (Qua 45 90 0 0 90 -45	si) 45 90 0 0 90 -45	45 90 0 0 90 -45
45 90 0 90 90 -45	Joint (Qua 45 90 0 0 90 -45 45	si) 45 90 0 0 90 -45 45	45 90 0 90 -45 45
45 90 0 90 -45 45	Joint (Qua 45 90 0 0 90 -45 45	si) 45 90 0 0 90 -45 45	45 90 0 0 90 -45 45
45 90 0 90 -45 45 45 -45	Joint (Qua 45 90 0 0 90 -45 45 -45	si) 45 90 0 0 90 -45 45 -45	45 90 0 90 -45 45 -45
45 90 0 0 90 -45 45 -45 -45 -45	Joint (Qua 45 90 0 0 90 -45 45 -45 -45	si) 45 90 0 0 90 -45 45 -45 -45 -45	45 90 0 90 -45 45 -45 -45
45 90 0 90 -45 45 -45 -45 -45 -45	Joint (Qua 45 90 0 0 90 -45 45 -45 -45 -45 45	si) 45 90 0 0 90 -45 45 -45 -45 -45 -45	45 90 0 90 -45 45 -45 -45 -45 45
45 90 0 90 -45 45 -45 -45 45 -45	Joint (Qua 45 90 0 0 90 -45 45 -45 -45 45 -45	si) 45 90 0 0 -45 45 -45 -45 45 -45	45 90 0 90 -45 45 -45 -45 45 -45 45 -45
45 90 0 90 -45 45 -45 -45 45 -45 45 90	Joint (Qua 45 90 0 0 90 -45 45 -45 45 -45 45 90	si) 45 90 0 90 -45 45 -45 -45 45 45 90	45 90 0 90 -45 45 -45 -45 45 -45 90
45 90 0 90 -45 45 -45 -45 45 -45 45 -45 90 0	Joint (Qua 45 90 0 0 90 -45 45 -45 -45 45 -45 90 0	si) 45 90 0 90 -45 45 -45 -45 45 45 -45 90 0	45 90 0 90 -45 45 -45 -45 45 -45 90 0
45 90 0 90 -45 45 -45 -45 45 -45 90 0 0 0	Joint (Qua 45 90 0 0 90 -45 45 -45 45 -45 45 -45 90 0 0 0	si) 45 90 0 90 -45 45 -45 -45 45 -45 90 0 0 0	45 90 0 90 -45 45 -45 45 -45 90 0 0
45 90 0 90 -45 45 -45 -45 45 -45 90 0 0 0 0 90	Joint (Qua 45 90 0 0 90 -45 45 -45 45 -45 90 0 0 0 90	si) 45 90 0 90 -45 45 -45 45 -45 45 -45 90 0 0 90	45 90 0 90 -45 45 -45 45 -45 90 0 0 0 90

Current Focus:

Crush Testing of Single Stanchion Assembly

Additional considerations include:

- Bolted attachments (top and bottom)
 - Design of bolted connection
 - Design of laminate in bolted region
- Crush initiator
 - Internal ply-drops
 - Reduced cross-sectional area
 - Produced failure at prescribed location, load level, and failure mode
- Subsequent stable crush of stanchion

C-Channel Stanchion Crush Initiator: Use of Laminate Ply-Drops

- Ply-drop regions in stanchion laminate
- Produces laminate failure under dynamic compression loading
- Serves as a crush front for subsequent stanchion crushing
- [90₂/0₂/±45/0₂]_s laminate

C-Channel Stanchion: Ply-Drop Crush Initiator Design

- Investigated dropping outermost 4, 6, and 8 plies of 16 ply "hard" laminate
- Multiple ply drop configurations
 - Different thicknesses at either ends
 - Same thicknesses at both ends and a ply-drop region in the center
 - Full thickness change (90° step) vs. staggered ply drops
 - Variable length ply drop regions

Ply-Drop Crush Testing: 90° Ply-Drop and Tapering

- 90° ply-drop used at desired failure location
- Tapered thickness region for laminate build-up
 - 1/16 in. spacing between ply drops in taper region
- Of use for predicting the location, mode, and load level at failure

90°

0°

Example Ply-Drop Crush Test: Double-Side 90° Ply-Drop

Current Focus:

Crush Testing of Single Stanchion Assembly

Additional considerations include:

- Bolted attachments (top and bottom)
 - Design of bolted connection
 - Design of laminate in bolted region
- Crush initiator
 - Internal ply-drops
 - Reduced cross-sectional area
 - Produced failure at prescribed location, load level, and failure mode

Subsequent stable crush of stanchion

Pre-Stanchion Assembly Testing: Bolted Joint with Ply-Drop

- Failure at prescribed location.
- Subsequent stable crushing.
- Minimal deflection of bolted region.

	Avg. Peak Failure
Bearing (dynamic)	20.0 kip
Ply-drop (8 plies)	15.4 kip

Upcoming Testing:

C-Channel with Reduced Cross-Section

- Configuration of bearing stacking sequence to be quasi-isotropic or addition of ±45's
- Use of ply-drop configuration selected from previous testing
- Reduction in flange height in region of crush initiation
- Tapered flange height to promote stable crush behavior
- Designed to fail at ply drop region and display stable crush in region with increasing cross sectional area
- Test results to be used to assess numerical modeling capabilities

BENEFITS TO AVIATION

- Building block approach for developing composite crush structures for crashworthiness
- Coupon-level test methods for use in initial crashworthiness assessment of candidate composite materials and laminates
- Documentation of building block approach for crashworthiness design and experimental validation in CMH-17
- Dissemination of research results through FAA technical reports and conference/journal publications

Questions?

Don't forget to fill out the feedback form in your packet or online at www.surveymonkey.com/r/jamsfeedback

Thank you.

CENTER OF EXCELLENCE

