An Engineering Approach for Damage Growth Analysis of Sandwich Structures Subjected to Combined Compression and Pressure Loading

Waruna Seneviratne, John Tomblin, Shenal Perera Pirashandan Varatharaj, Vishnu Saseendran

JAMS 2019 Technical Review
May 22-23, 2019
Research Team

• National Institute for Aviation Research
 • PI: Waruna Seneviratne, PhD
 • PI: John Tomblin, PhD
 • Shenal Perera
 • Pirashandhan Varatharaj
 • Vishnu Saseendran, PhD

• FAA
 • Zhi-Ming Chen, PhD (Current TM)
 • Larry Ilcewicz, PhD

KART
Kansas Aviation Research & Technology Growth Initiative
An Engineering Approach for Damage Growth Analysis of Sandwich Structures Subjected to Combined Compression and Pressure Loading

• Motivation and Key Issues
 • Thermo-mechanical loads during ground-air-ground (GAG) cycling result in localized mode I stresses that cause further delamination/disbond/core fracture growth.

• Objective
 • Develop an engineering approach for damage tolerance analysis of sandwich structures subjected to combined mechanical and pressure loads.

• Approach [Shown in the next slide]
 • Engineering Approach [Discussed in next slide]
 • SCB Testing (Obtain G_{IC} fracture toughness values)
 • FEA Analysis on SCB Test and Validate modeling techniques
 • Develop a test method for GAG (Edgewise Compression) specimens.
 • Develop High Fidelity FEA models for GAG Specimens
 • Blind Predictions Comparing GAG FEA Data with Test Data
Accomplishments

★ Mode I (G1c) Fracture Toughness of Composite Sandwich Structures for Use in Damage Tolerance Design and Analysis
 • Volume 1: Static Testing Including Effects of Fluid Ingression (DOT/FAA/TC-16/23)
 • Volume 2: Fatigue Testing Including Effects of Fluid Ingression (DOT/FAA/TC-17/06)
 • Volume 3: Damage Growth in Sandwich Structures (DOT/FAA/TC-17/7)
 • Volume 4: Investigation of Face/Core Interface Debonding in Aircraft Sandwich Composites Subjected to Combined Pressure and In-plane Loading: An Engineering Approach (On Going)

★ Other Contributions to ASTM D30 & CMH-17
 • CMH-17 Rev. H chapters/sections (completed review)
 • SCB Fracture test standard development ASTM D30

★ Other Publications
 • Damage Initiation and Fracture Analysis of Honeycomb Core Single Cantilever Beam (SCB) Sandwich Specimen (submitted to JSSM)
 • Damage Growth Analysis of Sandwich Structures Subjected to Combined Compression and Pressure Loading (Accepted for ASC 34th Technical Conference)
Analysis – Engineering Approach

• SCB ➔ GAG

SCB FE Model

SCB Experimental Setup

GAG Experimental Setup

GAG Loading Cycles

3-Ply Flat
Outline

• SCB Test Configuration
 • Materials & Test Setup (translatable base)
• Foundation Model Approach & Validation
 • Comparison of Analytical, FEA & Exp. Results
• Finite Element Model Description of SCB Specimens
 • Cohesive-based modeling approach
• GAG - Edgewise Compression (EWC) Test Configuration w/t Pressure Loading
 • Test Setup & Loading
 • Static and fatigue testing
• Finite Element Model description for GAG Specimens
 • Modeling approach
 • Comparison to test data
• Summary & Future Work
SCB Test Configuration

- **Materials**
 - Facesheet: T650 – 5320 PW
 - Core: Hexcel HRH-10
 - Adhesive: FM300 - 2
- **Prescribed Crack**
 - Teflon® inserts
 - $a_o = 50.8$ mm
- **Dimensions**
 - $L = 254$ mm
 - $b=50.8$ mm
- **Piano Hinge**
 - Bonded using EA9394

Test Matrix

<table>
<thead>
<tr>
<th>Case</th>
<th>Facesheet Material</th>
<th>Plies</th>
<th>Cell Size (mm)</th>
<th>Core Density (kg/m³)</th>
<th>Core Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>48.0</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
</tr>
<tr>
<td>3</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>9.5</td>
<td>48.0</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>T650/5320-PW</td>
<td>8</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Outline – Moving Forward

• SCB Test Configuration
 • Materials & Test Setup (translatable base)

• Foundation Model Approach & Validation
 • Comparison of Foundation, FE & Exp. Results

• Finite Element Model Description of SCB Specimens
 • Cohesive-based modeling approach

• GAG - Edgewise Compression (EWC) Test Configuration w/t Pressure Loading
 • Test Setup & Loading
 • Static and fatigue testing

• Finite Element Model description of GAG Specimens
 • Modeling approach
 • Comparison to test data

• Summary & Future Work
Foundation Model Approach & Validation

Python Based Suite

SCB Fracture Tests
Compliance, \(C = \delta/P \)
crack length, \(a \)

SCB FE-Model
Compliance & energy-release rate validation

Foundation model
Compliance & energy-release rate validation

Winkler-based foundation model

Closed – Form Expressions

Compliance vs. crack length

(a)

(b)

(c)

(d)

Python Suite

Core properties:
- Gibson-Ashby model

Gibson model

Energy release rate validation

Gibson-Ashby model
Foundation Model Approach & Validation

Python Based Suite

Foundation model: Gibson-Ashby model
Initiation fracture toughness: Modified Beam Theory (MBT)

SCB Fracture Tests
Compliance, $C = \frac{\delta}{P}$
Crack length, a
Initiation fracture toughness: Modified Beam Theory (MBT)

SCB FE-Model
Compliance & energy-release rate validation

Energy-release rate vs. crack length

(a) (b) (c) (d)

Python Suite

Closed – Form Expressions

Closed – Form Expressions

Winkler-based foundation model

Core properties: Gibson-Ashby model

Compliance, $C = \frac{\delta}{P}$
Crack length, a

Normalized energy-release rate vs.
Normalized crack length, a / h_y
Outline – Moving Forward

• SCB Test Configuration
 • Materials & Test Setup (translatable base)
• Foundation Model Approach & Validation
 • Comparison of Foundation, FE & Exp. Results
• Finite Element Model Description of SCB Specimens
 • Cohesive-based Modeling approach
 • Comparison of Foundation, FE & Exp. Results
• GAG - Edgewise Compression (EWC) Test Configuration w/t Pressure Loading
 • Test Setup & Loading
 • Static and fatigue testing
• Finite Element Model description of GAG Specimens
 • Modeling approach
 • Comparison to test data
• Summary & Future Work
FEA – SCB Model Description and Approach

- **Cohesive zone** to model the damage in the core.

- Four configurations considered:
 - Core density (48.96 kg/m³) & Thickness (12.7, 25.4 mm)
 - Cell size (3.2, 9.5 mm)
 - Face-sheet thicknesses (4, 8-ply)

- Failure modeled in core using cohesive elements (located beneath meniscus layer)

Boundary Conditions and Loading Introduction Point

Damage in the core

Core - Homogenous medium (Gibson-Ashby Approach)

G1c

\[

t_0 = \frac{4}{27} \sqrt{\frac{12E_G u}{h_{\text{eff}}}}
\]

\[
K = \frac{E_G}{h_{\text{eff}}}
\]

Comparison of FE & Exp. Results

Critical Load and Displacement Comparison

<table>
<thead>
<tr>
<th>Case</th>
<th>Facesheet Material</th>
<th>Plies</th>
<th>Cell Size (mm)</th>
<th>Core Density (kg/m³)</th>
<th>Core Thickness (mm)</th>
<th>Exp. Load (N)</th>
<th>Predicted Crack Initiation Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>48.0</td>
<td>25.4</td>
<td>97.7</td>
<td>FEA Load (N) 96.0, Error (%) -1.8</td>
</tr>
<tr>
<td>2</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
<td>120.7</td>
<td>FEA Load (N) 106.8, Error (%) -1.5</td>
</tr>
<tr>
<td>3</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>9.5</td>
<td>48.0</td>
<td>12.7</td>
<td>77.2</td>
<td>FEA Load (N) 68.5, Error (%) -11.3</td>
</tr>
<tr>
<td>4</td>
<td>T650/5320-PW</td>
<td>8</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
<td>258.2</td>
<td>FEA Load (N) 281.3, Error (%) 8.9</td>
</tr>
</tbody>
</table>
Outline – Moving Forward

• SCB Test Configuration
 • Materials & Test Setup (translatable base)
• Foundation Model Approach & Validation
 • Comparison of Foundation, FE & Exp. Results
• Finite Element Model Description of SCB Specimens
 • Cohesive-base Modeling approach
• GAG - Edgewise Compression (EWC) Test Configuration
 • Test Setup & Loading
 • Static and fatigue testing
• Finite Element Model description of GAG Specimens
 • Modeling approach
 • Comparison to test data
• Summary & Future Work
GAG - Edgewise Compression (EWC) Test Setup

- DIC speckle pattern on front and back sides
- 3D printed (Ultem) pressure port
- Hysol EA9309.3NA Epoxy

Damage Growth monitoring
- Digital Image Correlation (DIC)
- Distributed fiber optic strain sensors

Pressure Simulation

Ability to accommodate various specimen sizes
• 10x12 (shown) and 18x20 (test size)
GAG (EWC) Quasi Static Testing w/t Pressure Loading

- Test rig developed for combined compression (in-plane) & pressure loading
- Face sheet & core parameters altered
- Ability to accommodate various specimen sizes

Loading Condition

Test Matrix

<table>
<thead>
<tr>
<th>Case</th>
<th>Facesheet Material</th>
<th>Plies</th>
<th>Cell Size (mm)</th>
<th>Core Density (kg/m²)</th>
<th>Core Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>48.0</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
</tr>
<tr>
<td>3</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>9.5</td>
<td>48.0</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>T650/5320-PW</td>
<td>8</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
</tr>
</tbody>
</table>
GAG - Edgewise Compression (EWC) Specimen Configuration

Pressure Port: 3D Printed

Honeycomb Core: HRH-10

Film Adhesive: FM300-2

Disbond: Release Film

Facesheet:

FM300-2 5320 PW

Disbond

HRH-10 Core
Outline – Moving Forward

• SCB Test Configuration
 • Materials & Test Setup (translatable base)
• Foundation Model Approach & Validation
 • Comparison of Foundation, FE & Exp. Results
• Finite Element Model Description of SCB Specimens
 • Cohesive-based modeling approach
• GAG - Edgewise Compression (EWC) Test Configuration
 • Test Setup & Loading
 • Static and fatigue testing

• Finite Element Model Description for GAG Specimens
 • Modeling approach
 • Comparison to test data
• Summary & Future Work
FEA – GAG (EWC) FE-Model Description and Approach

- Cohesive based FE analysis – combined static & pressure loading.
- Cohesive parameters from SCB analysis.
 - G_{1c}, Penalty parameters (stiffness, K_n, & strength, τ_n)
- Damage modeled in the core (similar to SCB specimens)
FEA – GAG (Model Description: Loading and Boundary Conditions)

- Displacement applied at top surface
- Constant pressure (13.1 Psi) applied
- BCs applied on specimen edges to closely replicate the test setup

Test Setup

Boundary Conditions and Load Introduction

Pressure thought the pressure port.
GAG Test Data Comparison Summary

<table>
<thead>
<tr>
<th>Case</th>
<th>Facesheet Material</th>
<th>Plies</th>
<th>Cell Size (mm)</th>
<th>Core Density (kg/m³)</th>
<th>Core Thickness (mm)</th>
<th>Exp. Load (kN)</th>
<th>FEA Load (kN)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>48.0</td>
<td>25.4</td>
<td>81.8</td>
<td>131.6</td>
<td>60.9</td>
</tr>
<tr>
<td>2</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
<td>99.3</td>
<td>118</td>
<td>18.6</td>
</tr>
<tr>
<td>3</td>
<td>T650/5320-PW</td>
<td>4</td>
<td>9.5</td>
<td>48.0</td>
<td>12.7</td>
<td>70.9</td>
<td>73.7</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>T650/5320-PW</td>
<td>8</td>
<td>3.2</td>
<td>96.0</td>
<td>12.7</td>
<td>215.7</td>
<td>248.9</td>
<td>15.4</td>
</tr>
</tbody>
</table>
GAG Test Data Comparison Summary

Load Vs Displacement Out of plane Displacement

Load Vs Displacement Out of plane Displacement
GAG Test Data Comparison Summary

- Out-of-plane displacement plots (*disp. inches, force in lbf*)
- Crack initiation monitored by deletion of Cohesive elements

8-ply facesheet; 0.5” core
GAG Test Data Comparison Summary

• Out-of-plane displacement plots (*disp. inches, force in lbf*)
• Crack initiation monitored by deletion of Cohesive elements
Outline – Moving Forward

• SCB Test Configuration
 • Materials & Test Setup (translatable base)
• Foundation Model Approach & Validation
 • Comparison of Foundation, FE & Exp. Results
• Finite Element Model Description of SCB Specimens
 • Cohesive-base Modeling approach
• GAG - Edgewise Compression (EWC) Test Configuration
 • Test Setup & Loading
 • Static and fatigue testing
• Finite Element Model description of GAG Specimens
 • Modeling approach
 • Comparison to test data

• Summary & Future Work
Summary & Future Work

• An engineering approach to study debonding presented
 • SCB fracture tests on typical honeycomb core sandwich specimens validated & benchmarked against analytical expressions
 • A test setup capable of applying combined pressure and in-plane loading developed (GAG-cycle)
 • A cohesive zone based FE-model of GAG tests developed
 • FE-model over-predicted for the thicker core; thinner core prediction within the range 3-18%

• Future work
 • The engineering approach can be expanded to study configurations w/t attachments/connections
Thank You

References

2. Tomblin JS, Seneviratne W, Denning S. Fatigue Damage Growth Rate of Sandwich Structures DOT/FAA/TC-17/6. New Jersey, 2018

T650-5320 PW / Nomex® HRH-10 core: Energy-release rate Evaluation & Comparison

• A brief introduction to the CSDE method:
 • Solely based on relative crack flank displacements
 • Utilizes closed-form expressions for both ERR and mode-mixity proposed by Suo & Hutchinson (1990)
 • The numerical error zone close to the near-tip plastic zone avoided by linear extrapolation
 • Can be applied in 2-D and 3-D specimens (SCB studied here using a 2D model)

\[
G = \frac{\pi}{8H_{11} r} \left(\frac{H_{11}}{H_{22}} \delta_y^2 + \delta_x^2 \right)
\]

\[
\psi = \tan^{-1} \left(\frac{H_{11} \delta_x}{H_{22} \delta_y} \right) - \varepsilon \ln \left(\frac{r}{h} \right) + \tan^{-1}(2\varepsilon)
\]

\[
\varepsilon = \frac{1}{2\pi} \ln \left(\frac{1 - \beta}{1 + \beta} \right)
\]

\[
\beta = \frac{S_{12} + \sqrt{S_{11} S_{22}}}{\sqrt{H_{11} H_{22}}}
\]