

Environmental Durability Test Method Development for Composite Bonded Joints

Zachary Sievert
Heather McCartin
Dan Adams
University of Utah

JAMS 2019 Technical Review May 22-23, 2019

FAA Sponsored Project Information

Principal Investigators:

Dr. Dan Adams

Graduate Student Researchers:

Heather McCartin Zachary Sievert

FAA Technical Monitor:

Ahmet Oztekin

Collaborators:

Boeing, Hexcel, 3M Corp, AFRL ASTM Committees D30 and D14 Composite Materials Handbook, CMH-17

Outline

- Updates:
 - Revision of metal wedge test method (ASTM D3762)
 - ASTM Adhesive Bonding Task Group D14.80.01
 - New adhesives testing content in CMH-17 Handbook
- Primary focus: Environmental durability test methods for composite bonded joints
 - Composite wedge test development
 - "Smart Wedge" traveling wedge test concept

Background:

Revision of the Metal Wedge Test

ASTM D3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Bonded aluminum double cantilever beam loaded by forcing a wedge between adherends
- Assembly placed into test environment (ex: 50° C, 95% RH)
- Crack growth ∆a due to environmental exposure measured following prescribed time
- Able to assess bond quality quickly by causing rapid hydration of oxide layers

Revision of ASTM D3762:

Summary of Revised Test Method

- Completed extensive revision of standard
- Two ASTM balloting cycles completed to date; addressing remaining concerns
- Broadening of scope to include metals other than aluminum as adherends
- Provided additional guidance in specimen manufacturing, additional details in test procedure
- Addition of requirement to estimate % cohesion failure in region of environmental crack growth

Percent cohesion failure:

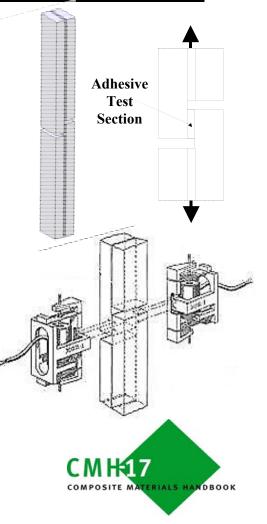
$$\left[1-\left(\frac{A_{nc1}+A_{nc2}}{A_{ext}}\right)\right] \times 100\%$$

Collaborations with ASTM D14 (Adhesives): Formation of D14.80.01 Task Group

- Includes ASTM D14 (Adhesives) and ASTM D30 (Composites) committee members
- Meets concurrently with ASTM D30 to allow for greater participation
- Balloting through D14.80 subcommittee and D14 main committee
- Technical contact(s) from D30 to attend D14 meetings and provide TG status reports

Current Activities

- ASTM D3762 Metal Wedge Test revision
- ASTM D5656 Thick Adherend Lap Shear Test revision
- Bonded composite fracture mechanics test evaluation
- Composite Wedge Test development/standardization



Current Activities: ASTM D14.80.01 Task Group

Improvements to ASTM D5656-Thick Adherend Lap Shear Test

- Best practices for shear strain measurement
 - Identify suitable replacement(s) for obsolete
 KGR-1 extensometer
 - Optimal attachment points for shear strain measurement
- Initial round-robin investigation completed
- Follow-on round-robin investigation planned
 - AFRL specimens, single film adhesive
 - Evaluation of candidate shear strain measurement methods
- Update ASTM D5656 Standard
- In conjunction with CMH-17

Update of Composite Materials Handbook, CMH-17: Inclusion of Adhesive Test Methods

- Update of (limited) existing content
- Tests used in NIAR Adhesive Characterization Project
 - Thin Metal Adherend Lap Shear
 - Thick Metal Adherend Lap Shear
 - Composite Adherend Lap Shear
 - Floating Roller Peel

- Mode I Fracture Toughness
- Mode II Fracture Toughness
- Metal Adherend Tension
- Fluid Sensitivity
- Other adhesion characterization tests
- Bonded joint characterization tests

Overview:

Development of a Composite Wedge Test:

Additional Complexities:

- Variable flexural rigidity (E_f I) of composite adherends
- Environmental crack growth dependent on adherend flexural rigidity
 - Flexural rigidity must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends
 or...
 - Must use another quantity to assess durability

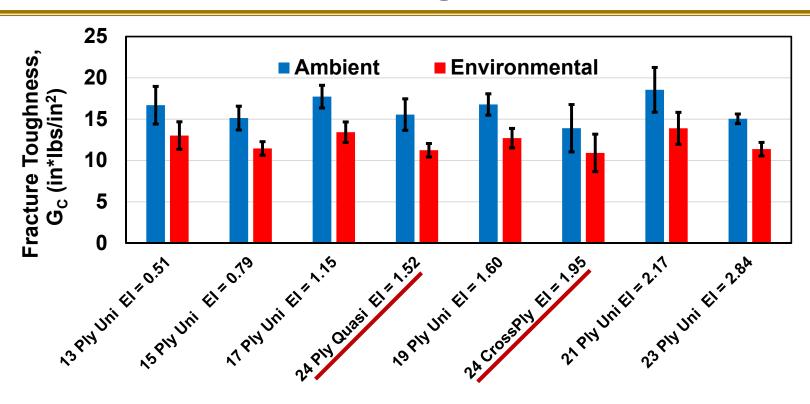
Use of Fracture Toughness, G_c **To Assess Environmental Durability**

 G_{c} written in terms of flexural modulus, E_{f}

$$G_c = \frac{3 \, E_f \, t^2 \, h^3}{16 \, a^4}$$

- Requires a measurement of flexural modulus E_f
 - Can obtain from three-point flexure testing of adherend material
- Requires a measurement of adherend thickness, h
- Requires a correction factor for crack tip rotation

$$G_c = \frac{3E_f t^2 h^3}{16 a^4} \left[\frac{1}{(1+0.64 \frac{h}{a})^4} \right]$$


 G_c = fracture toughness E_f = flexural modulus

t = wedge thickness

h = adherend thickness

a = crack length

Wedge Testing of Multidirectional Laminates: Fracture Toughness Values

- Apparent facture toughness values remain relatively constant
- Provides estimate of fracture toughness at ambient conditions
- G_c values from quasi-isotropic and crossply laminates consistent with results from unidrectional laminates

Use of In-Situ Flexural Rigidity From Composite Wedge Test Specimen

 Measure E_f I directly using post-tested wedge specimen under DCB type loading:

$$\mathbf{E_f} \ \mathbf{I} = \frac{2a^3}{3} \left(\frac{\Delta P}{\Delta \delta} \right)$$

- Correction for crack tip rotation "built-in" to E_f I measurement
- Express fracture toughness in terms of E_f !:

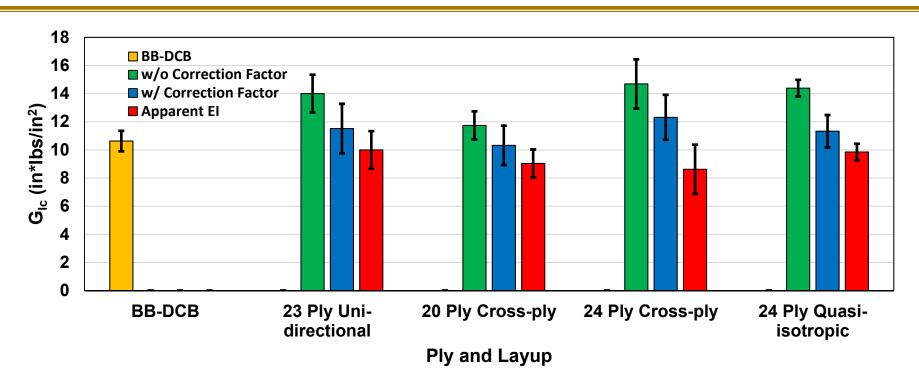
$$G_c = \frac{9(E_f I) t^2}{4b a^4}$$

 G_c = fracture toughness

 E_f = flexural modulus

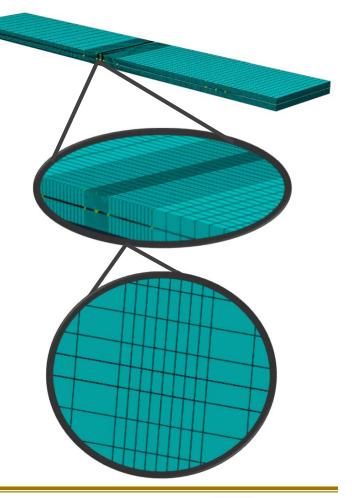
I = area moment of inertia

t = wedge thickness

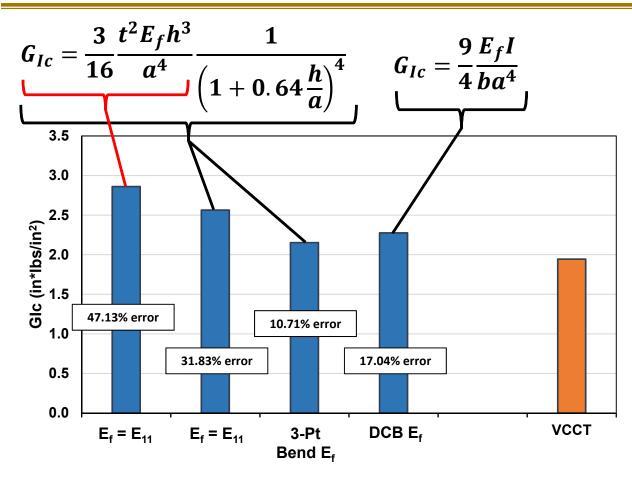

b = specimen width

a = crack length

Comparison of Wedge Test and DCB Test Results: 50°C, 95% RH, 5 days


General agreement with both closed-form correction factor and measured E_f I approaches

Evaluation of G_c Calculation Methods: Numerical Simulations


- ABAQUS 3D finite element analysis
- Crack modeled at center of adhesive bondline (cohesion failure)
- Highly refined mesh in vicinity of crack tip
- Displacement loading to simulate wedge inserted in bondline
- Investigation of candidate methods for G_c calculation using results from simulated composite wedge test
- Use of VCCT to calculate reference G_c value

Evaluation of G_c Calculation Methods: Finite Element Results

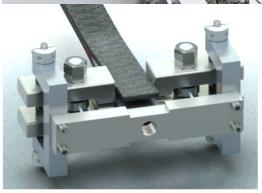
Flexural modulus values:

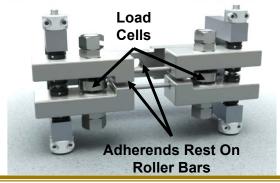
- Tensile modulus
- FE simulated flexure test
- FE simulated DCB

G_{lc} calculated from beam theory:

- w/o correction factor
- w/ correction factor
- Apparent E_fI

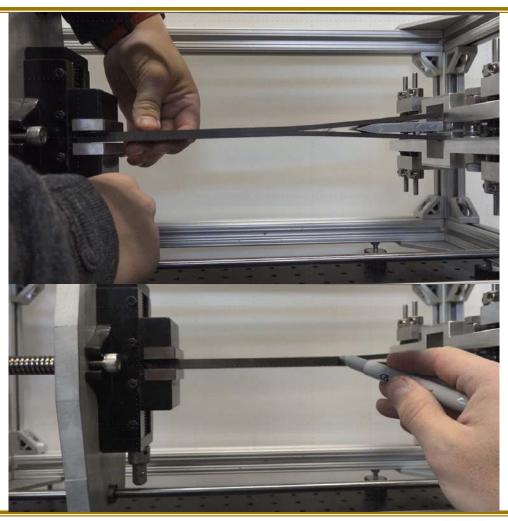
Compared to energy release rate at crack tip as analyzed by finite element analysis of wedge test





What if the Wedge Could Measure Opening Force During Wedge Testing?

- Continuous opening displacement reaction force measurement as wedge driven through specimen
 - Two compression load cells to measure opening force
 - Adherends supported by roller bars
- Monitor for drop in measured force
 - Caused by unstable crack growth
 - Reduced fracture toughness
- Similar to traveling wedge test, but with reduced damage to new surface area
- Retain wedge in specimen for environmental durability test



Smart Wedge Testing: Operation & Procedure

"Smart Wedge" Concept:

Fracture Toughness Measurement

• G_c written in terms of E_f I:
$$G_c = \frac{9(E_f I) t^2}{4 b a^4}$$

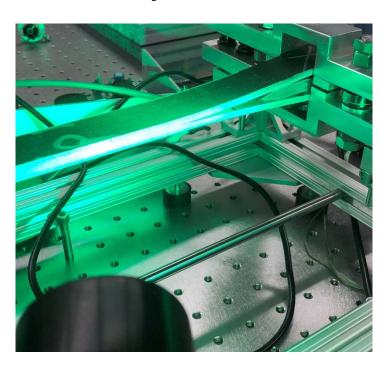

• From beam theory, solving for crack length, $oldsymbol{a}$

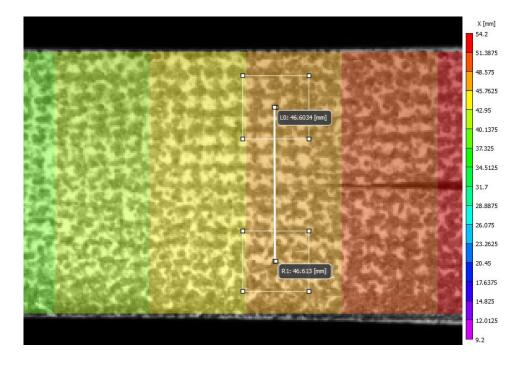
$$= \sqrt{\frac{3(E_f I) t}{P}}$$

$$G_c = \left[\frac{9 P^4 t^2}{4 b^3 (E_f I)}\right]^{1/3}$$

- Can calculate G_c knowing:
 - P (measured force)
 - t (opening displacement)
 - Flexural rigidity, E_f I (measured)

Do not need crack length measurement!

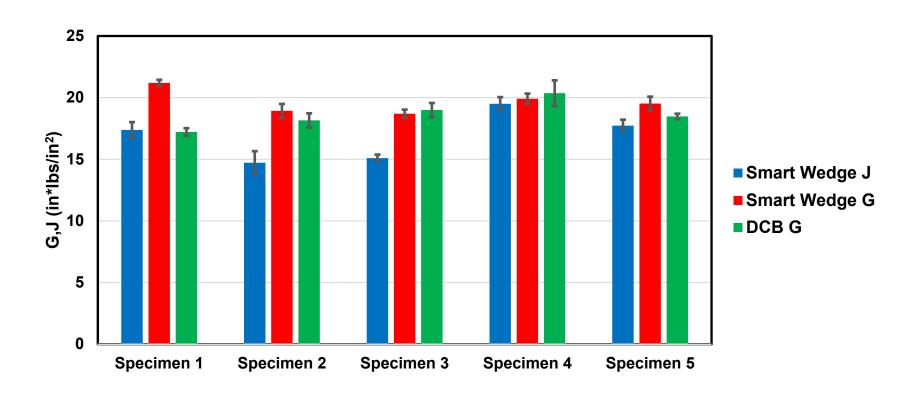




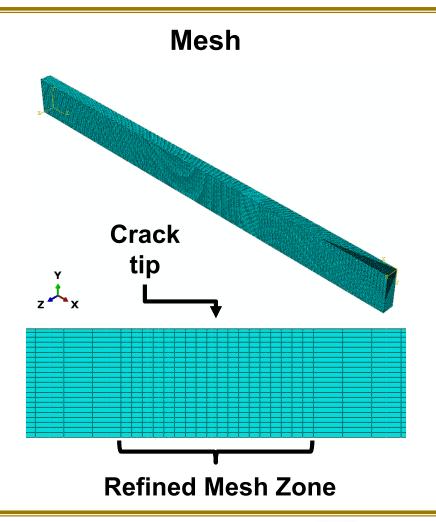
Smart Wedge Testing: Digital Image Correlation (DIC) for J-Integral

Smart Wedge testing with DIC for Smart Wedge testing with DIC for J-Integral uses a formula derived $J_{IC} = \frac{12P^2a^2(1-\nu_{31}^2)}{b^2E_1h^3} + \frac{P\omega}{b}$ for DCB specimens →

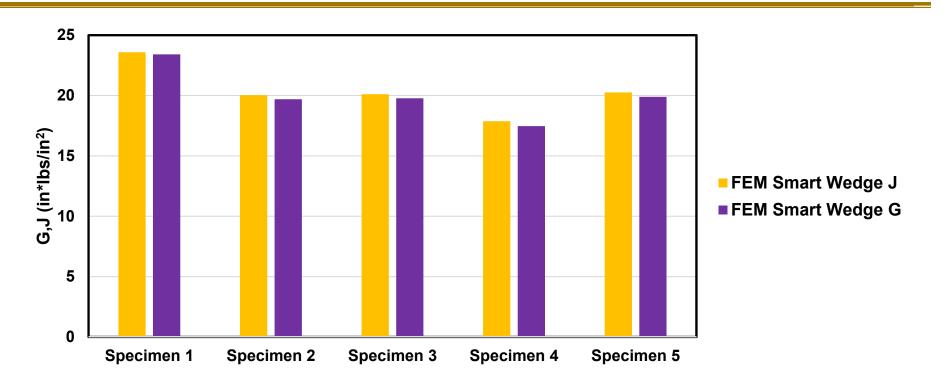
$$J_{IC} = \frac{12P^2a^2(1 - v_{31}^2)}{b^2E_1h^3} + \frac{P\omega}{b}$$



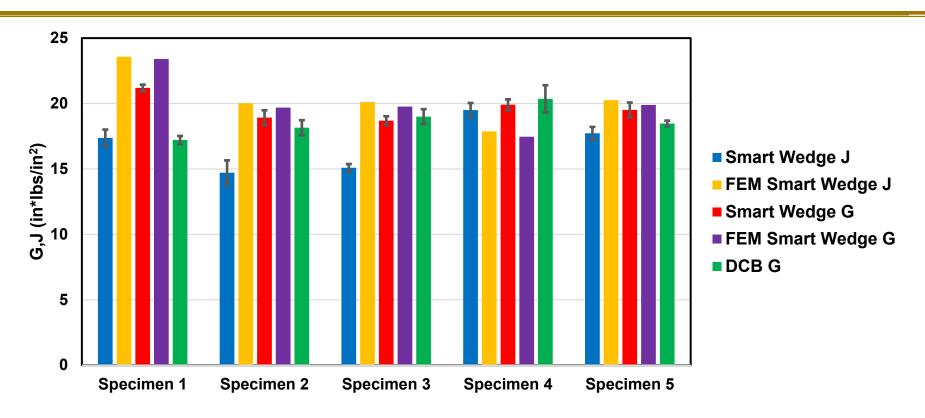
Smart Wedge Results: Comparison of Experimental G_I, J_I


3 tests performed on each bonded composite specimen

Evaluation of G_c Calculation Methods: Numerical Simulations

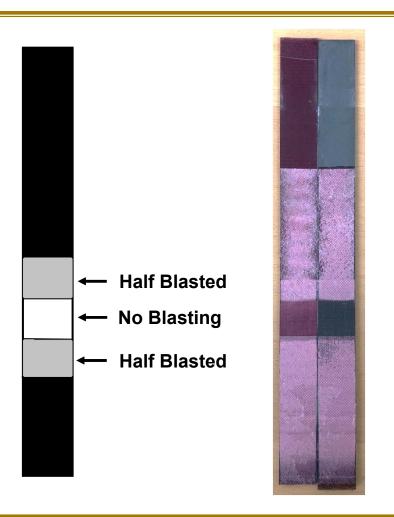

- Smart Wedge specimens modeled in ABAQUS
- Reduced computation time
 - Reducing unused length of specimen
 - Symmetry about midplane
 - Only one adherend and half adhesive layer
- Investigate differences in J and G values associated with crack growth

Smart Wedge Results: Comparison of Numerical G_I, J_I

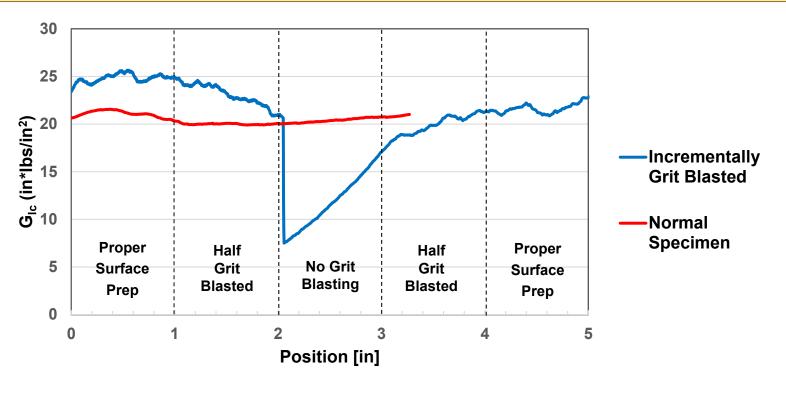


- G_I, J_I determined from simulation of Smart Wedge testing
- Simulation of initial crack growth only (one crack length)

Smart Wedge Results: Comparison of Experimental & Numerical G_I, J_I


- 3 tests performed on each bonded composite specimen
- Numerical modeling of J, G shown without error bars

Smart Wedge Testing: Specimen Manufacturing with Weak Bond Regions

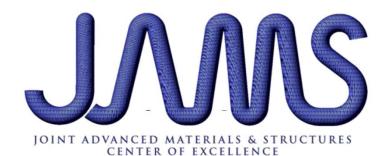

- Evaluate use of Smart Wedge to detect regions of weak bonds
- Variable levels of grit blasting on prescribed regions of one adherend
- Standard adhesive application and cure

Smart Wedge Test Results: Detection of Weak Bond Regions

 Further testing to focus on less significant degradations in bond strength

BENEFITS TO AVIATION

- Improved environmental durability test method for metal bonds (metal wedge test, ASTM D3762)
- Improved shear test method for adhesives (ASTM D5656)
- Composite wedge test for assessing the environmental durability of composite bonds and assessing surface preparations
- Hybrid traveling wedge/static wedge test for evaluation of larger bond areas
- Dissemination of research results through FAA technical reports and conference/journal publications



Questions?

Don't forget to fill out the feedback form in your packet or online at www.surveymonkey.com/r/jamsfeedback

Thank you.

CENTER OF EXCELLENCE

