Cicada: Player-Scalable, Fault-Tolerant Secure () .
MultiParty Computation

4t High-Performance Computing Security Workshop

Jon Berry, May, 2024

Project Team:
J. Berry (PI), G. Birch, K. Dixon (PM), A. Ganti, K. Goss, C. Mayer, U. Onunkwo, C. Phillips, J. Saia (UNM), T. Shead

$#7%, U.S. DEPARTMENT OF —— .
) \/ %) This work was supported by the Labor.
N ENERGY ,NA,«%’ Solutions of Sandia LLC, a wholly owne

Thanks to Our Multi-Disciplinary Research Team

a7 WA

Jon Berry (Pl) Gabe Birch

Ken GOss

Carolyn Mayer Uzoma Onunkwo Cindy Phillips Jared Saia (UNM) Tim Shead
Cicada-mpc
main author

\oy

May 20, 2024

Outline

« Application driver: Privacy-Preserving Machine Learning
« Algorithmic case study: dense matrix multiplication
« Software overview: Cicada-mpc (Fault-tolerant, open-source)

Nttps://github.com/cicada-mpc/cicada-mpc/
Nttps://cicada-mpc.readthedocs.io/

Nttps://www.youtube.com/watch?v=GM_JuKrw4lk

May 20, 2024

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/

Secure MultiParty Computation

Example:
Secure Multiparty Computation Goes Live. Bogetoft et al. (2009)

Related work for Machine Learning:

« SecureML: A System for Scalable Privacy-Preserving Machine
Learning. Mohassel and Zhang. (2017).

« ABY3: A Mixed Protocol Framework for Machine Learning.
Mohassel and Rindal. (2018)

* Many others (e.g. FALCON) for 2, 3, or 4 players.

PRODUCTION AND MARKETING ADMINISTRATION —U. S. DEPARTMENT OF AGRICULTURE—1946

Size of circuit for ML using traditional MPC approaches (e.g. EMP)
S prohibitive.

Image from National Archives. ARC Identifier: 514423

m

Motivation: MPC Linear Regression & Gradient Descent

Gradient descent:

Model: vector B.

Goal: Minimize a loss function L(B) by iterating B’ = B — nVL(B)
for some learning rate 7.

Why linear regression?

 Single matrix-vector multiplication in each step.
 Allows for local computations.
Hold shares of updated model locally.

May 20, 2024

Local Gradient Matrices

Global gradient G uses all datapoints.

Local gradient G, uses datapoints held by player p.
Then ¢ = X, G, Each G, is a share of G.

Note: Players can have different amounts of data.

Note: Players’ original gradient G, is additive, but not shareable
We create “additive secret shares” that are shareable

May 20, 2024

Typical MPC Computation: Resharing Matrices

Reshare to form matrices that don't individually reveal gradient information.

Private O A -
Random /\ O ‘ A

Received O ‘ A A
New matrix:O-/\- +O) +Q A‘Q' "'/\"'A ." 'A+ "

Private - Random + Received

MMULT(A, B)

For each player p:
£

N

& 3. Return Ap’Bp’.

Where C, is the column p is in and R,, is the row p is in.

Coalition resisted: /# Players — 1

May 20, 2024

10

11

12

13

14

15

16

2. B," < AGGREGATE(B,, R,). # sum shares along rows

A, — AGGREGATE(4,, C,). # sum shares along columns

MMULT Example: 9 Players

Aggregrate A in columns: Aggregrate Bin rows: Local multiplications:
3 [BT [
6 [N N (=
s 1] =

Global impact of MMULT:

(At Ayt A7) (B + By +By) + [(ASRASAG) (B: + By +Bs) + (Ay+ A +40) (B + By +By) -
P1 P2 P3

(g + 4, + 4,) | EIERRREON - [(ASSAS A NEIRERRREN - (4. + 4. + o) AN -
Pa Ps Pe

(41 + A, +47) (B, + By +By) + | (B, + Bs +Bs) + (A3 +Ag+As) (By + By + Bo)

pP7 Ps P9

May 20, 2024

Tolerating Fail-Stop Faults

|dea:
« (Checkpoint row and column aggregated values.
« Use Cicada’s built-in fault tolerance and Python exception handling

May 20, 2024

MMULT: Theoretical Results

The Communication Complexity (CC) of MMULT is nearly optimal tor a
single matrix multiplication, and optimal in the amortized sense for a
suite of O(Vn) matrix multiplications (n is the number of players)

Method Amortized CC CC Coalition Res. | Fail-stop Tol. (GD)
Shamir O(nzz) O(nzz) k—1<n/2 n—k
MMuLT O(zy + yz) O(vn(zy + yz)) [Vn]—3 vn —2

May 20, 2024

Z

CICADA Software Framework

« MPC software toolkit tolerating dropouts

» Open-source:

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/

May 20, 2024

Cooperatlve Computing for Autonomous DAta centers

A Cicada
\
CIED
Tutorial
User Guide
Command Reference
API Reference
Installation

Dependencies

Compatibility

Contributing

Release Notes

A » Welcome! © Edit on GitHub
Welcome! N

Welcome to Cicada ... a set of tools for working with fault-tolerant
secure multiparty computation. Notable Cicada features include:

Written in Python for simplicity and ease of use.
Cicada doesn't rely on weird DSLs or runtimes, making it easier to
learn, experiment, and integrate MPC computation into existing

systems.

Communication inspired by the widely used MPI standard.

https://github.com/cicada-mpc/cicada-mpc/
https://cicada-mpc.readthedocs.io/en/latest/

Written in Python, no weird DSLs or runtimes:

from cicada.communicator import SocketCommunicator

with SocketCommunicator.connect() as comm:
print (£f"Hello from player {comm.rank}!")

$ cicada run hello.py
Hello from player 0!
Hello from player 2!
Hello from player 1!

Based on three fundamental concepts

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.

Communication Patterns

One-to-many Many-to-one All-to-all Point-to-point

Po Po Po Po \ Po
P1 P1 P1 P1 P1 —~ P1 P1 P1

Based on three fundamental concepts:

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.

Encoding Fixed Point Arithmetic into a Field

0

Use fixed number of bits and two's
complement arithmetic.

Lower order bits represent fractional
part.

Example: 7-element field with lowest
order bit representing fractional part.

Going forward, we use fixed point
arithmetic in a field F with a prime
number of elements.

May 20, 2024

Based on three fundamental concepts:

Communicators

Network abstraction representing an unchanging group of players, and
communication patterns to pass messages among them.

Encodings

Map between domain values and MPC-friendly integer field
representations.

Protocol Suites

Use communicators and encodings to implement curated collections of
privacy-preserving protocols: secret sharing, addition, multiplication, logical
comparison, etc.

The Millionaires’ Dilemma in ~20 Lines of Cicada

import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean

from cicada.interactive import secret_ input

with SocketCommunicator.connect(startup timeout=300) as communicator:
protocol = AdditiveProtocolSuite (communicator)

winner = None
winning share = protocol.share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"Player {communicator.rank} fortune: "
fortune = secret input (communicator=communicator, src=rank, prompt=prompt)
fortune_share = protocol.share(src=rank, secret=fortune, shape=())
less_share = protocol.less(fortune_share, winning share)
less = protocol.reveal (less_share, encoding=Boolean())
if not less:
winner = rank
winning share = fortune_share

print (f"Winner: player {winner}")

impo

from
from
from
from

with

Communicators

rt numpy

cicada.additive import AdditiveProtocolSuite
cicada.communicator import SocketCommunicator
cicada.encoding import Boolean
cicada.interactive import secret input

SocketCommunicator.connect (startup timeout=300) as communicator:

protocol = AdditiveProtocolSuite (communicator)

winner = None
winning share = protocol.share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"Player {communicator.rank} fortune: "
fortune = secret input (communicator=communicator, src=rank, prompt=prompt)
fortune share = protocol.share(src=rank, secret=fortune, shape=())
less_share = protocol.less(fortune_share, winning share)
less = protocol.reveal (less share, encoding=Boolean())
if not less: B
winner = rank
winning share = fortune_share

print (f"Winner: player {winner}")

Encodings

import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean

from cicada.interactive import secret input

with SocketCommunicator.connect(startup_ timeout=300) as communicator:
protocol = AdditiveProtocolSuite (communicator)

winner = None
winning share = protocol.share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f'"Player {communicator.rank} fortune: "
fortune = secret_ input (communicator=communicator, src=rank, prompt=prompt)
fortune share = protocol.share(src=rank, secret=fortune, shape=())
less_share = protocol.less(fortune_share, winning share)
less = protocol.reveal (less_share, encoding=Boolean())
if not less:
winner = rank
winning share = fortune_share

print (f"Winner: player {winner}")

Protocol Suites

import numpy

from cicada.additive import AdditiveProtocolSuite
from cicada.communicator import SocketCommunicator
from cicada.encoding import Boolean

from cicada.interactive import secret input

with SocketCommunicator.connect(startup_ timeout=300) as communicator:
protocol = AdditiveProtocolSuite (communicator)

winner = None
winning share = protocol.share(src=0, secret=numpy.array(0), shape=())

for rank in communicator.ranks:
prompt = f"Player {communicator.rank} fortune: "
fortune = secret_ input(communicator=communicator, src=rank, prompt=prompt)
fortune share = protocol.share(src=rank, secret=fortune, shape=())
less_share = protocol.less(fortune_share, winning share)
less = protocol.reveal (less_share, encoding=Boolean())
if not less:
winner = rank
winning share = fortune_share

print (f"Winner: player {winner}")

hostA $ cicada start --rank 0 millionaires.py

Player 0 fortune: 1230000
INFO:root:Winner: player 1

hostB $ cicada start --rank 1 millionaires.py

Player 1 fortune: 4560000
INFO:root:Winner: player 1

hostC $§ cicada start --rank 2 millionaires.py

Player 2 fortune: 3400000
INFO:root:Winner: player 1

Fault Tolerance

Cicada is the only MPC library we’re aware of with support for fault tolerance and recovery!

All communication patterns have explicit, finite timeouts ...
... so failures cannot go unnoticed.
Communicators raise exceptions when failures occur ...
... this is the part where other MPC tools just die.
Applications can respond to exceptions in flexible ways ...
... communicators can be revoked (preventing subsequent use by any player)
... communicators can be shrunk (returns a new communicator with the remaining players)

... data recovery is application specific.

B Tutorial

The Millionaires’ Dilemma
The Basics

Logging

Encoders

Secure Multiparty Computation
(MPC)

User Guide
Command Reference
API Reference
Installation
Dependencies
Compatibility
Contributing
Release Notes

Support

EthicalAds: Make money with your
project while respecting user privacy

Thorough Documentation

) @ cicada-mpe.readthedocs.iofenlatest/tutorial.htmi & o i
» Tutorial © Edit on GitHub
Tutorial N

The Millionaires’ Dilemma

Imagine a pair of millionaires who want to know who has the

largest fortune, yet neither wants to reveal their fortune to the

other (or to anyone else). These may seem like mutually-exclusive e

goals, yet it turns out that we can arrive at the correct answer

without revealing either of the millionaires’ secrets. Using secure

multiparty fon (MPC), the millionaires can compute which fortune is largest
in such a way that both leam the resut, yet neither learns the other’s private information.

Cicada provides a collection of components that can be combined in flexible ways to create MPC
programs. This tutorial will introduce you to the basic building blocks of a Cicada program, and
solve the millionaires’ dilemma. Ready? Let's get started!

The Basics

An important point to understand fully is that - just as the name says - secure multiparty
computation involves multiple cooperating parties, which we will refer to as players throughout this
documentation. In computer science terms, each player is a separate process, typically running on a
separate host. In other words, you should think of an MPC program as a single set of instructions

that run in parallel across multiple and as they execute.

Writing programs this way can feel a little weird until you become accustomed to it. Fortunately,
the high performance computing (HPC) community has been writing programs this way for
decades, and Cicada brings that expertise to MPC. If you're familiar with writing software using
popular HPC tools like MPI, you'll be right at home in Cicada. If not, don’t worry! We'll explain how
it all works as we go.

e0e < & j 0 |v 0 @ cicada-mpc.readthedocs.io/en/latest/user-guide. htmi <]
Cicada 3
» User Guide © Edit on GitHub
User Guide
Tutorial
B User Guide The User Guide includes detailed individual subjects covering how to use Cicada effectively.
Absolute Value
Bit Decomposition -
Communication Patterns x ® |_,’
Division
Equality Comparison
Fields, Semantics, and Probabilistic
Results ~ 3
Absolute Value Bit Decomposition Communication
(e Patterns
Interactive Programs
Less Than Comparison
Less Than Zero Comparison < x) (.’L’> < >
Logical Not. y
Logical Exclusive Or
Multiple Communicators y
Multiplication and Truncation
Division Equality Comparison Fields, Semantics, and

Multiplicative Inverse
ki Probabilistic Results

(z) < (y)

Power
Random Bit Generation
Random Number Generation

Random Seeds zc

Rectified Linear Unit

Running Cicada Programs

Floor Interactive Programs Less Than Comparison

=

Cicada

Tutorial
User Guide
Command Reference

B API Reference

cicada module
cicada.additive module
cicada.communicator module

cicada.communicator.interface
module

cicada.communicator.socket module

cicada.communicator.socket.connect
module

cicada.encoder module
cicada.encoderfixedfield module
cicada.nteractive module
cicada.ogging module
cicada shamir module

Installation

Dependencies

Compatibility

Contributing

Release Notes

Support

& cicada- 9 o 0

» APl Reference » cicada.communicator.interface module © Edit on GitHub

cicada.communicator.interface module

Defines abstract interfaces for network communication.

class cicada. i .interface.C i [source]

Bases: object

Abstract base class for objects that manage collective communications for secure multiparty
computation.

abstract all_gather(value) [source]

All-to-all communication.

This method is a collective operation that must be called by all players that are members
of the communicator.

Parameters: value (Any picklable object , required) - Local value that will be sent to all
players.

Returns: values - Collection of objects gathered from every player, in rank order.

Return type: sequence of object

abstract barrier() [source]

Block the local process until all players have entered the barrier.

This method is a collective operation that must be called by all players that are members
of the communicator.

Thorough Testing and Continuous Integration

e0e® < allo~ © github.comy/cicada-mpc/cicada-mpc/actions 2 o & =[5 e0e M-~ < & 0 coveralls.io 2 © a +

Pull requests Issues Marketplace Explore COVER A ’. l s

& cicada-mpc / cicada-mpc Public <X Unpin @®uUnwatch 1 ~ % Fork 0 Starred 2~

@«
44 Back to R
e © CICADA-MPC / CICADA-MPC / 6461098976
<> Code (© lssues 4 11 Pull requests 1 () Discussions ® Actions 00 wiki © Security |~ Insights 2 Settings * ESWMEADon giihub)
@ Prev Build on main
* (#6461027317)
Workflows New workflow ® 2]
m Tell us how to make GitHub Actions work better for you with three quick questions. Give feedback
O w
%, Regression tests »)
All workflows
Showing runs from all workflows
Q_ Filter workflow runs
DEFAULT BRANCH: MAIN
| owseo - |
- - RAN Joss FILES RUN TIME BADGE
7 features passed, @ failed, 1 skipped 09 00T 2023 0z:26PM 5 " 18 [coverage (58%]

MDT

566 scenarios passed, @ failed, 22 skipped
2390 steps passed, O failed, 111 skipped, © undefined [comnir> 040

BUILD # BUILD TYPE JMMITTED BY COMM RUN DETAILS

T 00 k 9 5 m 1 2 . 9 9 7 S 6461098976 push S0 tshead2 Bump version number. 1 0f 1 new or added line in 1 file covered

github (100.0%)

2711 of 2776 relevant lines covered
(97.66%)

" 4.88 hits per line
@ Shamir o B 2 days ago 2
Regression tests #287: Pull request #34 opened by kgoss1729 1h 36m 5s
JOBS
@ Make it explicit that player connections are blocking. . B 4 days ago
main
Regression tests #286: Commit d2ebca3 pushed by tshead2 © 47m19s
1 09 Oct 2023 02:26PM MDT 14 ¥ 97.62
Rewrite the tls-test.py script to debug a problem.
° Py scrip 9ap main B35 days ago 2 09 Oct 2023 02:26PM MDT 14 "'Tm
Regression tests #285: Commit 3c7dc0d pushed by tshead2 ® 41m 23s =
3 161098976, 09 Oct 2023 02:27PM MDT 14 (¥ 9759 |
@ SocketCommunicator.run() supports TLS. B 5 days ago

main 4 6461098976.4 09 Oct 2023 02:30PM MDT 14
Regression tests #284: Commit b0598b8 pushed by tshead2 © 38m51s b1C < ¥ 97.62

09 Oct 2023 02:37PM MDT 14 ¥ 97.62

@ Checkpoint work on the MPC service for real. . B 6 days ago
main
Regression tests #283: Commit aaa9a26 pushed by tshead2 @ 38m 44s

SOURCE FILES ON BUILD 6461098976
@ Revert "Checkpoint work on the MPC service." R =] 6 days ago

MPC Through 100 Players!

10" oo
5 100 | e
o -
o -
O - 7
< 10 o
i, _ -7
© _ -
2 107} -
S
“— -3 |
= 10
o
GEJ 104 L —— 3 player Cicada LAN
i : 9 player Cicada LAN
: —— 25 player Cicada LAN
10 100 player Cicada LAN
§ - - - 3 player ABY3 WAN
6 [3 player ABY3 LAN
10 3 ! ! \\\\\\\4 ! ! \\\\\\\5 ! ! \\\\\\\6 ! ! P R S
10 10 10 10

Number of training data points
May 20, 2024

Conclusions, HPC Community Asks

“WHY DIDN'T WE USE MPI and USER-LEVEL FAULT MITIGATION (ULFM)?”

Three years ago, we evaluated ULFM reference implementations in MPICH and
OpenMPI. We identified problems such as:

* Communicator revocation wasn’t detected by all ranks, depending on which
ranks initiated the revocation.

* Some collective operations did not raise timeout errors even when some
ranks were dead.

* Because ULFM hasn’t been adopted by MPI, the Python mpidpy bindings
don’t support ULFM, and working with patched bindings severely limits our
ability to distribute our software.

May 20, 2024 fh

Questions?

jberry@sandia.gov

